

### **Field & Technical Services**

200 Third Avenue • Carnegie, PA 15106 • Phone: 412-429-2694 • Fax: 412-279-4512

November 9, 2012

Mr. Scott Miller Remedial Project Manager U.S. Environmental Protection Agency, Region IV 4WD-SRTMB 61 Forsyth Street Atlanta, GA 30303-3415

#### RE: 2012 First Semiannual Comprehensive Groundwater Monitoring Report Cabot Carbon/ Koppers Superfund Site Gainesville, Florida

Dear Mr. Miller:

On behalf of Beazer East, Inc. (Beazer), enclosed are three copies of the 2012 First Semiannual Comprehensive Groundwater Monitoring Report for the above-referenced site.

If you should have any questions regarding this correspondence, please do not hesitate to contact Mr. Mitchell Brourman, Beazer Environmental Manager, at (412) 208-8805 or Ms. Angie Gatchie of Field & Technical Services LLC (FTS) at 412-429-2694.

Sincerely,

Field & Technical Services LLC

rgela Satchie

Angie Gatchie Project Scientist

Attachments

- cc: W. O'Steen, U.S. EPA L. Paul, Koppers, Inc. (CD) J. Erickson, Tetra-Tech Geo J. Mercer, Tetra-Tech Geo (CD) M. Brourman, Beazer T. Wolfson, BCCZ (CD)
- K. Helton, FDEP
  J. Herbert, Jones Edmonds & Associates, Inc. (CD)
  J. Mousa, ACEPD (CD)
  R. Hutton, GRU (CD)
  G. Council, Tetra-Tech Geo (CD)
  R. Hanczar, FTS (Site Copy)

### 2012 FIRST SEMIANNUAL COMPREHENSIVE GROUNDWATER MONITORING REPORT

### CABOT CARBON / KOPPERS SUPERFUND SITE GAINESVILLE, FLORIDA

Submitted to: U.S. EPA Region 4

*On behalf of:* **Beazer East, Inc.** 

Prepared by:

**Field & Technical Services, LLC** 200 Third Avenue Carnegie, Pennsylvania 15106



November 9, 2012

#### TABLE OF CONTENTS

|      | Γ OF TABLESii                        |
|------|--------------------------------------|
|      | C OF FIGURESiii                      |
| LIST | G OF APPENDICESiii                   |
| ABB  | REVIATIONS/ACRONYMSiv                |
|      |                                      |
| 1.0  | INTRODUCTION1                        |
| 2.0  | MONITORING ACTIVITIES                |
| 2.0  | MONITORING ACTIVITIES                |
| 2.1  | MONITORING PROCEDURES                |
| 2.2  | SURFICIAL AQUIFER4                   |
| 2.3  | HAWTHORN GROUP4                      |
| 2.4  | FLORIDAN AQUIFER                     |
| 2.5  | QUALITY ASSURANCE                    |
| 2.6  | MONITORING WELL INSPECTION           |
| 2.7  | DEVIATIONS FROM THE CGMSAP7          |
| 2.0  | MONITORING RESULTS                   |
| 3.0  | MONITORING RESULTS                   |
| 3.1  | NON-AQUEOUS PHASE LIQUIDS            |
| 3.2  | GROUNDWATER FLOW                     |
|      | 3.2.1 SURFICIAL AQUIFER              |
|      | 3.2.2 HAWTHORN GROUP DEPOSITS        |
|      | 3.2.3 FLORIDAN AQUIFER               |
| 3.3  | GROUNDWATER QUALITY                  |
|      | 3.3.1 FLORIDAN AQUIFER               |
|      | 3.3.1.1 SOURCE AREA MONITORING WELLS |
|      | 3.3.1.2 TRANSECT MONITORING WELLS    |
|      | 3.3.1.3 BOUNDARY MONITORING WELLS14  |
|      | 3.3.1.4 SENTINEL MONITORING WELLS    |
| 4.0  | SUMMARY AND CONCLUSIONS              |
| 4.0  | SUMMARY AND CONCLUSIONS 15           |
| 4.1  | HYDROGEOLOGY                         |
| 4.2  | NAPL RECOVERY                        |
| 4.3  | GROUNDWATER QUALITY                  |
|      |                                      |



#### LIST OF TABLES

| Table 1  | Surficial Aquifer Monitoring Wells and Program Parameters                           |
|----------|-------------------------------------------------------------------------------------|
| Table 2  | Hawthorn Group Monitoring Wells and Program Parameters                              |
| Table 3  | Floridan Aquifer Monitoring Wells and Program Parameters                            |
| Table 4  | Summary of Groundwater Elevations - First Quarter 2012 Groundwater Monitoring Event |
| Table 5  | Summary of Analytical Data for Floridan Aquifer Monitoring Wells                    |
| Table 6a | Summary of Analytical Data for Westbay Upper Transmissive Zone Monitoring Wells     |
| Table 6b | Summary of Analytical Data for Westbay Lower Transmissive Zone Monitoring Wells     |



#### LIST OF FIGURES

| Figure 1  | Site Location Map                                                                 |
|-----------|-----------------------------------------------------------------------------------|
| Figure 2  | Monitoring Well Location Map                                                      |
| Figure 3a | Surficial Aquifer Potentiometric Surface Contours for March 2012                  |
| Figure 3b | Upper Hawthorn Potentiometric Surface Contours for March 2012                     |
| Figure 3c | Lower Hawthorn Potentiometric Surface Contours for March 2012                     |
| Figure 3d | Floridan Aquifer Potentiometric Surface Contours for March 2012                   |
| Figure 4  | Floridan Aquifer Source Area Monitoring Wells, Organic Analytical Exceedances     |
| Figure 5  | Floridan Aquifer Transect Area Monitoring Wells, Organic Analytical Exceedances   |
| Figure 6  | Floridan Aquifer Transect Area Monitoring Wells, Inorganic Analytical Exceedances |
| Figure 7  | Floridan Aquifer Boundary Monitoring Wells, Organic Analytical Exceedances        |
| Figure 8  | Floridan Aquifer Boundary Monitoring Wells, Inorganic Analytical Exceedances      |
| Figure 9  | Sentinel Monitoring Wells, Organic Analytical Exceedances                         |
| Figure 10 | Summary of Floridan Wells Organic Analytical Exceedances                          |
| Figure 11 | Summary of Floridan Wells Inorganic Analytical Exceedances                        |

#### LIST OF APPENDICES

| Appendix A | Field Forms                             |
|------------|-----------------------------------------|
| Appendix B | Analytical Laboratory Reports           |
| Appendix C | Electronic Data Submittal (Agency Only) |



#### **ABBREVIATIONS/ACRONYMS**

| Beazer   | Beazer East, Inc.                                             |
|----------|---------------------------------------------------------------|
| BTEX     | Benzene, Toluene, Ethylbenzene, and Xylenes                   |
| CGMSAP   | Comprehensive Groundwater Monitoring and Sample Analysis Plan |
| COC      | Chain of Custody                                              |
| DNAPL    | Dense Non-Aqueous Phase Liquid                                |
| DO       | Dissolved Oxygen                                              |
| FTS      | Field & Technical Services, LLC                               |
| GCTLs    | Florida Groundwater Cleanup Target Levels                     |
| gpm      | Gallons per Minute                                            |
| HG       | Hawthorn Group                                                |
| Koppers  | Koppers Inc.                                                  |
| LNAPL    | Light Non-Aqueous Phase Liquid                                |
| LTZ      | Lower Transmissive Zone                                       |
| MCL      | Maximum Contaminant Level                                     |
| MS/MSD   | Matrix Spike/Matrix Spike Duplicate                           |
| NAPL     | Non-Aqueous Phase Liquid                                      |
| ORP      | Oxidation-Reduction Potential                                 |
| PPE      | Personal Protective Equipment                                 |
| POTW     | Publicly-Owned Treatment Works                                |
| QA       | Quality Assurance                                             |
| QC       | Quality Control                                               |
| Site     | Cabot Carbon/Koppers Superfund Site, Gainesville, Florida     |
| SOP      | Standard Operating Procedure                                  |
| SVOCs    | Semi-volatile Organic Constituents                            |
| µg/l     | Micrograms per Liter                                          |
| U.S. EPA | United States Environmental Protection Agency                 |
| UTZ      | Upper Transmissive Zone                                       |
| VOCs     | Volatile Organic Constituents                                 |
| WWTP     | Wastewater Treatment Plant                                    |
|          |                                                               |



#### 1.0 INTRODUCTION

On behalf of Beazer East, Inc. (Beazer), Field & Technical Services, LLC (FTS) is pleased to submit the 2012 First Semiannual Comprehensive Groundwater Monitoring Report for the Cabot Carbon/Koppers Superfund Site in Gainesville, Florida (Site) (Figure 1) to the United States Environmental Protection Agency (U.S. EPA). This report presents the Site-wide monitoring activities which occurred during the first semiannual period of 2012 (January 1, 2012 through June 30, 2012) conducted in accordance with the U.S. EPA-approved<sup>1</sup> *Comprehensive Groundwater Monitoring and Sample Analysis Plan*<sup>2</sup> (CGMSAP). The purpose of the CGMSAP is to combine the current groundwater monitoring efforts into a unified Site-wide program, thereby enhancing the efficiency of data collection and the quality of the data obtained for understanding Site-wide groundwater conditions. The CGMSAP has replaced the previous Surficial Aquifer, Hawthorn Group (HG), and Floridan Aquifer monitoring programs at the Site.

<sup>&</sup>lt;sup>2</sup> FTS, May 4, 2012, *Comprehensive Groundwater Monitoring and Sample Analysis Plan Revision 04*, Cabot Carbon/Koppers Superfund Site, Gainesville, Florida, submitted to U.S. EPA.



<sup>&</sup>lt;sup>1</sup> U.S. EPA, June 19, 2010, *May 7, 2010 Response to Comments and Final CGMSAP Submittal*, Letter to Karen Fromme, FTS.

#### 2.0 MONITORING ACTIVITIES

Field activities associated with the first quarter 2012 were conducted March 19, 2012 through March 22, 2012. Field activities associated with the second quarter 2012 were conducted June 18, 2012 through June 20, 2012. Monitoring activities and methods used for the implementation of the CGMSAP are discussed in the following sections. Figure 2 depicts the locations of the monitoring wells sampled during the reporting period.

#### 2.1 MONITORING PROCEDURES

The following summary describes the general methods employed to conduct water-level measurements, non-aqueous phase liquid (NAPL) measurements, and groundwater sampling during the first and second quarter 2012:

- Water levels were collected during the first quarter 2012 event to fulfill the semiannual gauging requirement as established in the CGMSAP. Water levels were measured with a water-level meter and interface probe before groundwater sampling commenced in accordance with FTS Standard Operation Procedure (SOP) #116 and the CGMSAP. The depths to the bottom of the monitoring wells were also measured to monitor the potential accumulation of silt or sand in the wells. All monitoring wells were allowed to equilibrate to atmospheric pressure prior to gauging. The thickness of accumulated NAPL (if present) was also measured prior to purging and sampling. Gauging order was generally based on available historical analytical data. Monitoring wells were gauged in order of increasing impact. This procedure was followed to minimize any potential for cross contamination between monitoring wells;
- Groundwater potentiometric surface elevation data for the multi-port monitoring wells were collected, during the first quarter 2012 event to fulfill the semiannual gauging requirement, using the Westbay sampling tool equipped with an integral pressure transducer as described in the CGMSAP. Using the sampling tool, an ambient atmospheric pressure reading was taken at each sample location on each day of sampling. The sampling tool is then lowered down-hole to engage the desired discrete interval sampling port and a pore pressure was measured;
- Low-flow sampling procedures were implemented during the purging and sampling of the monitoring wells in accordance with FTS SOP #157 and the CGMSAP (except for the Floridan multi-port monitoring wells and the Floridan Aquifer sentinel monitoring wells FW-29B and FW-29C, see below). Monitoring wells were purged using either a peristaltic pump and dedicated Teflon<sup>®</sup>-lined tubing, a QED bladder equipped with disposable Teflon<sup>®</sup> bladders and dedicated Teflon<sup>®</sup>-lined tubing, or by direct fill from



spigot (Floridan Aquifer pumping wells FW-6 and FW-21B). Flow rates were determined using a graduated cylinder;

- Groundwater sampling of the multi-port monitoring wells was conducted via the use of the Westbay sampling tool (Westbay MP Sampling System) and in accordance with the CGMSAP;
- Traditional three to five well-volume purge sampling procedures were implemented during the purging and sampling of the Floridan Aquifer sentinel monitoring wells FW-29B and FW-29C. Monitoring wells were purged using a Grundfos Redi Flo-2 pump and dedicated Teflon<sup>®</sup>-lined tubing. The purge volume was measured by calculating flow rate over time with a graduated 5-gallon bucket;
- Water-quality parameters were measured with a YSI-556 water-quality meter and a LaMotte-2020e turbidity meter, which were field calibrated daily using manufacturer-supplied standard solutions. Field parameters were measured approximately every 5 minutes during low-flow sampling procedures and included: pH, specific conductivity, temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity. Field parameters measured during traditional sampling procedures were collected and included: pH, specific conductivity, temperature, and turbidity. The multi-port sampling equipment is not designed for flow-through cell application. Therefore, groundwater field parameters were not collected at the multi-port monitoring wells;
- Sampling was initiated after field parameters stabilized. Samples were collected either directly from the Teflon<sup>®</sup>-lined tubing after the YSI-556 and its flow-thru cell were removed or with a Teflon<sup>®</sup> bailer. The groundwater samples were collected according to volatility (volatile samples first, semi-volatile samples second, and inorganic samples last). Dissolved metals were filtered through a 0.45-micrometer filter immediately upon sample collection;
- Decontamination of sampling equipment was performed between monitoring well locations utilizing Alconox solution and DI water rinses as specified in FTS SOP # 104;
- Laboratory-supplied bottles were filled, labeled, placed in a cooler with ice, and transported under chain-of-custody procedures to ALS Environmental of Jacksonville, Florida for analysis; and
- Purged groundwater was temporarily placed in 5-gallon buckets or the FTS 1,200-gallon water transport trailer and transferred to the on-Site waste-water treatment plant (WWTP) and subsequent discharge to the



publicly-owned treatment works (POTW). Personal protective equipment (PPE) was collected in a 55-gallon drum for future disposal at an off-site licensed facility.

Groundwater quality measurements, calculations, and field notes were recorded for each monitoring well with digital handheld computers and printouts are provided in Appendix A. Copies of the chain of custody (COC) forms are included with the laboratory analytical data reports in Appendix B.

#### 2.2 SURFICIAL AQUIFER

Surficial Aquifer monitoring consists of sampling monitoring wells in the immediate vicinity of the eastern and northern Site property boundaries. Thirteen Surficial Aquifer monitoring wells are used to monitor groundwater quality in the vicinity of these two property boundaries (Figure 2). The majority of the Surficial Aquifer monitoring wells are nested monitoring wells completed in the upper ("A" series monitoring wells) and lower ("B" series monitoring wells) portions of the Surficial Aquifer.

One Surficial Aquifer monitoring well (M-16A) was scheduled to be sampled during the first quarter 2012 sampling event; however, the monitoring well was dry and a sample could not be collected (Table 1). No Surficial Aquifer monitoring wells were sampled during the second quarter 2012 event. The monitoring locations and sampling frequency for the Surficial Aquifer are provided in Table 1.

#### 2.3 HAWTHORN GROUP

Hawthorn Group monitoring focuses on wells located on-Site (near the former Drip Track and former North Lagoon areas), along the eastern and western property boundaries, and downgradient of these boundaries. A total of 24 HG monitoring wells are used to monitor groundwater quality (Figure 2).

No HG monitoring wells were sampled during the first and second quarter 2012 events. The monitoring locations and sampling frequency for the HG is provided in Table 2.

#### 2.4 FLORIDAN AQUIFER

The Floridan Aquifer monitoring focuses on monitoring wells located downgradient and within suspected source area locations (Figure 2). The Floridan Aquifer monitoring wells are completed in the Upper Transmissive Zone (UTZ) and Lower Transmissive Zone (LTZ). The UTZ monitoring wells consist of both standard-construction monitoring wells and multiple-screen, multi-port sampling monitoring wells. The multi-port monitoring wells were installed to provide vertically discrete sampling within the Floridan Aquifer.



Eighteen (18) Floridan Aquifer monitoring wells were sampled during the first quarter 2012 event and six Floridan Aquifer monitoring wells were sampled during the second quarter 2012 event (Table 3).

Floridan Aquifer pumping wells FW-6 and FW-21B could not be gauged due to dedicated pumping equipment installed in these wells.

The list of analytes for the Floridan Aquifer monitoring wells is tailored to the known constituent distributions established from the quarterly sampling in these monitoring wells, which has been on-going since 2006. All Floridan Aquifer monitoring wells were sampled for select semivolatile organic compounds (SVOCs) and benzene, toluene, ethylbenzene, and xylenes (BTEX) consistent with the CGMSAP. In addition, select Floridan Aquifer monitoring wells (FW-24B, FW-27B, FW-28B, and FW-30B) were sampled for total and dissolved arsenic.

#### 2.5 QUALITY ASSURANCE

Quality assurance/quality control (QA/QC) samples collected during the first and second quarter 2012 events included trip blanks, field blanks, equipment rinsate blanks, filter blanks, field duplicates, and Site-specific matrix-spike/matrix-spike duplicate (MS/MSD) samples in accordance with the CGMSAP. Trip blanks were included in each cooler submitted to the laboratory containing volatile organic constituents (VOCs). Field blanks and equipment rinsate blanks were collected at a rate of one blank per day per sampling event. The following table summarizes the field duplicate and MS/MSD samples collected during the first and second quarter sampling events.

| Monitoring<br>Zone | Well<br>ID    | QA/QC<br>ID        | QA/QC<br>Type |  |  |  |  |  |  |
|--------------------|---------------|--------------------|---------------|--|--|--|--|--|--|
| First Quarter 2012 |               |                    |               |  |  |  |  |  |  |
|                    | FW-21B Zone 4 | GAIN-M-99A-031912  | Duplicate     |  |  |  |  |  |  |
|                    | FW-28B Zone 4 | GAIN-FW-99B-032012 | Duplicate     |  |  |  |  |  |  |
|                    | FW-29B        | FW-99-032112       | Duplicate     |  |  |  |  |  |  |
|                    | FW-24B Zone 4 | GAIN-FW-99D-032112 | Duplicate     |  |  |  |  |  |  |
|                    | FW-12B Zone 4 | GAIN-FW-99E-032212 | Duplicate     |  |  |  |  |  |  |
| Floridan Aquifer   | FW-06         |                    | MS/MSD        |  |  |  |  |  |  |
|                    | FW-22B Zone 4 |                    | MS/MSD        |  |  |  |  |  |  |
|                    | FW-24B Zone 1 |                    | MS/MSD        |  |  |  |  |  |  |
|                    | FW-27B Zone 1 |                    | MS/MSD        |  |  |  |  |  |  |
|                    | FW-28B Zone 1 |                    | MS/MSD        |  |  |  |  |  |  |
|                    | FW-29B        |                    | MS/MSD        |  |  |  |  |  |  |
|                    | FW-29C        |                    | MS/MSD        |  |  |  |  |  |  |



| Second Quarter 2012 |               |                    |           |  |  |  |  |
|---------------------|---------------|--------------------|-----------|--|--|--|--|
|                     | FW-16B Zone 1 | FW-99A-061912      | Duplicate |  |  |  |  |
|                     | FW-24B Zone 2 | GAIN-FW-99B-062012 | Duplicate |  |  |  |  |
| Floridan Aquifer    | FW-22B Zone 2 |                    | MS/MSD    |  |  |  |  |
|                     | FW-24B Zone 1 |                    | MS/MSD    |  |  |  |  |
|                     | FW-24B Zone 3 |                    | MS/MSD    |  |  |  |  |

FTS completed a QA review of the field and technical data at two levels as described in the CGMSAP. For the first level, data were reviewed at the time of collection by following standard procedures and QC checks. For the second level, after data reduction to table format or arrays, the data were reviewed for anomalous values. Any inconsistencies or anomalies identified during this review were immediately resolved, if possible, by seeking clarification from the field personnel responsible for collecting the data.

Upon receipt of the analytical data from ALS Environmental, Environmental Standards validated the data, using the protocols of the U.S. EPA National Functional Guidelines (U.S. EPA 2008<sup>3</sup>, 2009<sup>4</sup>, and 2010<sup>5</sup>) and U.S. EPA method specifications. Environmental Standards found the majority of the data acceptable with the summarized qualifications, including rejected data, listed in Appendix B. Appendix B also contains the data validations and analytical reports. Appendix C contains the analytical data tables in Microsoft Excel format.

#### 2.6 MONITORING WELL INSPECTION

A monitoring well inspection was completed on March 19, 2012. The FTS field crew documented observed defects or maintenance activities associated with the monitoring wells included in the first quarter 2012 event (Appendix A). Only minor defects were observed during the first quarter 2012 monitoring well inspection. These minor defects included surficial pad cracks (HG-21D and HG-22D), missing or rusted bolts (HG-21S), and a hinge needed repaired (ITW-12). All defects will be repaired prior to the third quarter 2012 event.

<sup>&</sup>lt;sup>5</sup> U.S. EPA, January 2010. U.S. EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.



<sup>&</sup>lt;sup>3</sup> U.S. EPA, June 2008. U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review.

<sup>&</sup>lt;sup>4</sup> U.S. EPA, January 2009. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use.* 

#### 2.7 DEVIATIONS FROM THE CGMSAP

The following deviations from the approved CGMSAP occurred during the reporting period:

- Floridan Aquifer monitoring wells FW-6 and FW-21B were not gauged during the reporting period due to dedicated pumping equipment installed in these monitoring wells.
- A sample could not be collected from Surficial Aquifer monitoring well M-16A during the first quarter 2012 sampling event due to the monitoring well being dry.



#### 3.0 MONITORING RESULTS

The NAPLs monitoring, groundwater flow and water-quality results for the Surficial Aquifer, HG deposits, and Floridan Aquifer are discussed in the following sections.

#### 3.1 NON-AQUEOUS PHASE LIQUIDS

Dense non-aqueous phase liquid (DNAPL) is being recovered on a bi-monthly basis in six Upper Hawthorn monitoring wells as an IRM. DNAPL recovery is reported in the monthly status reports for this Site. One of the six DNAPL recovery wells (HG-16S) is also sampled annually in accordance with the CGMSAP (Table 2). The annual gauging and sampling of this well will be conducted during the third quarter 2012. No measureable DNAPL thickness was detected in any of the Upper and Lower Hawthorn monitoring wells gauged during the first quarter 2012. However, similar to historical measurements in monitoring well HG-16D, minor DNAPL staining was detected on the probe during the measurement in this monitoring well (Table 4). Light non-aqueous phase liquid (LNAPL) was not detected in any of the Surficial Aquifer, HG, or Floridan Aquifer monitoring wells measured during the first quarter 2012 monitoring event (Table 4).

#### **3.2 GROUNDWATER FLOW**

Groundwater potentiometric elevations were obtained in 37 monitoring well locations during the first quarter 2012 (Table 4). Groundwater potentiometric elevations were not obtained in Surficial Aquifer monitoring wells M-12 and M-17 due to them being dry or in Floridan Aquifer monitoring well FW-6 due to dedicated pumping equipment being present in this well. The monitoring well groundwater elevations were used to construct the potentiometric surface contour maps for the first quarter 2012 (Figures 3a, 3b, 3c, and 3d). The following subsections discuss the first quarter 2012 groundwater elevation data for the Surficial Aquifer, Upper Hawthorn Aquifer, Lower Hawthorn Aquifer, and Floridan Aquifer.

#### 3.2.1 Surficial Aquifer

Surficial Aquifer groundwater flow at the Site is primarily controlled by the hydrauliccontainment system designed to capture impacted groundwater at the Site. The hydraulic-containment system for the Surficial Aquifer was operational during the first and second quarters 2012, with the exception of the former North Lagoon horizontal groundwater collection drain which is discussed below. Recovery wells along the eastern and northern property boundary continued to capture impacted groundwater along with the horizontal trench/drain recovery system in the immediate vicinity of the four former source areas. Total combined groundwater recovery from the well/drain system during



first quarter 2012 was approximately 55 gallons per minute (gpm) and second quarter 2012 was approximately 60 gpm.

Regional water-level elevations continue to decline in the Surficial Aquifer due to reduced precipitation for the area. Water levels at the former North Lagoon were below the base of the horizontal groundwater collection drain from fourth quarter 2011 through second quarter 2012. Because Surficial Aquifer water levels were below the pump intake, groundwater extraction ceased at this drain from November 2011 through June 2012. The former North Lagoon was the only horizontal groundwater collection drain to cease pumping due to low water levels in the Surficial Aquifer; however, pumping rates at one other horizontal groundwater collection drain was reduced to account for the declining water table. Water levels at the former Drip Track horizontal groundwater collection drain remained low during first and second quarters of 2012, such that average groundwater pumping rates at this drain continued to decline from November 2011 through March 2012 when pumping rates stabilized at approximately 5 gpm. In June 2012 Surficial Aquifer water levels started to rebound due to increased precipitation. Correspondingly, average pumping rates at the Drip Track horizontal drain increased 8 gpm during June 2012. Surficial Aquifer water levels at the former South Lagoon also continued to decline during the first and second quarters of 2012. However, water levels in the horizontal groundwater collection drain remained approximately 2 feet above the pump intake, such that groundwater pumping rates did not decline and averaged about 10 gpm. During the months of January and February 2012 pumping rates were increased at the former South Lagoon horizontal groundwater collection drain up to approximately 13 gpm to help offset the decline in pumping at the former Drip Track. Groundwater pumping rates at the former Process area remained steady at approximately 10 gpm during first and second quarters 2012. Surficial Aquifer water levels continued to decline at this location until June 2012 when water levels rose about 1.2 feet in the sump.

The principal direction for groundwater flow in the Surficial Aquifer is to the northeast; however, groundwater is being captured locally by the hydraulic-containment system in continuous operation at the Site (Figures 3a). The hydraulic gradient varies from a low gradient across the southern three quarters of the Site to a significantly higher gradient on the northern one quarter of the Site. The average hydraulic gradient across the southern three quarters of the Site is approximately 0.003 ft/ft, whereas the average hydraulic gradient across the northern quarter of the Site is approximately 0.01 ft/ft. This increase in the hydraulic gradient from the southern to the northern area of the Site is likely due to a combination of factors including: (1) a decrease in the Surficial Aquifer transmissivity (hydraulic conductivity times aquifer thickness) in the northern area of the Site; and (2) a lowering of the water table by the hydraulic-containment system groundwater recovery in this area. Groundwater flow directions and hydraulic gradients for the first and second quarters of 2012 were consistent with historical Site conditions.



#### 3.2.2 Hawthorn Group Deposits

The HG deposits contain three primary low-permeability clay deposits termed the upper clay, middle clay and lower clay units. Sedimentary deposits between the upper and middle clay units are referred to as the Upper Hawthorn and sedimentary deposits between the middle and lower clay units are referred to as the Lower Hawthorn. Groundwater flow directions for the Upper Hawthorn are distinct from flow directions in the Lower Hawthorn and therefore, will be discussed separately in this section.

#### Upper Hawthorn

Groundwater flow in the Upper Hawthorn closely approximates the flow direction in the Surficial Aquifer, with a primarily northeastern flow direction across the Site (Figure 3b). The low-permeability upper clay unit restricts downward vertical flow resulting in approximately 2 to 3 feet hydraulic-head difference across this clay unit. However, the similar northeasterly groundwater flow direction in the Upper Hawthorn and Surficial Aquifer is an indication that hydraulic communication is occurring between these two hydrologic units such that the approximate groundwater flow directions are the same. Similar to the hydraulic gradient in the Surficial Aquifer, the hydraulic gradient for the Upper Hawthorn increases from south to north across the Site; however the magnitude of this hydraulic-gradient change is not as large as in the Surficial Aquifer.

#### Lower Hawthorn

Groundwater flow in the Lower Hawthorn is influenced by the approximately 5- to 20foot thick lower-permeability middle clay unit. The hydraulic-head difference across this clay unit is approximately 30 to 35 feet, indicating that the middle clay unit restricts vertical groundwater flow from the Upper Hawthorn to the Lower Hawthorn. groundwater flow direction within the Lower Hawthorn is considerably different than the flow direction in the Upper Hawthorn. Monitoring well data from the Lower Hawthorn indicate the presence of a groundwater divide approximately extending from the southeastern corner of the Site to northwestern corner (Figure 3c). This groundwater divide results in northerly to northeasterly groundwater flow direction for the eastern half of the Site and a westerly to northwesterly flow direction for the western half of the Site. This groundwater divide approximately correlates with locations on the Site where the middle clay unit is thinnest (approximately 5 to 10 feet thick). These thin clay areas are also the same areas where the hydraulic-head differences between the Upper and Lower Hawthorn is the least (approximately 30 feet). Areas of the Site where the middle clay unit are the thickest (approximately 15 to 20 feet thick) correspond to areas where the hydraulic-head difference between these two units is also the greatest (more than 35 feet).

The hydraulic gradient is slightly less on the eastern portion of the Site versus the gradient on the western portion of the Site. This change in hydraulic gradient is likely



due to a reduction in transmissivity for Lower Hawthorn deposits on the western half of the Site.

The potentiometric surface elevation for monitoring well HG-22D is approximately 5 feet higher than surrounding monitoring wells. The higher potentiometric surface elevation in this area may be due to the well completion in the upper portion of the Lower Hawthorn or increased hydraulic communication between the Upper Hawthorn and Lower Hawthorn in this area.

These data support the conceptual model of significantly restricted groundwater flow and hydraulic communication between the Upper and Lower Hawthorn across the entire Site. The approximately 30-foot of hydraulic-head difference in areas where the middle clay unit is projected to be the thinnest, supports this conceptual model.

#### 3.2.3 Floridan Aquifer

Groundwater flow in the Floridan Aquifer is primarily controlled by groundwater withdrawals at the Murphree Wellfield. The Site is located within the large groundwater capture area that has developed from over 43 years of pumping at this wellfield. Because of groundwater withdrawals at the Murphree Wellfield, the average groundwater flow direction at the Site is to the northeast. Monitoring well data at the Site also indicate a localized northern to northwestern groundwater flow direction on the western portion of the Site (Figure 3d). This flow direction has recently been correlated with groundwater impacts observed in monitoring well FW-22B. The groundwater flow direction on the regional flow for this aquifer.

Four Floridan Aquifer monitoring wells were gauged during the first quarter 2012 event; three monitoring wells are completed in the Upper Transmissive Zone (UTZ) (as shown on Figure 3d) and one monitoring well is completed in the Lower Transmissive Zone (LTZ). The average hydraulic gradient in the Floridan Aquifer is relatively flat, with an average horizontal gradient of 0.00025 feet/feet. The Floridan Aquifer average groundwater flow direction at the Site is to the north and northeast. The hydraulic gradient across the site and groundwater flow direction measured in March 2012 is consistent with those observed in previous events.

The vertical hydraulic gradient from the UTZ to the LTZ is generally downward at the Site. The sentinel monitoring well pairs (monitoring wells completed in the UTZ and LTZ) provide the best data for estimating the current vertical hydraulic gradient between the UTZ and LTZ. The vertical hydraulic gradient at the sentinel monitoring well locations indicate an approximately flat hydraulic gradient at sentinel pair FW-29B/FW-29C (Table 4). The relatively low vertical hydraulic gradient between the



UTZ and LTZ is likely a result of groundwater withdrawals at the Murphree Wellfield that are tending to reduce the vertical hydraulic gradient between these two units.

#### 3.3 GROUNDWATER QUALITY

Groundwater samples were collected from 18 monitoring wells during the first quarter 2012 and from six monitoring wells during the second quarter 2012 in accordance with the CGMSAP. The following subsections discuss groundwater quality observations for the Floridan Aquifer during the first and second quarter 2012.

#### 3.3.1 Floridan Aquifer

Groundwater samples were collected from 18 Floridan Aquifer monitoring wells during the first quarter 2012 and six Floridan Aquifer monitoring wells were sampled during the second quarter 2012 (Figure 2). Table 5 presents a summary of the first and second quarter 2012 analytical results for the single-screened Floridan Aquifer monitoring wells. Summaries of the first and second quarter 2012 analytical results for the multi-screened, multi-port UTZ and LTZ Floridan Aquifer monitoring wells are presented in Tables 6a and 6b, respectively. A graphical summary of organic and inorganic constituents that exceed the U.S. EPA Maximum Contaminant Levels (MCLs) and the Florida Groundwater Cleanup Target Levels (GCTLs) are provided for the source area monitoring wells (Figure 4), transect monitoring wells (Figures 5 and 6), boundary monitoring wells (Figures 7 and 8), and sentinel monitoring wells (Figure 9). Figures 10 and 11 show a summary of the Floridan Aquifer organic and the inorganic exceedances, respectively. The field forms, associated with the sampling of these monitoring wells, are included in Appendix A. The analytical laboratory results are included in Appendix B.

In the following paragraphs, groundwater quality results are discussed in more detail for the source, transect, boundary, and sentinel monitoring wells.

#### 3.3.1.1 Source Area Monitoring Wells

The source area UTZ extraction well FW-6 and monitoring well FW-20B, located near the former North Lagoon, contained select organic constituents with concentrations above Florida GCTL standards; and benzene above its respective U.S. EPA MCL of 5 micrograms per liter ( $\mu$ g/l) (Figure 4). Source area extraction well FW-21B located in the former Drip Track area contained naphthalene above their respective Florida GCTL standards.

The March 2012 sample collected from UTZ extraction well FW-6 contained six organic constituents: benzene, 2-methylnaphthalene, acenaphthene, carbazole, dibenzofuran, and naphthalene that exceed Florida GCTL standards. The sample collected during the



March 2012 sampling event also contained benzene that exceeds its respective U.S. EPA MCL.

The March and June 2012 samples collected from the upper two Zones (Zones 1 and 2) for monitoring well FW-20B contain select organic constituents that exceed Florida GCTL standards. The March and June 2012 samples collected from Zone 1 contained six (benzene, 2-methylnaphthalene, organic constituents acenaphthene, carbazole. dibenzofuran, and naphthalene) that exceed their respective Florida GCTL standards. Zone 2 contained one organic constituent (acenaphthene) that exceeded its respective Florida GCTL standard during the March 2012 sampling event (only). The samples collected from Zone 1 during the March 2012 and June 2012 sampling events also contained benzene that exceeds its respective U.S. EPA MCL. The naphthalene and benzene concentrations in monitoring well FW-20B (Zone 1) have increased since third quarter 2010. This concentration increase was first observed during the fourth quarter 2010 monitoring event and concentrations continued to be elevated through 2011 and into the first half of 2012. The FW-20B (Zone 2) naphthalene concentrations have decreased greatly to non-detect for March and June 2012 (Figure 4).

The March 2012 sample collected from extraction well FW-21B contained naphthalene that exceeded its respective Florida GCTL standards. The March 2012 naphthalene concentration for this extraction well was consistent with previous concentrations.

#### 3.3.1.2 Transect Monitoring Wells

There are a total of ten UTZ transect monitoring wells. Four of the UTZ transect monitoring wells were sampled during the reporting period (Figures 5 and 6). Consistent with historical sampling events, monitoring well FW-30B did not exceed the Florida GCTLs or the U.S. EPA MCL standards. Samples collected from three monitoring wells FW-12B (Zones 1, 3 and 4), FW-16B (Zone 1), and FW-27B (Zones 1-6) contained select organic constituents that exceed the Florida GCTLs. The samples collected from monitoring wells FW-16B (Zone 1) and FW-27B (Zones 2, 3, 4, 5, and 6) also contained benzene that exceeds the U.S. EPA MCL standard (Table 6a and Figure 5). In addition, monitoring wells FW-27B and FW-30B were sampled for total and dissolved arsenic; results from both monitoring wells are below State and Federal standards (Table 6a and Figure 6).

Three of the four Zones (Zones 1, 3, and 4) for monitoring well FW-12B contain select organic constituents that exceed Florida GCTL standards. The highest constituent impacts in FW-12B continue to be in the two lowest monitoring zones. The uppermost monitoring zone contains constituent impacts, but at lower concentrations. The constituent temporal trends for impacts in the two lower monitoring zones are consistent with the conceptual model of impacts infiltrating upgradient of this monitoring well location and migrating diagonally downward as they are transported to the north. In



general, the organic constituent concentrations observed in monitoring well FW-12B during the reporting period were consistent with previous sampling event results, with one exception; the second quarter 2012 naphthalene detection observed in Zone 1 was the highest observed since monitoring began in January 2006. Data from upcoming quarterly sampling events will be used to evaluate if this naphthalene result is anomalous.

Monitoring well FW-16B Zone 1 contained benzene concentrations in excess of Florida GCTL standards and U.S. EPA MCL standards and naphthalene concentrations in excess of Florida GCTL standards during the March and June 2012 sampling events. The March and June 2012 organic constituent concentrations in monitoring well FW-16B were elevated slightly when compared to previous sampling events.

All zones (Zones 1, 2, 3, 4, 5, and 6) for monitoring well FW-27B contain select organic constituents that exceed Florida GCTL standards. FW-27B Zones 2, 3, 4, 5, and 6 contain benzene that exceeds the U.S. EPA MCL standard. Zone 1, contains five organic 2-methylnaphthalene, acenaphthene, dibenzofuran, constituents (benzene, and naphthalene) that exceeded their respective Florida GCTL standards. Zones 2, 3, and 4 contain six organic constituents (benzene, 2-methylnaphthalene, acenaphthene, carbazole, dibenzofuran, and naphthalene) that exceed Florida GCTL standards. Zone 5 contains five organic constituents (benzene, 2-methylnaphthalene, acenaphthene, carbazole, and naphthalene) that exceed Florida GCTL standards. Zone 6 contains five organic constituents (benzene, acenaphthene, carbazole, dibenzofuran, and naphthalene) that exceed Florida GCTL standards. The sample collected from Zones 2, 3, 4, 5, and 6 also contain benzene that exceeds its respective U.S. EPA MCL.

#### **3.3.1.3** Boundary Monitoring Wells

As shown on Figure 7, all organic constituents were below the U.S. EPA MCLs and the Florida GCTLs in the single-screened UTZ property boundary monitoring well FW-4, the multi-screened, multi-port LTZ property boundary monitoring wells FW-4C, FW-22C, FW-23C, and FW-24C, and in the multi-screened, multi-port UTZ property boundary monitoring wells FW-22B, FW-23B, FW-24B, and FW-28B during the reporting period. In addition, boundary monitoring wells FW-24B and FW-28B were sampled for total and dissolved arsenic (Figure 8). Total and dissolved arsenic concentrations were elevated above Federal and State standards in Zones 1 and 2 in monitoring well FW-24B, which is consistent with previous sampling events.

#### 3.3.1.4 Sentinel Monitoring Wells

Groundwater samples were collected from two sentinel monitoring wells (FW-29B and FW-29C) during the reporting period. The sentinel monitoring wells are below USEPA MCLs and Florida GCTLs standards for all organic constituents (Figure 9).



#### 4.0 SUMMARY AND CONCLUSIONS

#### 4.1 HYDROGEOLOGY

The principal direction for groundwater flow in the Surficial Aquifer is to the northeast; however, on-Site groundwater is being captured by the hydraulic containment system that has been in continuous operation at the Site, since 1995. Groundwater flow directions and hydraulic gradients in the Surficial Aquifer are consistent with historical site conditions. Regional water-level elevations continue to decline in the Surficial Aquifer due to reduced precipitation for the area. Water levels at the former North Lagoon were below the base of the horizontal groundwater collection drain, such that groundwater extraction ceased at this drain from November 2011 through June 2012. Similarly, water levels at the former Drip Track horizontal groundwater extraction rates at this drain steadily declined through May 2012, before water levels started to rebound and pumping rates increased. Average pumping rates at the former South Lagoon and Process Area remained constant, with some increase during first quarter 2012 to offset declining rates at other locations.

Similar to the Surficial Aquifer, the groundwater flow direction in the Upper Hawthorn is primarily to the northeast across the Site. Monitoring well data from the Lower Hawthorn indicate the presence of a groundwater divide extending approximately from the southeastern corner of the Site to northwestern corner. This groundwater divide results in northerly to northeasterly groundwater flow direction for the eastern half of the Site and a westerly to northwesterly flow direction for the western half of the Site.

Groundwater flow in the Floridan Aquifer is primarily controlled by groundwater withdrawals at the Murphree Wellfield. Because of groundwater withdrawals at the Murphree Wellfield, the average groundwater flow direction at the Site is to the northeast. Monitoring well data at the Site also indicate a localized northern to northwestern groundwater flow direction on the western portion of the Site. The groundwater flow direction on the eastern portion of the Site appears to be predominantly to the northeast, consistent with regional flow for this aquifer.

#### 4.2 NAPL RECOVERY

DNAPL recovery is performed in six Upper Hawthorn monitoring wells at the Site. Only one of these six monitoring wells (HG-16S) is included in the annual program. Upper Hawthorn monitoring well HG-16S, located near the former North Lagoon, was not gauged during the first quarter 2012 due to it not being sampled, in accordance with the CGMSAP. No measureable DNAPL thickness was detected in any of the Upper and Lower Hawthorn monitoring wells gauged during the first quarter 2012. However,



similar to historical monitoring in monitoring well HG-16D, minor DNAPL staining was detected on the probe during the measurement in this monitoring well. LNAPL was not detected in any of the Surficial Aquifer, HG, or Floridan Aquifer monitoring wells gauged during the third and fourth quarter 2011 monitoring events. The NAPL thickness measurements are consistent with historical observations.

#### 4.3 GROUNDWATER QUALITY

Groundwater quality observed during the first and second quarter 2012 sampling events in the Floridan Aquifer monitoring wells was generally consistent with previous sampling events.

Monitoring wells in the northwestern area of the Site demonstrate that dissolved-phase Site constituents are not wide-spread in the Floridan Aquifer. Organic constituents were not detected along the northern property boundary or in the off-Site sentinel monitoring wells. Monitoring well FW-27B contained dissolved-phase impacts which are consistent with historical impacts observed in upgradient monitoring wells located within the plume footprint. The width of the plume is fairly small and well defined by existing monitoring wells; however, impacts were observed in the lowest monitoring zone in FW-27B completed approximately 50 feet into the semi-confining unit. No free-phase or residual DNAPL impacts were detected in continuous geologic core collected in the UF Aquifer at any of the monitoring well locations.

The semiannual sampling requirements for Floridan Aquifer monitoring wells FW-27B, FW-28B, FW-29B, FW-29C, and FW-30B have been completed and these monitoring wells will be sampled on an annual basis starting in the third quarter 2012, as per the CGMSAP.



### TABLES



### Table 1Surficial Aquifer Monitoring Wells and Program Parameters2012 First Semiannual Comprehensive Groundwater Monitoring ReportCabot Carbon/Koppers Superfund SiteGainesville, Florida

| 7               |     |
|-----------------|-----|
| $\overline{\ }$ | ノ   |
| F٦              | - S |
|                 |     |

|         |                      |       |      |                               |                                |                   |                                      | Sampling<br>During the Re |                        |                       | be Completed<br>Reporting Period |
|---------|----------------------|-------|------|-------------------------------|--------------------------------|-------------------|--------------------------------------|---------------------------|------------------------|-----------------------|----------------------------------|
| Well ID | Monitoring<br>Series |       |      | Parameters <sup>(2),(</sup>   | 3)                             |                   | Sampling<br>Frequency <sup>(1)</sup> | First Quarter<br>2012     | Second Quarter<br>2012 | Third Quarter<br>2012 | Fourth Quarter<br>2012           |
| ITW-12  | А                    | SVOCs | VOCs |                               |                                |                   | Annual                               |                           |                        | х                     |                                  |
| ITW-22  | А                    | SVOCs | VOCs |                               |                                |                   | Annual                               |                           |                        | Х                     |                                  |
| M-3BR   | В                    | SVOCs | VOCs | Arsenic (total and dissolved) | Chromium (total and dissolved) | Pentachlorophenol | Annual                               |                           |                        | х                     |                                  |
| M-9AR   | А                    | SVOCs | VOCs | Arsenic (total and dissolved) |                                |                   | Annual                               |                           |                        | х                     |                                  |
| M-9BR   | В                    | SVOCs | VOCs | Arsenic (total and dissolved) |                                |                   | Annual                               |                           |                        | х                     |                                  |
| M-12    | А                    | SVOCs | VOCs | Arsenic (total and dissolved) | Chromium (total and dissolved) | Pentachlorophenol | Annual                               |                           |                        | х                     |                                  |
| M-16A   | А                    | SVOCs | VOCs | Arsenic (total and dissolved) |                                | Pentachlorophenol | SA (2 events) /<br>then Annual       | DRY                       |                        | Х                     |                                  |
| M-16B   | В                    | SVOCs | VOCs | Arsenic (total and dissolved) |                                | Pentachlorophenol | Annual                               |                           |                        | х                     |                                  |
| M-17    | А                    | SVOCs | VOCs | Arsenic (total and dissolved) |                                | Pentachlorophenol | Annual                               |                           |                        | х                     |                                  |
| M-20B   | В                    | SVOCs | VOCs | Arsenic (total and dissolved) |                                | Pentachlorophenol | Annual                               |                           |                        | х                     |                                  |
| M-23BR  | В                    | SVOCs | VOCs | Arsenic (total and dissolved) |                                | Pentachlorophenol | Annual                               |                           |                        | х                     |                                  |
| M-25B   | В                    | SVOCs | VOCs | Arsenic (total and dissolved) |                                | Pentachlorophenol | Annual                               |                           |                        | х                     |                                  |
| M-33B   | В                    | SVOCs | VOCs |                               |                                |                   | Annual                               |                           |                        | Х                     |                                  |

#### Notes:

<sup>(1)</sup> "SA" indicates semiannual; "QTR" indicates quarterly.

<sup>(2)</sup> "SVOCs" indicates semivolatile organic compounds. The specific list of SVOCs included in the program is provided in Table 5-3. Note that pentachlorophenol as listed on Table 5-3 will be analyzed for select samples.

<sup>(3)</sup> "VOCs" indicates volatile organic compounds. The specific list of VOCs included in the program is provided in Table 5-3.



### Table 2Hawthorn Group Monitoring Wells and Program Parameters2012 First Semiannual Comprehensive Groundwater Monitoring Report<br/>Cabot Carbon/Koppers Superfund Site<br/>Gainesville, Florida

|         |                               |      |                                   | Sampling Completed<br>During the Reporting Period |                        | Sampling to be Completed During<br>the Next Reporting Period |                        |  |
|---------|-------------------------------|------|-----------------------------------|---------------------------------------------------|------------------------|--------------------------------------------------------------|------------------------|--|
| Well ID | Parameters <sup>(2),(3)</sup> |      | Sampling Frequency <sup>(1)</sup> | First Quarter<br>2012                             | Second Quarter<br>2012 | Third Quarter<br>2012                                        | Fourth Quarter<br>2012 |  |
| HG-2D   | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-4S   | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-4D   | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-5D   | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-6S   | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-6D   | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-10D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-12D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-16D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-16S  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-20S  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-20D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-21S  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-21D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-22D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-23D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-24S  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-25D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-26S  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-26D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-27S  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-27D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-29S  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |
| HG-29D  | SVOCs                         | VOCs | Annual                            |                                                   |                        | Х                                                            |                        |  |

#### Notes:

<sup>(1)</sup> "QTR" indicates quarterly; "SA" indicates semiannual.

<sup>(2)</sup> "SVOCs" indicates semivolatile organic compounds. The specific list of SVOCs included in the program is provided in Table 5-4.

<sup>(3)</sup> "VOCs" indicates volatile organic compounds. The specific list of VOCs included in the program is provided in Table 5-4.

### Table 3Floridan Aquifer Monitoring Wells and Program Parameters2012 First Semiannual Comprehensive Groundwater Monitoring ReportCabot Carbon/Koppers Superfund SiteGainesville, Florida



|          |       |      |                          |               |         |                                            |                       | Westbay                |                       | During the Re          | Completed<br>porting Period | During the Next | be Completed<br>Reporting Period |
|----------|-------|------|--------------------------|---------------|---------|--------------------------------------------|-----------------------|------------------------|-----------------------|------------------------|-----------------------------|-----------------|----------------------------------|
| Well ID  |       | Para | neters(2),(3)            | Site Location | Zones   | Sampling Frequency <sup>(1)</sup>          | First Quarter<br>2012 | Second Quarter<br>2012 | Third Quarter<br>2012 | Fourth Quarter<br>2012 |                             |                 |                                  |
| FW-3     | SVOCs | VOCs |                          | Boundary      | n/a     | Annual                                     |                       |                        | X                     |                        |                             |                 |                                  |
| FW-4     | SVOCs | VOCs |                          | Boundary      | n/a     | Semiannual                                 | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-4C    | SVOCs | VOCs |                          | Boundary      | all     | Semiannual                                 | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-6     | SVOCs | VOCs |                          | Source area   | n/a     | Semiannual                                 | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-10B   | SVOCs | VOCs |                          | Transect area | all     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-11B   | SVOCs | VOCs |                          | Transect area | all     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-12B   | SVOCs | VOCs |                          | Transect area | all     | Quarterly                                  | Х                     | Х                      | Х                     | Х                      |                             |                 |                                  |
| FW-13B   | SVOCs | VOCs |                          | Transect area | all     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-14B   | SVOCs | VOCs |                          | Transect area | all     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-15B   | SVOCs | VOCs |                          | Transect area | all     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-16B   | SVOCs | VOCs |                          | Transect area | 1       | Quarterly                                  | Х                     | Х                      | Х                     | Х                      |                             |                 |                                  |
| 1 00-100 | 30003 | VOCs |                          | Transect area | 2, 3, 4 | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-17B   | SVOCs | VOCs |                          | Transect area | all     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-18B   | SVOCs | VOCs |                          | Source area   | all     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-19B   | SVOCs | VOCs |                          | Source area   | all     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-20B   | SVOCs | VOCs |                          | Source area   | 1, 2    | Quarterly                                  | Х                     | Х                      | Х                     | Х                      |                             |                 |                                  |
| 1 00-200 | 01003 | VOCs |                          | Obuice area   | 3, 4    | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-21B   | SVOCs | VOCs |                          | Source area   | n/a     | Semiannual                                 | х                     |                        | х                     |                        |                             |                 |                                  |
| FW-22B   | SVOCs | VOCs |                          | Boundary      | all     | Quarterly                                  | Х                     | Х                      | Х                     | Х                      |                             |                 |                                  |
| FW-22C   | SVOCs | VOCs |                          | Boundary      | all     | Semiannual                                 | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-23B   | SVOCs | VOCs |                          | Boundary      | all     | Quarterly                                  | Х                     | Х                      | Х                     | Х                      |                             |                 |                                  |
| FW-23C   | SVOCs | VOCs |                          | Boundary      | all     | Semiannual                                 | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-24B   | SVOCs | VOCs | As (total and dissolved) | Boundary      | all     | Quarterly                                  | Х                     | Х                      | Х                     | Х                      |                             |                 |                                  |
| FW-24C   | SVOCs | VOCs | As (total and dissolved) | Boundary      | all     | Semiannual/Annual <sup>(4)</sup>           | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-25B   | SVOCs | VOCs |                          | Sentinel      | n/a     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-25C   | SVOCs | VOCs |                          | Sentinel      | n/a     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-26B   | SVOCs | VOCs | As (total and dissolved) | Sentinel      | n/a     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-26C   | SVOCs | VOCs |                          | Sentinel      | n/a     | Annual                                     |                       |                        | Х                     |                        |                             |                 |                                  |
| FW-27B   | SVOCs | VOCs | As (total and dissolved) | Transect area | all     | SA (2 events) <sup>(5)</sup> / then annual | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-28B   | SVOCs | VOCs | As (total and dissolved) | Boundary      | all     | SA (2 events) <sup>(5)</sup> / then annual | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-29B   | SVOCs | VOCs |                          | Sentinel      | n/a     | SA (2 events) <sup>(5)</sup> / then annual | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-29C   | SVOCs | VOCs |                          | Sentinel      | n/a     | SA (2 events) <sup>(5)</sup> / then annual | Х                     |                        | Х                     |                        |                             |                 |                                  |
| FW-30B   | SVOCs | VOCs | As (total and dissolved) | Transect area | all     | SA (2 events) <sup>(5)</sup> / then annual | Х                     |                        | Х                     |                        |                             |                 |                                  |

#### Notes:

<sup>(1)</sup> "QTR" indicates quarterly; "SA" indicates semiannual.

<sup>(2)</sup> "SVOCs" indicates semivolatile organic compounds. The specific list of SVOCs included in the program is provided in Table 5-6.

<sup>(3)</sup> "VOCs" indicates volatile organic compounds. The specific list of VOCs included in the program is provided in Table 5-6.

<sup>(4)</sup> Note that for FW-24C, arsenic analysis is required for Zone 1 on an annual basis only. Arsenic is not required for

the other zones. Analysis for SVOCs and VOCs is required on a semiannual basis.

<sup>(5)</sup> As of the First Quarter 2012 FW-27B, FW-28B, FW-29B, FW-29C, FW-30B have met their quarterly and semi-annual sampling requirements and will be sampled on an semiannual basis starting in the Third Quarter 2012

# Table 4Summary of Groundwater ElevationsFirst Quarter 2012 Groundwater Monitoring EventCabot Carbon/Koppers Superfund SiteGainesville, Florida



|             | Gauging | Top of Casing<br>Elevation | Depth To<br>Water | Measured<br>Total Depth | Apparent<br>LNAPL<br>Thickness | Apparent<br>DNAPL<br>Thickness | Groundwater<br>Elevation |
|-------------|---------|----------------------------|-------------------|-------------------------|--------------------------------|--------------------------------|--------------------------|
| Well Number | Date    | (ft msl)                   | (ft)              | (ft TOC)                | (ft)                           | (ft)                           | (ft msl)                 |
| ITW-12      | 3/19/12 | 177.49                     | 12.48             | 20.05                   | NP                             | NP                             | 165.01                   |
| ITW-22      | 3/19/12 | 180.54                     | 16.06             | 16.72                   | NP                             | NP                             | 164.48                   |
| M-03BR      | 3/19/12 | 179.60                     | 15.92             | 26.31                   | NP                             | NP                             | 163.68                   |
| M-09AR      | 3/19/12 | 173.80                     | 14.82             | 17.76                   | NP                             | NP                             | 158.98                   |
| M-09BR      | 3/19/12 | 173.22                     | 14.82             | 28.42                   | NP                             | NP                             | 158.40                   |
| M-12        | 3/19/12 | 181.06                     | Dry               | 14.34                   | NP                             | NP                             | NA                       |
| M-16A       | 3/19/12 | 180.96                     | 15.20             | 15.44                   | NP                             | NP                             | 165.76                   |
| M-16B       | 3/19/12 | 180.56                     | 14.75             | 23.28                   | NP                             | NP                             | 165.81                   |
| M-17        | 3/19/12 | 182.86                     | Dry               | 15.25                   | NP                             | NP                             | NA                       |
| M-20B       | 3/19/12 | 183.67                     | 14.80             | 25.45                   | NP                             | NP                             | 168.87                   |
| M-23BR      | 3/19/12 | 185.10                     | 15.64             | 25.80                   | NP                             | NP                             | 169.46                   |
| M-25B       | 3/19/12 | 186.15                     | 16.00             | 25.22                   | NP                             | NP                             | 170.15                   |
| M-32B       | 3/19/12 | 186.01                     | 16.18             | 25.27                   | NP                             | NP                             | 169.83                   |
| M-33B       | 3/19/12 | 176.39                     | 15.74             | 27.27                   | NP                             | NP                             | 160.65                   |
| HG-2D       | 3/19/12 | 188.88                     | 57.84             | 112.95                  | NP                             | NP                             | 131.04                   |
| HG-4D       | 3/19/12 | 180.91                     | 47.13             | 107.95                  | NP                             | NP                             | 133.78                   |
| HG-4S       | 3/19/12 | 180.41                     | 16.75             | 52.55                   | NP                             | NP                             | 163.66                   |
| HG-5D       | 3/19/12 | 187.73                     | 59.80             | 112.70                  | NP                             | NP                             | 127.93                   |
| HG-6D       | 3/19/12 | 185.02                     | 45.49             | 107.80                  | NP                             | NP                             | 139.53                   |
| HG-6S       | 3/19/12 | 184.86                     | 18.38             | 52.82                   | NP                             | NP                             | 166.48                   |
| HG-12D      | 3/19/12 | 184.64                     | 49.99             | 115.50                  | NP                             | NP                             | 134.65                   |
| HG-16D      | 3/19/12 | 185.07                     | 50.40             | 117.49                  | NP                             | Trace                          | 134.67                   |
| HG-20D      | 3/19/12 | 174.33                     | 41.92             | 84.15                   | NP                             | NP                             | 132.41                   |
| HG-20S      | 3/19/12 | 174.37                     | 11.62             | 39.80                   | NP                             | NP                             | 162.75                   |
| HG-21D      | 3/19/12 | 167.90                     | 40.50             | 94.95                   | NP                             | NP                             | 127.40                   |
| HG-21S      | 3/19/12 | 167.72                     | 13.28             | 41.10                   | NP                             | NP                             | 154.44                   |
| HG-22D      | 3/19/12 | 186.15                     | 49.93             | 82.55                   | NP                             | NP                             | 136.22                   |
| HG-23D      | 3/19/12 | 186.70                     | 56.00             | 89.47                   | NP                             | NP                             | 130.70                   |
| HG-24S      | 3/19/12 | 184.28                     | 19.08             | 71.45                   | NP                             | NP                             | 165.20                   |
| HG-25D      | 3/19/12 | 181.30                     | 55.29             | 85.91                   | NP                             | NP                             | 126.01                   |
| HG-26D      | 3/19/12 | 182.92                     | 44.32             | 94.00                   | NP                             | NP                             | 138.60                   |
| HG-26S      | 3/19/12 | 183.21                     | 16.78             | 44.25                   | NP                             | NP                             | 166.43                   |
| HG-27D      | 3/19/12 | 162.42                     | 36.28             | 96.38                   | NP                             | NP                             | 126.14                   |
| HG-27S      | 3/19/12 | 162.48                     | 10.84             | 59.85                   | NP                             | NP                             | 151.64                   |
| HG-29D      | 3/19/12 | 179.17                     | 45.36             | 96.97                   | NP                             | NP                             | 133.81                   |
| HG-29S      | 3/19/12 | 179.17                     | 15.99             | 54.78                   | NP                             | NP                             | 163.18                   |
| FW-4        | 3/19/12 | 173.91                     | 135.53            | 159.89                  | NP                             | NP                             | 38.38                    |
| FW-6        | NM      | NM                         | NM                | NM                      | NM                             | NM                             | NM                       |
| FW-29B      | 3/19/12 | 162.76                     | 124.48            | 247.80                  | NP                             | NP                             | 38.28                    |
| FW-29C      | 3/19/12 | 163.08                     | 124.78            | 371.00                  | NP                             | NP                             | 38.30                    |

#### Notes:

ft msl - feet above mean sea level

ft toc - feet below top of casing

NP = no product measured or observed

NM = not measured; pumping well

LNAPL = Light Non-Aqueous Phase Liquid

DNAPL = Dense Non-Aqueous Phase Liquid

#### Table 5



#### Summary of Analytical Data for Floridan Aquifer Monitoring Wells 2012 First Semiannual Comprehensive Groundwater Monitoring Report Cabot Carbon/Koppers Superfund Site Gainesville, Florida

| Well ID:<br>Sample Date:<br>Sample Type: |                                      |                                       | FW-4<br>3/20/2012<br>SMP | FW-6<br>3/19/2012<br>SMP | FW-21B<br>3/19/2012<br>SMP | FW-21B<br>3/19/2012<br>DUP | FW-29B<br>3/20/2012<br>SMP | FW-29B<br>3/21/2012<br>DUP | FW-29C<br>3/21/2012<br>SMP |
|------------------------------------------|--------------------------------------|---------------------------------------|--------------------------|--------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Analyte                                  | Federal MCL <sup>(1)</sup><br>(ug/l) | Florida GCTL <sup>(2)</sup><br>(ug/l) |                          |                          |                            |                            |                            |                            |                            |
| Temperature (°C)                         | NA                                   | NA                                    | 22.27                    | 24.04                    | 24.91                      |                            | 23.35                      |                            | 24.16                      |
| pH (S.U.)                                | NA                                   | NA                                    | 8.24                     | 7.45                     | 7.68                       |                            | 7.97                       |                            | 8.04                       |
| Conductivity (mS/cm)                     | NA                                   | NA                                    | 0.385                    | 0.435                    | 0.529                      |                            | 0.392                      |                            | 0.381                      |
| VOCs                                     |                                      |                                       |                          |                          |                            |                            |                            |                            |                            |
| BENZENE                                  | 5                                    | 1                                     | 1 U                      | 14                       | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        |
| ETHYLBENZENE                             | 700                                  | 30                                    | 1 U                      | 1.2                      | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        |
| TOLUENE                                  | 10000                                | 40                                    | 1 U                      | 1 U                      | 1 U                        | 1 U                        | 1 U                        | 1 U                        | 1 U                        |
| XYLENE (total)                           | 1000                                 | 20                                    | 3 U                      | 6.6                      | 3 U                        | 3 U                        | 3 U                        | 3 U                        | 3 U                        |
| SVOCs                                    |                                      |                                       |                          |                          |                            |                            |                            |                            |                            |
| 2,4-DIMETHYLPHENOL                       | -                                    | 140                                   | 5.3 UJ                   | 5.2 U                    | 5.2 R                      | 5.2 UJ                     | 5.8 UJ                     | 5.8 UJ                     | 5.2 UJ                     |
| 2-METHYLNAPHTHALENE                      | -                                    | 28                                    | 5.3 U                    | 160 J                    | 5.2 U                      | 5.7                        | 5.8 U                      | 5.8 U                      | 5.2 U                      |
| 2-METHYLPHENOL                           | -                                    | 35                                    | 5.3 UJ                   | 5.2 U                    | 5.2 R                      | 5.2 UJ                     | 5.8 UJ                     | 5.8 UJ                     | 5.2 UJ                     |
| 3&4-METHYLPHENOL                         | -                                    | 3.5 <sup>(3)</sup>                    | 1.1 UJ                   | 1.1 U                    | 1.1 R                      | 1.1 UJ                     | 1.2 UJ                     | 1.2 UJ                     | 1.1 UJ                     |
| ACENAPHTHENE                             | -                                    | 20                                    | 5.3 U                    | 79                       | 6.2                        | 8.5                        | 5.8 U                      | 5.8 U                      | 5.2 U                      |
| ACENAPHTHYLENE                           | -                                    | 210                                   | 5.3 U                    | 5.2 U                    | 5.2 U                      | 5.2 U                      | 5.8 U                      | 5.8 U                      | 5.2 U                      |
| ANTHRACENE                               | -                                    | 2100                                  | 5.3 U                    | 5.2 U                    | 5.2 U                      | 5.2 U                      | 5.8 U                      | 5.8 U                      | 5.2 U                      |
| CARBAZOLE                                | -                                    | 1.8                                   | 1.9 U                    | 46                       | 1.9 U                      | 5.2 U                      | 2.1 U                      | 2.1 U                      | 1.9 U                      |
| DIBENZOFURAN                             | -                                    | 28                                    | 5.3 U                    | 46                       | 5.2 U                      | 5.2 U                      | 5.8 U                      | 5.8 U                      | 5.2 U                      |
| FLUORANTHENE                             | -                                    | 280                                   | 5.3 U                    | 5.7                      | 5.2 U                      | 5.2 U                      | 5.8 U                      | 5.8 U                      | 5.2 U                      |
| FLUORENE                                 | -                                    | 280                                   | 5.3 U                    | 48                       | 5.2 U                      | 5.2 U                      | 5.8 U                      | 5.8 U                      | 5.2 U                      |
| NAPHTHALENE                              | -                                    | 14                                    | 5.3 U                    | 1400                     | 56 J                       | 90 J                       | 5.8 U                      | 5.8 U                      | 5.2 U                      |
| PHENANTHRENE                             | -                                    | 210                                   | 5.3 U                    | 42                       | 5.2 U                      | 5.2 U                      | 5.8 U                      | 5.8 U                      | 5.2 U                      |
| PHENOL                                   | -                                    | 10                                    | 5.3 UJ                   | 5.2 UJ                   | 5.2 R                      | 5.2 UJ                     | 5.8 UJ                     | 5.8 UJ                     | 5.2 UJ                     |
| PYRENE                                   | -                                    | 210                                   | 5.3 U                    | 5.2 U                    | 5.2 U                      | 5.2 U                      | 5.8 U                      | 5.8 U                      | 5.2 U                      |



| Constituent         | Federal<br>MCL <sup>(1)</sup> | Florida GCTL <sup>(2)</sup><br>(ug/L) | - <sup>(2)</sup> WELL ID<br>FW-12B |           |           |           |           |           |           |           |           |  |  |
|---------------------|-------------------------------|---------------------------------------|------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
|                     | (ug/L)                        |                                       | Zone 1                             | Zone 1    | Zone 2    | Zone 2    | Zone 3    | Zone 3    | Zone 4    | Duplicate | Zone 4    |  |  |
|                     |                               | Sample Date:                          | 3/22/2012                          | 6/19/2012 | 3/22/2012 | 6/19/2012 | 3/22/2012 | 6/19/2012 | 3/22/2012 | 3/22/2012 | 6/19/2012 |  |  |
| METALS              |                               |                                       |                                    |           |           |           |           |           |           |           |           |  |  |
| ARSENIC (dissolved) | 10                            | 10                                    |                                    |           |           |           |           |           |           |           |           |  |  |
| ARSENIC (total)     | 10                            | 10                                    |                                    |           |           |           |           |           |           |           |           |  |  |
| VOCs                |                               |                                       |                                    |           |           |           |           |           |           |           |           |  |  |
| BENZENE             | 5                             | 1                                     | 1.8                                | 2.1       | 1 U       | 1 U       | 3.5       | 3.8       | 3.8       | 3.4       | 2.8       |  |  |
| ETHYLBENZENE        | 700                           | 30                                    | 1 U                                | 1.4       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |
| TOLUENE             | 10000                         | 40                                    | 2.3                                | 3.3       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |
| XYLENE (total)      | 1000                          | 20                                    | 3 U                                | 1.2       | 3 U       | 3 U       | 4.4       | 5.2       | 5.8       | 5.1       | 4.5       |  |  |
| SVOCs               |                               |                                       |                                    |           |           |           |           |           |           |           |           |  |  |
| 2,4-DIMETHYLPHENOL  | -                             | 140                                   | 15                                 | 18 J      | 6 U       | 5.3 UJ    | 6 U       | 5.7 UJ    | 5.8 U     | 26 UJ     | 5.7 U     |  |  |
| 2-METHYLNAPHTHALENE | -                             | 28                                    | 6 U                                | 5.6 U     | 6 U       | 5.3 UJ    | 26        | 24 J      | 5.8 U     | 26 U      | 14        |  |  |
| 2-METHYLPHENOL      | -                             | 35                                    | 6 U                                | 19 J      | 6 U       | 5.3 UJ    | 6 U       | 5.7 UJ    | 5.8 U     | 26 UJ     | 5.7 U     |  |  |
| 3&4-METHYLPHENOL    | -                             | 3.5 <sup>(3)</sup>                    | 1.2 U                              | 1.2 UJ    | 1.2 U     | 1.1 UJ    | 1.2 U     | 1.2 UJ    | 1.2 U     | 5.2 UJ    | 1.2 U     |  |  |
| ACENAPHTHENE        | -                             | 20                                    | 6 U                                | 5.6 U     | 6 U       | 5.3 U     | 64        | 42        | 30        | 26 U      | 38        |  |  |
| ACENAPHTHYLENE      | -                             | 210                                   | 6 U                                | 5.6 U     | 6 U       | 5.3 U     | 6 U       | 5.7 U     | 5.8 U     | 26 U      | 5.7 U     |  |  |
| ANTHRACENE          | -                             | 2100                                  | 6 U                                | 5.6 U     | 6 U       | 5.3 U     | 6 U       | 5.7 U     | 5.8 U     | 26 U      | 5.7 U     |  |  |
| CARBAZOLE           | -                             | 1.8                                   | 2.2 U                              | 2.1 U     | 2.2 U     | 1.9 U     | 15        | 14        | 2.1 U     | 9.3 U     | 2.1 U     |  |  |
| DIBENZOFURAN        | -                             | 28                                    | 6 U                                | 5.6 U     | 6 U       | 5.3 U     | 35        | 23        | 21        | 26 U      | 25        |  |  |
| FLUORANTHENE        | -                             | 280                                   | 6 U                                | 5.6 U     | 6 U       | 5.3 U     | 6 U       | 5.7 U     | 5.8 U     | 26 U      | 5.7 U     |  |  |
| FLUORENE            | -                             | 280                                   | 6 U                                | 5.6 U     | 6 U       | 5.3 U     | 42        | 28        | 23        | 26 U      | 24        |  |  |
| NAPHTHALENE         | -                             | 14                                    | 18                                 | 260       | 6 U       | 5.3 UJ    | 180       | 610 J     | 32        | 26 U      | 540       |  |  |
| PHENANTHRENE        | -                             | 210                                   | 6 U                                | 5.6 U     | 6 U       | 5.3 U     | 25        | 17        | 5.8 U     | 26 U      | 5.7 U     |  |  |
| PHENOL              | -                             | 10                                    | 6 UJ                               | 5.6 UJ    | 6 UJ      | 5.3 UJ    | 6 UJ      | 5.7 UJ    | 5.8 UJ    | 26 UJ     | 5.7 UJ    |  |  |
| PYRENE              | -                             | 210                                   | 6 U                                | 5.6 U     | 6 U       | 5.3 U     | 6 U       | 5.7 U     | 5.8 U     | 26 U      | 5.7 U     |  |  |



| Constituent         | Federal<br>MCL <sup>(1)</sup><br>(ug/L) | Florida GCTL <sup>(2)</sup><br>(ug/L) |           | WELL ID<br>FW-16B |           | WELL ID<br>FW-20B |           |           |           |  |  |
|---------------------|-----------------------------------------|---------------------------------------|-----------|-------------------|-----------|-------------------|-----------|-----------|-----------|--|--|
|                     |                                         | (3//                                  | Zone 1    | Zone 1            | Duplicate | Zone 1            | Zone 1    | Zone 2    | Zone 2    |  |  |
|                     |                                         | Sample Date:                          | 3/22/2012 | 6/19/2012         | 6/19/2012 | 3/22/2012         | 6/20/2012 | 3/22/2012 | 6/19/2012 |  |  |
| METALS              |                                         |                                       |           |                   |           |                   |           |           |           |  |  |
| ARSENIC (dissolved) | 10                                      | 10                                    |           |                   |           |                   |           |           |           |  |  |
| ARSENIC (total)     | 10                                      | 10                                    |           |                   |           |                   |           |           |           |  |  |
| VOCs                |                                         |                                       |           |                   |           |                   |           |           |           |  |  |
| BENZENE             | 5                                       | 1                                     | 5.5       | 5.4               | 5.2       | 6.4               | 12        | 1 U       | 1 U       |  |  |
| ETHYLBENZENE        | 700                                     | 30                                    | 2.3       | 3                 | 2.8       | 1 U               | 1 U       | 1 U       | 1 U       |  |  |
| TOLUENE             | 10000                                   | 40                                    | 3.9       | 4.8               | 4.5       | 1 U               | 1 U       | 1 U       | 1 U       |  |  |
| XYLENE (total)      | 1000                                    | 20                                    | 4.4       | 5.8               | 5.5       | 2.6               | 7.1       | 3 U       | 3 U       |  |  |
| SVOCs               |                                         |                                       |           |                   |           |                   |           |           |           |  |  |
| 2,4-DIMETHYLPHENOL  | -                                       | 140                                   | 100       | 110 J             | 150 J     | 7.4 U             | 5.7 U     | 5.7 U     | 5.6 UJ    |  |  |
| 2-METHYLNAPHTHALENE | -                                       | 28                                    | 5.5 U     | 5.9 UJ            | 8 U       | 180               | 120       | 5.7 U     | 5.6 U     |  |  |
| 2-METHYLPHENOL      | -                                       | 35                                    | 8.8       | 8 J               | 8.5       | 7.4 U             | 5.7 U     | 5.7 U     | 5.6 UJ    |  |  |
| 3&4-METHYLPHENOL    | -                                       | 3.5 <sup>(3)</sup>                    | 1.1 U     | 1.2 UJ            | 1.6 U     | 1.5 U             | 1.2 U     | 1.2 U     | 1.2 UJ    |  |  |
| ACENAPHTHENE        | -                                       | 20                                    | 5.5 U     | 5.9 U             | 8 U       | 110               | 99        | 32        | 5.6 U     |  |  |
| ACENAPHTHYLENE      | -                                       | 210                                   | 5.5 U     | 5.9 U             | 8 U       | 7.4 U             | 5.7 U     | 5.7 U     | 5.6 U     |  |  |
| ANTHRACENE          | -                                       | 2100                                  | 5.5 U     | 5.9 U             | 8 U       | 7.4 U             | 5.7 U     | 5.7 U     | 5.6 U     |  |  |
| CARBAZOLE           | -                                       | 1.8                                   | 2 U       | 2.2 U             | 2.9 U     | 41                | 38        | 2.1 U     | 2.1 U     |  |  |
| DIBENZOFURAN        | -                                       | 28                                    | 5.5 U     | 5.9 U             | 8 U       | 69                | 53        | 12        | 5.6 U     |  |  |
| FLUORANTHENE        | -                                       | 280                                   | 5.5 U     | 5.9 U             | 8 U       | 10                | 8.5       | 5.7 U     | 5.6 U     |  |  |
| FLUORENE            | -                                       | 280                                   | 5.5 U     | 5.9 U             | 8 U       | 71                | 58        | 19        | 5.6 U     |  |  |
| NAPHTHALENE         | -                                       | 14                                    | 46        | 58 J              | 87 J      | 2200              | 2100      | 5.7 U     | 5.6 U     |  |  |
| PHENANTHRENE        | -                                       | 210                                   | 5.5 U     | 5.9 U             | 8 U       | 57                | 47        | 5.7 U     | 5.6 U     |  |  |
| PHENOL              | -                                       | 10                                    | 5.5 UJ    | 5.9 UJ            | 8 UJ      | 7.4 UJ            | 5.7 UJ    | 5.7 UJ    | 5.6 UJ    |  |  |
| PYRENE              | -                                       | 210                                   | 5.5 U     | 5.9 U             | 8 U       | 7.4 U             | 5.7 U     | 5.7 U     | 5.6 U     |  |  |



| Constituent         | Federal<br>MCL <sup>(1)</sup> | Florida GCTL <sup>(2)</sup><br>(ug/L) |           |           |           |           | -L ID<br>-22B |           |           |           |
|---------------------|-------------------------------|---------------------------------------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|
|                     | (ug/L)                        |                                       | Zone 1    | Zone 1    | Zone 2    | Zone 2    | Zone 3        | Zone 3    | Zone 4    | Zone 4    |
|                     |                               | Sample Date:                          | 3/21/2012 | 6/18/2012 | 3/21/2012 | 6/18/2012 | 3/21/2012     | 6/18/2012 | 3/21/2012 | 6/18/2012 |
| METALS              |                               |                                       |           |           |           |           |               |           |           |           |
| ARSENIC (dissolved) | 10                            | 10                                    |           |           |           |           |               |           |           |           |
| ARSENIC (total)     | 10                            | 10                                    |           |           |           |           |               |           |           |           |
| VOCs                |                               |                                       |           |           |           |           |               |           |           |           |
| BENZENE             | 5                             | 1                                     | 1 U       | 1 U       | 1 U       | 1 U       | 1 U           | 1 U       | 1 U       | 1 U       |
| ETHYLBENZENE        | 700                           | 30                                    | 1 U       | 1 U       | 1 U       | 1 U       | 1 U           | 1 U       | 1 U       | 1 U       |
| TOLUENE             | 10000                         | 40                                    | 1 U       | 1 U       | 1 U       | 1 U       | 1 U           | 1 U       | 1 U       | 1 U       |
| XYLENE (total)      | 1000                          | 20                                    | 3 U       | 3 U       | 3 U       | 3 U       | 3 U           | 3 U       | 3 U       | 3 U       |
| SVOCs               |                               |                                       |           |           |           |           |               |           |           |           |
| 2,4-DIMETHYLPHENOL  | -                             | 140                                   | 6 UJ      | 5.7 U     | 5.8 UJ    | 5.2 U     | 5.7 UJ        | 5.2 U     | 5.7 U     | 6.4 U     |
| 2-METHYLNAPHTHALENE | -                             | 28                                    | 6 U       | 5.7 U     | 5.8 U     | 5.2 U     | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |
| 2-METHYLPHENOL      | -                             | 35                                    | 6 UJ      | 5.7 U     | 5.8 UJ    | 5.2 U     | 5.7 UJ        | 5.2 U     | 5.7 U     | 6.4 U     |
| 3&4-METHYLPHENOL    | -                             | 3.5 <sup>(3)</sup>                    | 1.2 UJ    | 1.2 U     | 1.2 UJ    | 1.1 U     | 1.2 UJ        | 1.1 U     | 1.2 U     | 1.3 U     |
| ACENAPHTHENE        | -                             | 20                                    | 6 U       | 5.7 U     | 8.7       | 15        | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |
| ACENAPHTHYLENE      | -                             | 210                                   | 6 U       | 5.7 U     | 5.8 U     | 5.2 U     | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |
| ANTHRACENE          | -                             | 2100                                  | 6 U       | 5.7 U     | 5.8 U     | 5.2 U     | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |
| CARBAZOLE           | -                             | 1.8                                   | 2.2 U     | 2.1 U     | 2.1 U     | 1.9 U     | 2.1 U         | 1.9 U     | 2.1 U     | 2.3 U     |
| DIBENZOFURAN        | -                             | 28                                    | 6 U       | 5.7 U     | 5.8 U     | 5.2 U     | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |
| FLUORANTHENE        | -                             | 280                                   | 6 U       | 5.7 U     | 5.8 U     | 5.2 U     | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |
| FLUORENE            | -                             | 280                                   | 6 U       | 5.7 U     | 5.8 U     | 5.2 U     | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |
| NAPHTHALENE         | -                             | 14                                    | 6 U       | 5.7 U     | 5.8 U     | 5.2 U     | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |
| PHENANTHRENE        | -                             | 210                                   | 6 U       | 5.7 U     | 5.8 U     | 5.2 U     | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |
| PHENOL              | -                             | 10                                    | 6 UJ      | 5.7 UJ    | 5.8 UJ    | 5.2 UJ    | 5.7 UJ        | 5.2 UJ    | 5.7 UJ    | 6.4 UJ    |
| PYRENE              | -                             | 210                                   | 6 U       | 5.7 U     | 5.8 U     | 5.2 U     | 5.7 U         | 5.2 U     | 5.7 U     | 6.4 U     |



| Constituent         | MCL <sup>(1)</sup> | Florida GCTL <sup>(2)</sup><br>(ug/L) | WELL ID<br>FW-23B |           |           |           |           |           |           |           |  |  |  |
|---------------------|--------------------|---------------------------------------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|
|                     | (ug/L)             | (~9, -)                               | Zone 1            | Zone 1    | Zone 2    | Zone 2    | Zone 3    | Zone 3    | Zone 4    | Zone 4    |  |  |  |
|                     |                    | Sample Date:                          | 3/19/2012         | 6/18/2012 | 3/19/2012 | 6/18/2012 | 3/19/2012 | 6/18/2012 | 3/19/2012 | 6/18/2012 |  |  |  |
| METALS              |                    |                                       |                   |           |           |           |           |           |           |           |  |  |  |
| ARSENIC (dissolved) | 10                 | 10                                    |                   |           |           |           |           |           |           |           |  |  |  |
| ARSENIC (total)     | 10                 | 10                                    |                   |           |           |           |           |           |           |           |  |  |  |
| VOCs                |                    |                                       |                   |           |           |           |           |           |           |           |  |  |  |
| BENZENE             | 5                  | 1                                     | 1 U               | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |  |
| ETHYLBENZENE        | 700                | 30                                    | 1 U               | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |  |
| TOLUENE             | 10000              | 40                                    | 1 U               | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |  |
| XYLENE (total)      | 1000               | 20                                    | 3 U               | 3 U       | 3 U       | 3 U       | 3 U       | 3 U       | 3 U       | 3 U       |  |  |  |
| SVOCs               | -                  |                                       |                   |           |           |           |           |           | -         |           |  |  |  |
| 2,4-DIMETHYLPHENOL  | -                  | 140                                   | 5.2 UJ            | 6.1 U     | 5.2 UJ    | 5.9 U     | 5.2 UJ    | 6.6 U     | 5.2 UJ    | 5.1 UJ    |  |  |  |
| 2-METHYLNAPHTHALENE | -                  | 28                                    | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |
| 2-METHYLPHENOL      | -                  | 35                                    | 5.2 UJ            | 6.1 U     | 5.2 UJ    | 5.9 U     | 5.2 UJ    | 6.6 U     | 5.2 UJ    | 5.1 UJ    |  |  |  |
| 3&4-METHYLPHENOL    | -                  | 3.5 <sup>(3)</sup>                    | 1.1 UJ            | 1.3 U     | 1.1 UJ    | 1.2 U     | 1.1 UJ    | 1.4 U     | 1.1 UJ    | 1.1 UJ    |  |  |  |
| ACENAPHTHENE        | -                  | 20                                    | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |
| ACENAPHTHYLENE      | -                  | 210                                   | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |
| ANTHRACENE          | -                  | 2100                                  | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |
| CARBAZOLE           | -                  | 1.8                                   | 1.9 U             | 2.2 U     | 1.9 U     | 2.1 U     | 1.9 U     | 2.4 U     | 1.9 U     | 1.9 U     |  |  |  |
| DIBENZOFURAN        | -                  | 28                                    | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |
| FLUORANTHENE        | -                  | 280                                   | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |
| FLUORENE            | -                  | 280                                   | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |
| NAPHTHALENE         | -                  | 14                                    | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |
| PHENANTHRENE        | -                  | 210                                   | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |
| PHENOL              | -                  | 10                                    | 5.2 UJ            | 6.1 UJ    | 5.2 UJ    | 5.9 UJ    | 5.2 UJ    | 6.6 UJ    | 5.2 UJ    | 5.1 UJ    |  |  |  |
| PYRENE              | -                  | 210                                   | 5.2 U             | 6.1 U     | 5.2 U     | 5.9 U     | 5.2 U     | 6.6 U     | 5.2 U     | 5.1 U     |  |  |  |



| Constituent         | Federal<br>MCL <sup>(1)</sup><br>(ug/L) | Florida GCTL <sup>(2)</sup><br>(ug/L) | FW-24D    |           |           |           |           |           |           |           |           |           |  |  |
|---------------------|-----------------------------------------|---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
|                     | (ug/L)                                  | (3//                                  | Zone 1    | Zone 1    | Zone 2    | Zone 2    | Duplicate | Zone 3    | Zone 3    | Zone 4    | Duplicate | Zone 4    |  |  |
|                     |                                         | Sample Date:                          | 3/22/2012 | 6/20/2012 | 3/22/2012 | 6/20/2012 | 6/20/2012 | 3/21/2012 | 6/19/2012 | 3/21/2012 | 3/21/2012 | 6/19/2012 |  |  |
| METALS              |                                         |                                       |           |           | •         |           |           |           |           | •         |           |           |  |  |
| ARSENIC (dissolved) | 10                                      | 10                                    | 172       | 159       | 10        | 12        | 12        | 1 U       | 1.1       | 1 U       | 1 U       | 1 U       |  |  |
| ARSENIC (total)     | 10                                      | 10                                    | 185       | 160       | 11        | 13        | 13        | 1 U       | 1 U       | 1 U       | 1 U       | 1.5       |  |  |
| VOCs                |                                         |                                       |           |           |           |           |           |           |           |           |           |           |  |  |
| BENZENE             | 5                                       | 1                                     | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |
| ETHYLBENZENE        | 700                                     | 30                                    | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |
| TOLUENE             | 10000                                   | 40                                    | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |
| XYLENE (total)      | 1000                                    | 20                                    | 3 U       | 3 U       | 3 U       | 3 U       | 3 U       | 3 U       | 3 U       | 3 U       | 3 U       | 3 U       |  |  |
| SVOCs               |                                         | -                                     |           |           |           |           |           |           |           | -         |           |           |  |  |
| 2,4-DIMETHYLPHENOL  | -                                       | 140                                   | 5.7 U     | 5.5 U     | 5.2 UJ    | 5.5 U     | 6.1 UJ    | 5.9 UJ    | 5.9 UJ    | 6.3 UJ    | 6 U       | 5.7 UJ    |  |  |
| 2-METHYLNAPHTHALENE | -                                       | 28                                    | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 UJ    | 6.3 U     | 6 U       | 5.7 U     |  |  |
| 2-METHYLPHENOL      | -                                       | 35                                    | 5.7 U     | 5.5 U     | 5.2 UJ    | 5.5 U     | 6.1 UJ    | 5.9 UJ    | 5.9 UJ    | 6.3 UJ    | 6 U       | 5.7 UJ    |  |  |
| 3&4-METHYLPHENOL    | -                                       | 3.5 <sup>(3)</sup>                    | 1.2 U     | 1.1 U     | 1.1 UJ    | 1.1 U     | 1.3 UJ    | 1.2 UJ    | 1.2 UJ    | 1.3 UJ    | 1.2 UJ    | 1.2 UJ    |  |  |
| ACENAPHTHENE        | -                                       | 20                                    | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 U     | 6.3 U     | 6 U       | 5.7 U     |  |  |
| ACENAPHTHYLENE      | -                                       | 210                                   | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 U     | 6.3 U     | 6 U       | 5.7 U     |  |  |
| ANTHRACENE          | -                                       | 2100                                  | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 U     | 6.3 U     | 6 U       | 5.7 U     |  |  |
| CARBAZOLE           | -                                       | 1.8                                   | 2.1 U     | 2 U       | 1.9 U     | 2 U       | 2.2 U     | 2.1 U     | 2.2 U     | 2.3 U     | 2.2 U     | 2.1 U     |  |  |
| DIBENZOFURAN        | -                                       | 28                                    | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 U     | 6.3 U     | 6 U       | 5.7 U     |  |  |
| FLUORANTHENE        | -                                       | 280                                   | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 U     | 6.3 U     | 6 U       | 5.7 U     |  |  |
| FLUORENE            | -                                       | 280                                   | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 U     | 6.3 U     | 6 U       | 5.7 U     |  |  |
| NAPHTHALENE         | -                                       | 14                                    | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 UJ    | 6.3 U     | 6 U       | 5.7 U     |  |  |
| PHENANTHRENE        | -                                       | 210                                   | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 U     | 6.3 U     | 6 U       | 5.7 U     |  |  |
| PHENOL              | -                                       | 10                                    | 5.7 UJ    | 5.5 UJ    | 5.2 UJ    | 5.5 UJ    | 6.1 UJ    | 5.9 UJ    | 5.9 UJ    | 6.3 UJ    | 6 UJ      | 5.7 UJ    |  |  |
| PYRENE              | -                                       | 210                                   | 5.7 U     | 5.5 U     | 5.2 U     | 5.5 U     | 6.1 U     | 5.9 U     | 5.9 U     | 6.3 U     | 6 U       | 5.7 U     |  |  |



| Constituent         | MCL <sup>(1)</sup> | Florida GCTL <sup>(2)</sup><br>(ug/L) | WELL ID<br>FW-27B |           |           |           |           |           |  |  |  |
|---------------------|--------------------|---------------------------------------|-------------------|-----------|-----------|-----------|-----------|-----------|--|--|--|
|                     | (ug/L)             | ,                                     | Zone 1            | Zone 2    | Zone 3    | Zone 4    | Zone 5    | Zone 6    |  |  |  |
|                     |                    | Sample Date:                          | 3/22/2012         | 3/22/2012 | 3/22/2012 | 3/22/2012 | 3/22/2012 | 3/22/2012 |  |  |  |
| METALS              |                    |                                       |                   |           |           |           |           |           |  |  |  |
| ARSENIC (dissolved) | 10                 | 10                                    | 1 U               | 2         | 1 U       | 1 U       | 1 U       | 1.8       |  |  |  |
| ARSENIC (total)     | 10                 | 10                                    | 1 U               | 2.3       | 1 U       | 1 U       | 1.3       | 2.7       |  |  |  |
| VOCs                |                    |                                       |                   |           |           |           |           |           |  |  |  |
| BENZENE             | 5                  | 1                                     | 3.8               | 7.0       | 7.4       | 6.1       | 5.6       | 5.7       |  |  |  |
| ETHYLBENZENE        | 700                | 30                                    | 1 U               | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |  |
| TOLUENE             | 10000              | 40                                    | 1 U               | 1 U       | 1 U       | 1 U       | 1 U       | 1 U       |  |  |  |
| XYLENE (total)      | 1000               | 20                                    | 4.7               | 5.1       | 6.4       | 6.3       | 4.6       | 5         |  |  |  |
| SVOCs               |                    |                                       |                   |           |           |           |           |           |  |  |  |
| 2,4-DIMETHYLPHENOL  | -                  | 140                                   | 5.7 U             | 5.5 U     | 28 U      | 5.7 U     | 5.7 U     | 5.9 U     |  |  |  |
| 2-METHYLNAPHTHALENE | -                  | 28                                    | 47                | 95        | 100       | 87        | 58        | 15        |  |  |  |
| 2-METHYLPHENOL      | -                  | 35                                    | 5.7 U             | 5.5 U     | 28 U      | 5.7 U     | 5.7 U     | 5.9 U     |  |  |  |
| 3&4-METHYLPHENOL    | -                  | 3.5 <sup>(3)</sup>                    | 1.2 U             | 1.1 U     | 5.5 U     | 1.2 U     | 1.2 U     | 1.2 U     |  |  |  |
| ACENAPHTHENE        | -                  | 20                                    | 53                | 83        | 100       | 70        | 47        | 69        |  |  |  |
| ACENAPHTHYLENE      | -                  | 210                                   | 5.7 U             | 5.5 U     | 28 U      | 5.7 U     | 5.7 U     | 5.9 U     |  |  |  |
| ANTHRACENE          | -                  | 2100                                  | 5.7 U             | 6.3       | 28 U      | 5.7 U     | 5.7 U     | 5.9 U     |  |  |  |
| CARBAZOLE           | -                  | 1.8                                   | 2.1 U             | 9.4       | 15 J      | 11        | 8.0       | 10        |  |  |  |
| DIBENZOFURAN        | -                  | 28                                    | 29                | 48        | 57        | 42        | 27        | 42        |  |  |  |
| FLUORANTHENE        | -                  | 280                                   | 5.7 U             | 8.3       | 28 U      | 5.7 U     | 5.7 U     | 5.9 U     |  |  |  |
| FLUORENE            | -                  | 280                                   | 30                | 56        | 62        | 46        | 29        | 45        |  |  |  |
| NAPHTHALENE         | -                  | 14                                    | 670               | 1400      | 1800      | 1000      | 750       | 790       |  |  |  |
| PHENANTHRENE        | -                  | 210                                   | 16                | 53        | 50        | 30        | 19        | 29        |  |  |  |
| PHENOL              | -                  | 10                                    | 5.7 UJ            | 5.5 UJ    | 28 UJ     | 5.7 UJ    | 5.7 UJ    | 5.9 UJ    |  |  |  |
| PYRENE              | -                  | 210                                   | 5.7 U             | 5.5 U     | 28 U      | 5.7 U     | 5.7 U     | 5.9 U     |  |  |  |



| Constituent         | Federal<br>MCL <sup>(1)</sup> | Florida GCTL <sup>(2)</sup><br>(ug/L) |           |           | WELL ID<br>FW-28B |           | WELL ID<br>FW-30B |           |           |           |           |
|---------------------|-------------------------------|---------------------------------------|-----------|-----------|-------------------|-----------|-------------------|-----------|-----------|-----------|-----------|
|                     | (ug/L)                        |                                       | Zone 1    | Zone 2    | Zone 3            | Zone 4    | Duplicate         | Zone 1    | Zone 2    | Zone 3    | Zone 4    |
|                     |                               | Sample Date:                          | 3/20/2012 | 3/20/2012 | 3/20/2012         | 3/20/2012 | 3/20/2012         | 3/21/2012 | 3/21/2012 | 3/21/2012 | 3/21/2012 |
| METALS              |                               |                                       |           |           |                   |           |                   |           |           |           |           |
| ARSENIC (dissolved) | 10                            | 10                                    | 1.2       | 1 U       | 1.2               | 1 U       | 1 U               | 1 U       | 1.1       | 1 U       | 1 U       |
| ARSENIC (total)     | 10                            | 10                                    | 1.5       | 1 U       | 1.8               | 1 U       | 1 U               | 1 U       | 1 U       | 1 U       | 1 U       |
| VOCs                |                               |                                       |           |           |                   |           |                   |           |           |           |           |
| BENZENE             | 5                             | 1                                     | 1 U       | 1 U       | 1 U               | 1 U       | 1 U               | 1 U       | 1 U       | 1 U       | 1 U       |
| ETHYLBENZENE        | 700                           | 30                                    | 1 U       | 1 U       | 1 U               | 1 U       | 1 U               | 1 U       | 1 U       | 1 U       | 1 U       |
| TOLUENE             | 10000                         | 40                                    | 1 U       | 1 U       | 1 U               | 1 U       | 1 U               | 1 U       | 1 U       | 1 U       | 1 U       |
| XYLENE (total)      | 1000                          | 20                                    | 3 U       | 3 U       | 3 U               | 3 U       | 3 U               | 3 U       | 3 U       | 3 U       | 3 U       |
| SVOCs               |                               |                                       |           |           |                   |           |                   |           |           |           |           |
| 2,4-DIMETHYLPHENOL  | -                             | 140                                   | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 UJ    | 5.5 UJ    | 5.6 UJ    | 5.9 UJ    |
| 2-METHYLNAPHTHALENE | -                             | 28                                    | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |
| 2-METHYLPHENOL      | -                             | 35                                    | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 UJ    | 5.5 UJ    | 5.6 UJ    | 5.9 UJ    |
| 3&4-METHYLPHENOL    | -                             | 3.5 <sup>(3)</sup>                    | 1.3 U     | 1.2 U     | 1.3 U             | 1.3 U     | 1.2 U             | 1.2 UJ    | 1.1 UJ    | 1.2 UJ    | 1.2 UJ    |
| ACENAPHTHENE        | -                             | 20                                    | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |
| ACENAPHTHYLENE      | -                             | 210                                   | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |
| ANTHRACENE          | -                             | 2100                                  | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |
| CARBAZOLE           | -                             | 1.8                                   | 2.4 U     | 2.2 U     | 2.3 U             | 2.3 U     | 2.1 U             | 2.1 U     | 2 U       | 2 U       | 2.2 U     |
| DIBENZOFURAN        | -                             | 28                                    | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |
| FLUORANTHENE        | -                             | 280                                   | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |
| FLUORENE            | -                             | 280                                   | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |
| NAPHTHALENE         | -                             | 14                                    | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |
| PHENANTHRENE        | -                             | 210                                   | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |
| PHENOL              | -                             | 10                                    | 6.5 UJ    | 5.9 UJ    | 6.3 UJ            | 6.3 UJ    | 5.9 UJ            | 5.8 UJ    | 5.5 UJ    | 5.6 UJ    | 5.9 UJ    |
| PYRENE              | -                             | 210                                   | 6.5 U     | 5.9 U     | 6.3 U             | 6.3 U     | 5.9 U             | 5.8 U     | 5.5 U     | 5.6 U     | 5.9 U     |

Notes:

B - Indicates analyte was detected in the field blank.

U - Indicates analyte was not detected above the method detection limit (MDL)

J - Indicates result is estimated

Concentration exceeds Florida GCTL

Concentration exceeds Federal MCL

- <sup>(1)</sup> Federal Maximum Contaminant Levels (MCLs) represent the National Primary Drinking Water Standards.
- <sup>(2)</sup> Florida Groundwater Cleanup Target Levels (GCTL) are guidelines set forthen in 62-777 Florida Administrative Code (F.A.C.).

<sup>(3)</sup> - 3-Methylphenol and 4-Methylphenol cannot be quantified separately using SW846.

\* - Arsenic results were sampled on August 29, 2011.

#### Table 6b



| Constituent         | Federal<br>MCL <sup>(1)</sup> | Florida GCTL <sup>(2)</sup><br>(ug/L) |           | WELL ID<br>FW-4C |           | WELL ID<br>FW-22C |           |           |  |
|---------------------|-------------------------------|---------------------------------------|-----------|------------------|-----------|-------------------|-----------|-----------|--|
|                     | (ug/L)                        | ,                                     | Zone 1    | Zone 2           | Zone 3    | Zone 1            | Zone 2    | Zone 3    |  |
|                     | •                             | Sample Date:                          | 3/19/2012 | 3/19/2012        | 3/19/2012 | 3/20/2012         | 3/20/2012 | 3/20/2012 |  |
| Metals              |                               |                                       |           |                  |           |                   |           |           |  |
| BENZENE             | 5                             | 1                                     | 1 U       | 1 U              | 1 U       | 1 U               | 1 U       | 1 U       |  |
| ETHYLBENZENE        | 700                           | 30                                    | 1 U       | 1 U              | 1 U       | 1 U               | 1 U       | 1 U       |  |
| TOLUENE             | 10000                         | 40                                    | 1 U       | 1 U              | 1 U       | 1 U               | 1 U       | 1 U       |  |
| XYLENE (total)      | 1000                          | 20                                    | 3 U       | 3 U              | 3 U       | 3 U               | 3 U       | 3 U       |  |
| SVOCs               |                               |                                       |           |                  |           |                   |           |           |  |
| 2,4-DIMETHYLPHENOL  | -                             | 140                                   | 5.3 UJ    | 5.2 UJ           | 5.2 UJ    | 5.7 U             | 5.9 UJ    | 5.6 U     |  |
| 2-METHYLNAPHTHALENE | -                             | 28                                    | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |
| 2-METHYLPHENOL      | -                             | 35                                    | 5.3 UJ    | 5.2 UJ           | 5.2 UJ    | 5.7 U             | 5.9 UJ    | 5.6 U     |  |
| 3&4-METHYLPHENOL    | -                             | 3.5 <sup>(3)</sup>                    | 1.1 UJ    | 1.1 UJ           | 1.1 UJ    | 1.2 U             | 1.2 UJ    | 1.2 U     |  |
| ACENAPHTHENE        | -                             | 20                                    | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |
| ACENAPHTHYLENE      | -                             | 210                                   | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |
| ANTHRACENE          | -                             | 2100                                  | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |
| CARBAZOLE           | -                             | 1.8                                   | 2 U       | 1.9 U            | 1.9 U     | 2.1 U             | 2.1 U     | 2.1 U     |  |
| DIBENZOFURAN        | -                             | 28                                    | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |
| FLUORANTHENE        | -                             | 280                                   | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |
| FLUORENE            | -                             | 280                                   | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |
| NAPHTHALENE         | -                             | 14                                    | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |
| PHENANTHRENE        | -                             | 210                                   | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |
| PHENOL              | -                             | 10                                    | 5.3 UJ    | 5.2 UJ           | 5.2 UJ    | 5.7 UJ            | 5.9 UJ    | 5.6 UJ    |  |
| PYRENE              | -                             | 210                                   | 5.3 U     | 5.2 U            | 5.2 U     | 5.7 U             | 5.9 U     | 5.6 U     |  |

#### Table 6b Summary of Analytical Data for Westbay Lower Transmissive Zone Monitoring Wells 2012 First Semiannual Comprehensive Groundwater Monitoring Report Cabot Carbon/Koppers Superfund Site Gainesville, Florida

| Constituent MCL <sup>(7)</sup> (uq/L |        | Florida GCTL <sup>(2)</sup><br>(ug/L) | WELL ID<br>FW-23C |           |           | WELL ID<br>FW-24C |           |           |           |  |
|--------------------------------------|--------|---------------------------------------|-------------------|-----------|-----------|-------------------|-----------|-----------|-----------|--|
|                                      | (ug/L) | g/L) (**9, =/                         |                   | Zone 2    | Zone 3    | Zone 1            | Zone 2    | Zone 3    | Zone 4    |  |
|                                      |        | Sample Date:                          | 3/21/2012         | 3/21/2012 | 3/21/2012 | 3/21/2012         | 3/21/2012 | 3/21/2012 | 3/21/2012 |  |
| Metals                               |        |                                       |                   |           |           |                   |           |           |           |  |
| BENZENE                              | 5      | 1                                     | 1 U               | 1 U       | 1 U       | 1 U               | 1 U       | 1 U       | 1 U       |  |
| ETHYLBENZENE                         | 700    | 30                                    | 1 U               | 1 U       | 1 U       | 1 U               | 1 U       | 1 U       | 1 U       |  |
| TOLUENE                              | 10000  | 40                                    | 1 U               | 1 U       | 1 U       | 1 U               | 1 U       | 1 U       | 1 U       |  |
| XYLENE (total)                       | 1000   | 20                                    | 3 U               | 3 U       | 3 U       | 3 U               | 3 U       | 3 U       | 3 U       |  |
| SVOCs                                |        |                                       |                   |           |           |                   |           |           |           |  |
| 2,4-DIMETHYLPHENOL                   | -      | 140                                   | 5.8 UJ            | 6.1 UJ    | 5.5 U     | 5.1 UJ            | 6 UJ      | 5.7 UJ    | 5.8 UJ    |  |
| 2-METHYLNAPHTHALENE                  | -      | 28                                    | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |
| 2-METHYLPHENOL                       | -      | 35                                    | 5.8 UJ            | 6.1 UJ    | 5.5 U     | 5.1 UJ            | 6 UJ      | 5.7 UJ    | 5.8 UJ    |  |
| 3&4-METHYLPHENOL                     | -      | 3.5 <sup>(3)</sup>                    | 1.2 UJ            | 1.3 UJ    | 1.1 U     | 1.1 UJ            | 1.2 UJ    | 1.2 UJ    | 1.2 UJ    |  |
| ACENAPHTHENE                         | -      | 20                                    | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |
| ACENAPHTHYLENE                       | -      | 210                                   | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |
| ANTHRACENE                           | -      | 2100                                  | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |
| CARBAZOLE                            | -      | 1.8                                   | 2.1 U             | 2.2 U     | 2 U       | 1.9 U             | 2.2 U     | 2.1 U     | 2.1 U     |  |
| DIBENZOFURAN                         | -      | 28                                    | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |
| FLUORANTHENE                         | -      | 280                                   | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |
| FLUORENE                             | -      | 280                                   | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |
| NAPHTHALENE                          | -      | 14                                    | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |
| PHENANTHRENE                         | -      | 210                                   | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |
| PHENOL                               | -      | 10                                    | 5.8 UJ            | 6.1 UJ    | 5.5 UJ    | 5.1 UJ            | 6 UJ      | 5.7 UJ    | 5.8 UJ    |  |
| PYRENE                               | -      | 210                                   | 5.8 U             | 6.1 U     | 5.5 U     | 5.1 U             | 6 U       | 5.7 U     | 5.8 U     |  |

#### Notes:

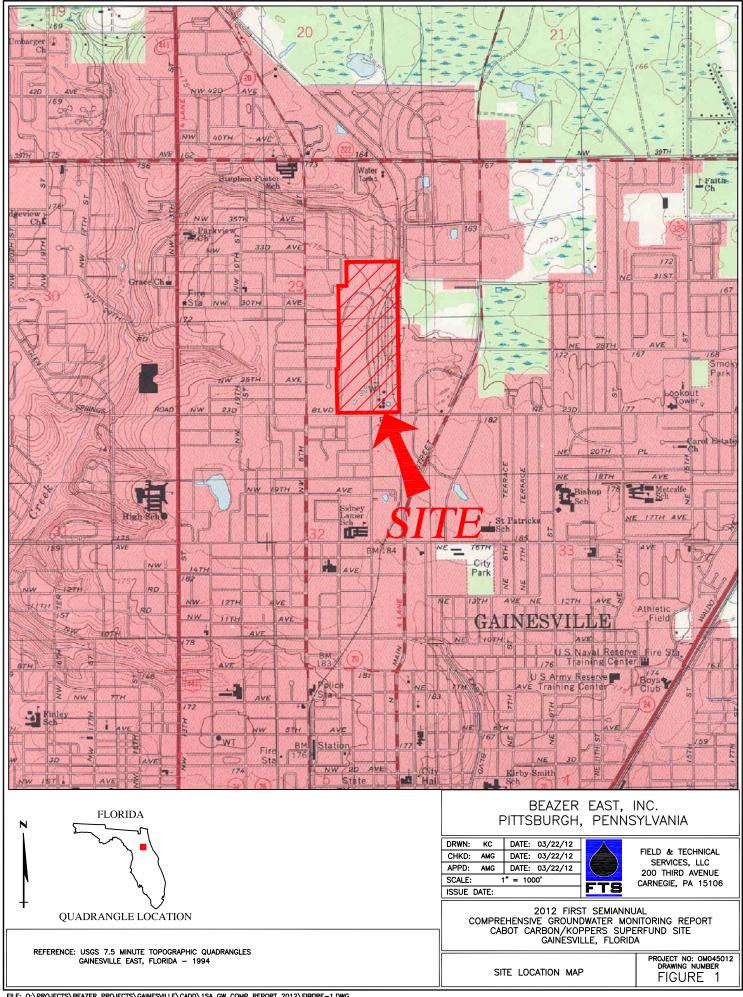
B - Indicates analyte was detected in the field blank.

U - Indicates analyte was not detected above the method detection limit (MDL)

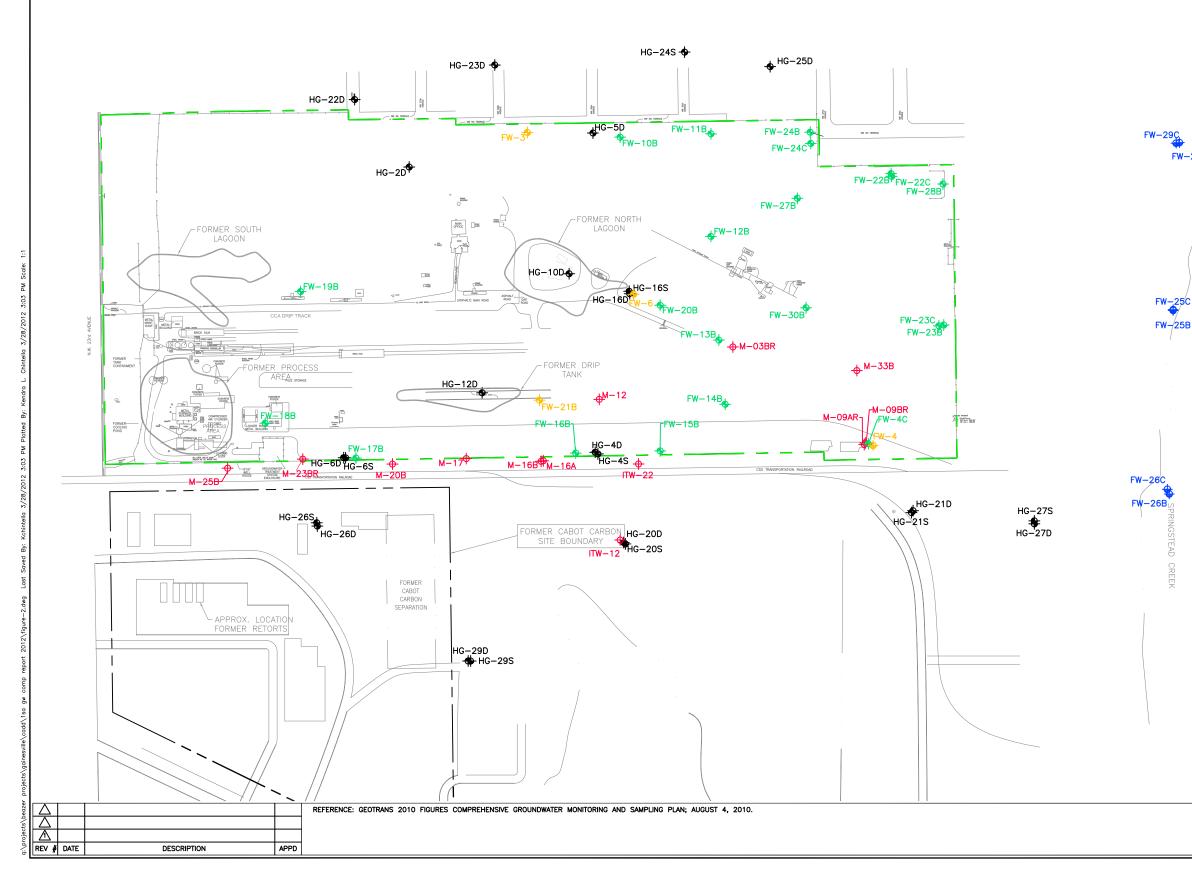
J - Indicates result is estimated

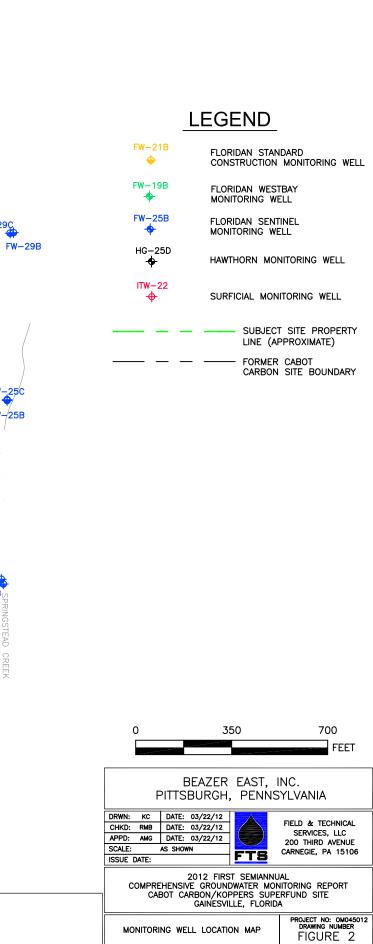
Concentration exceeds Florida GCTL

Concentration exceeds Federal MCL

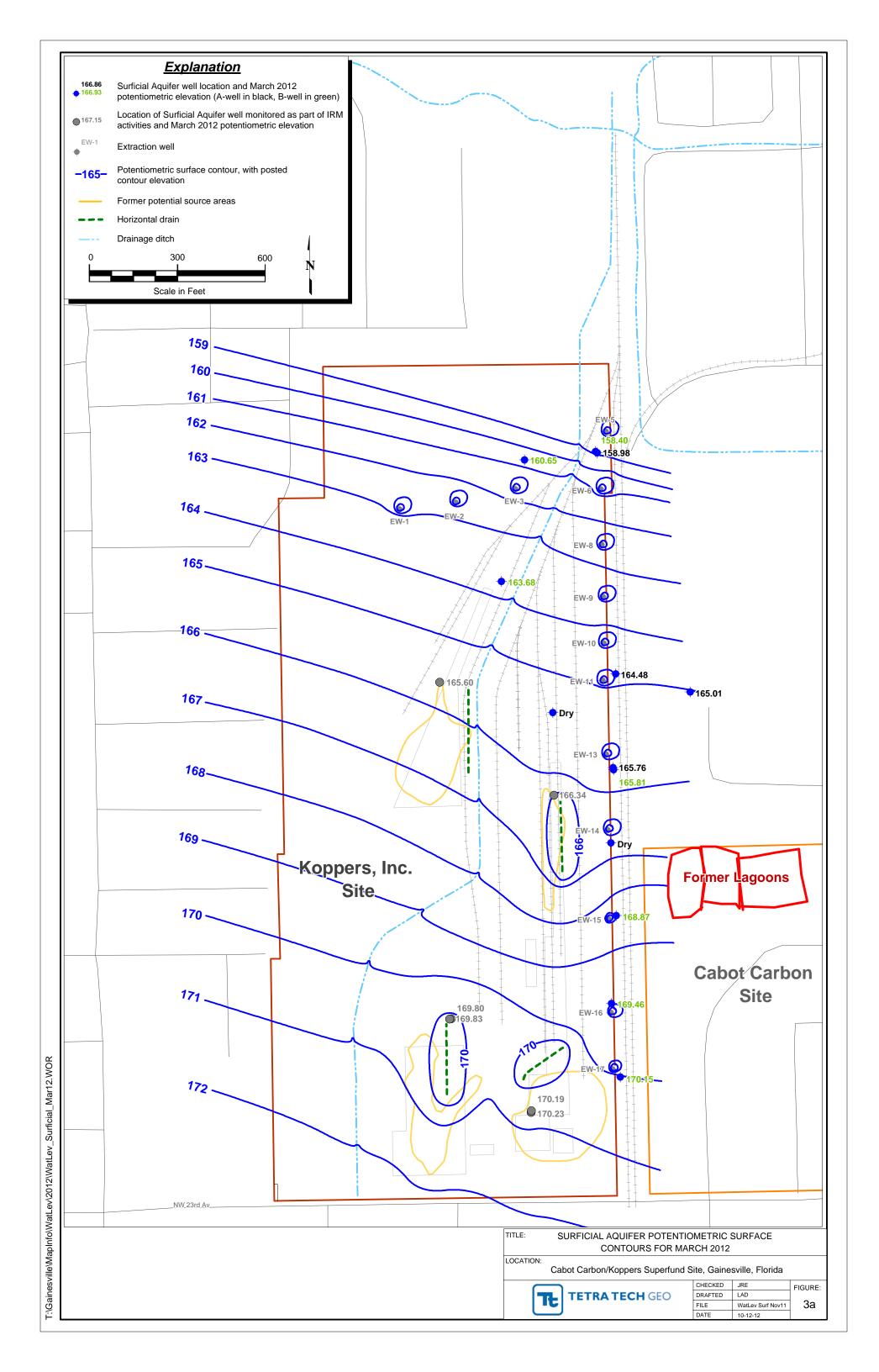

<sup>(1)</sup> Federal Mazimum Contaminant Levels (MCLs) represent the National Primary Drinking Water Standards.

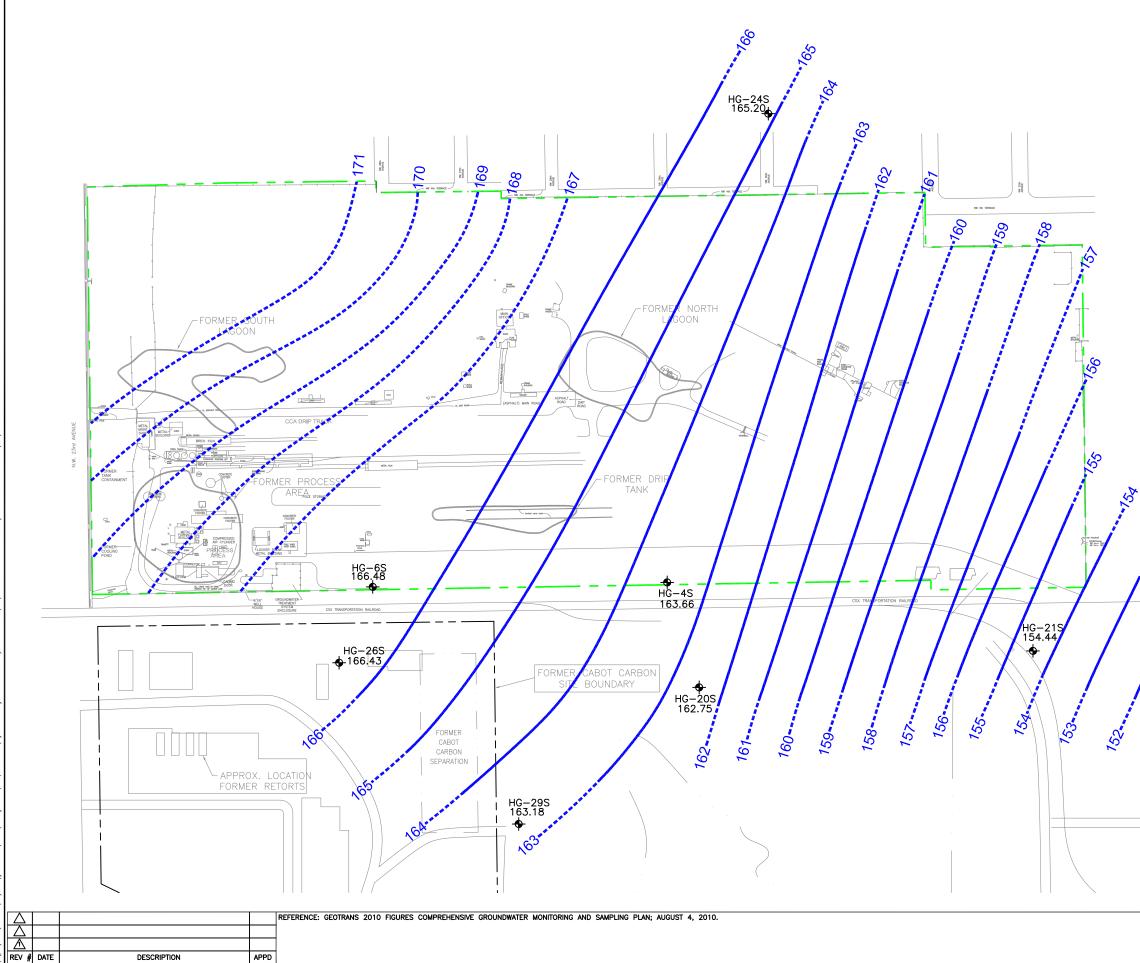
<sup>(2)</sup> Florida Groundwater Cleanup Target Levels (GCTLs) are guidelines set forth in 62-777 Florida Administrative Code (F.A.C.).

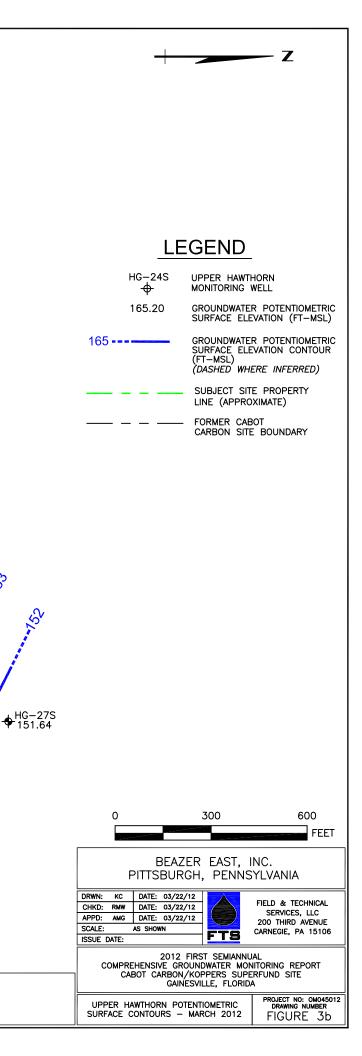

<sup>(3)</sup> 3-Methylphenol and 4-Methylphenol cannot be quantified separately using USEPA SW-846 Method 8270C.

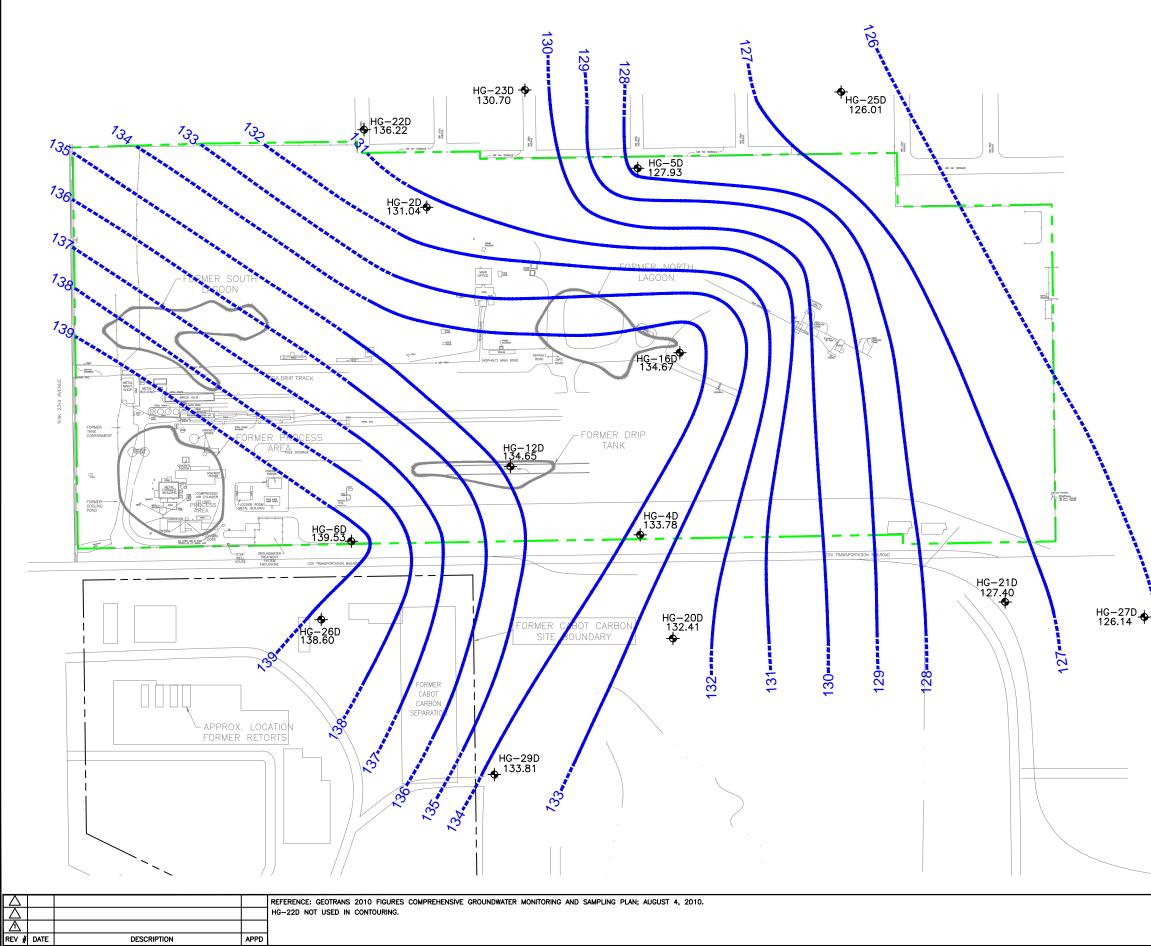

# **FIGURES**

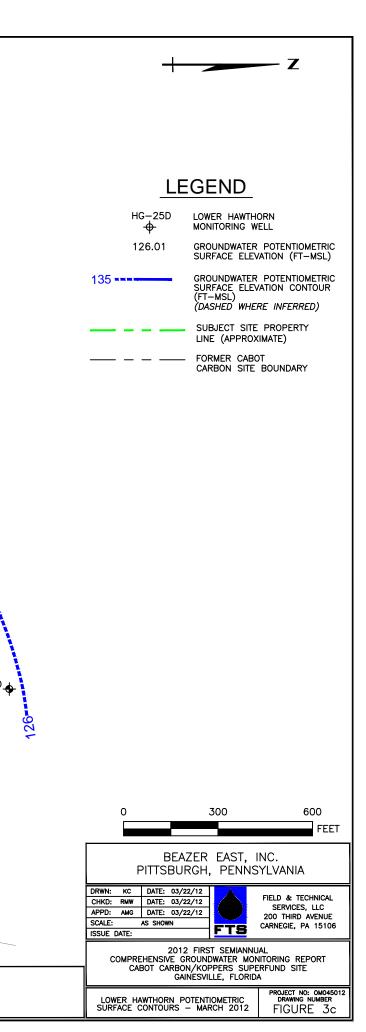


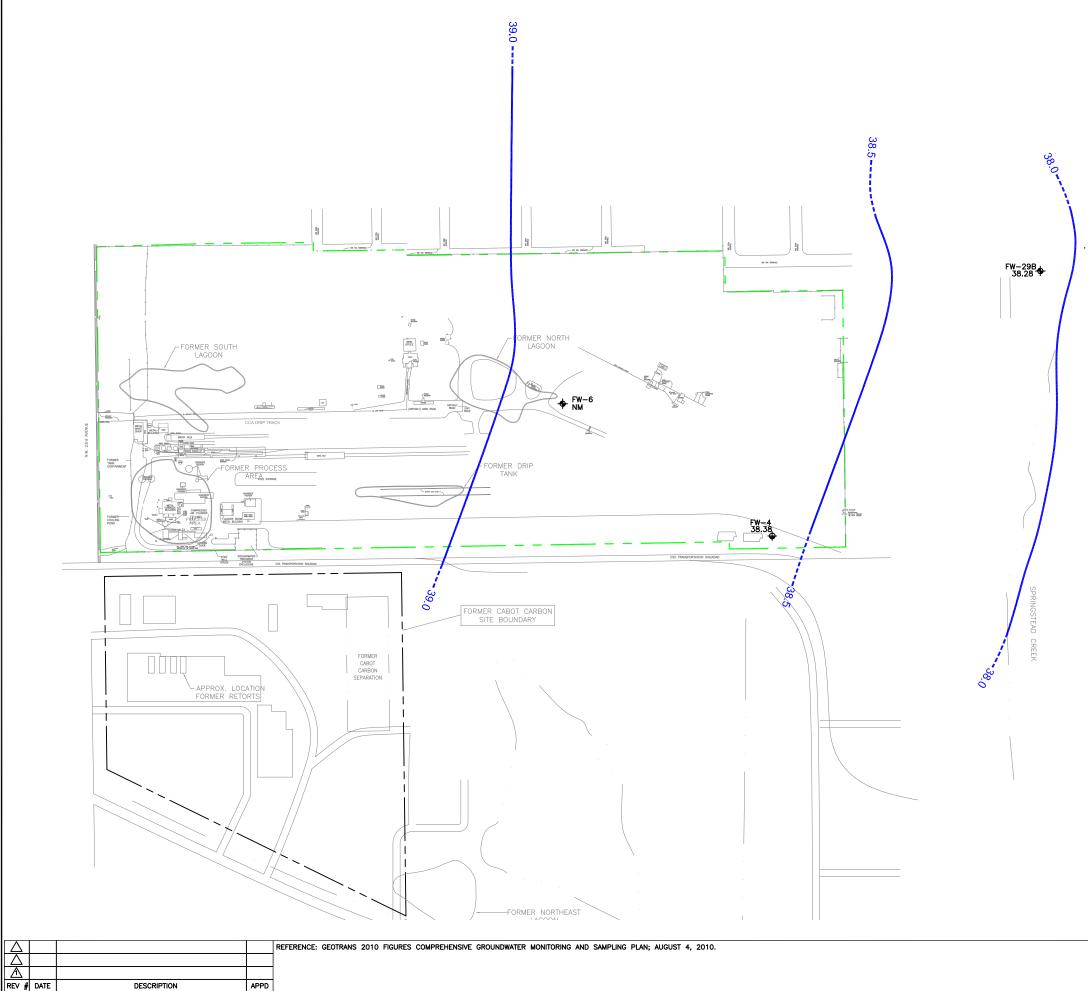




FILE: Q:\PROJECTS\BEAZER PROJECTS\GAINESVILLE\CADD\1SA GW COMP REPORT 2012\FIBURE-1.DWG



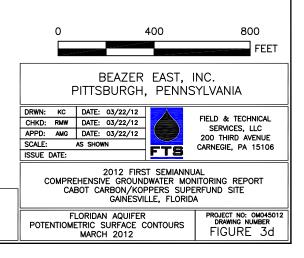



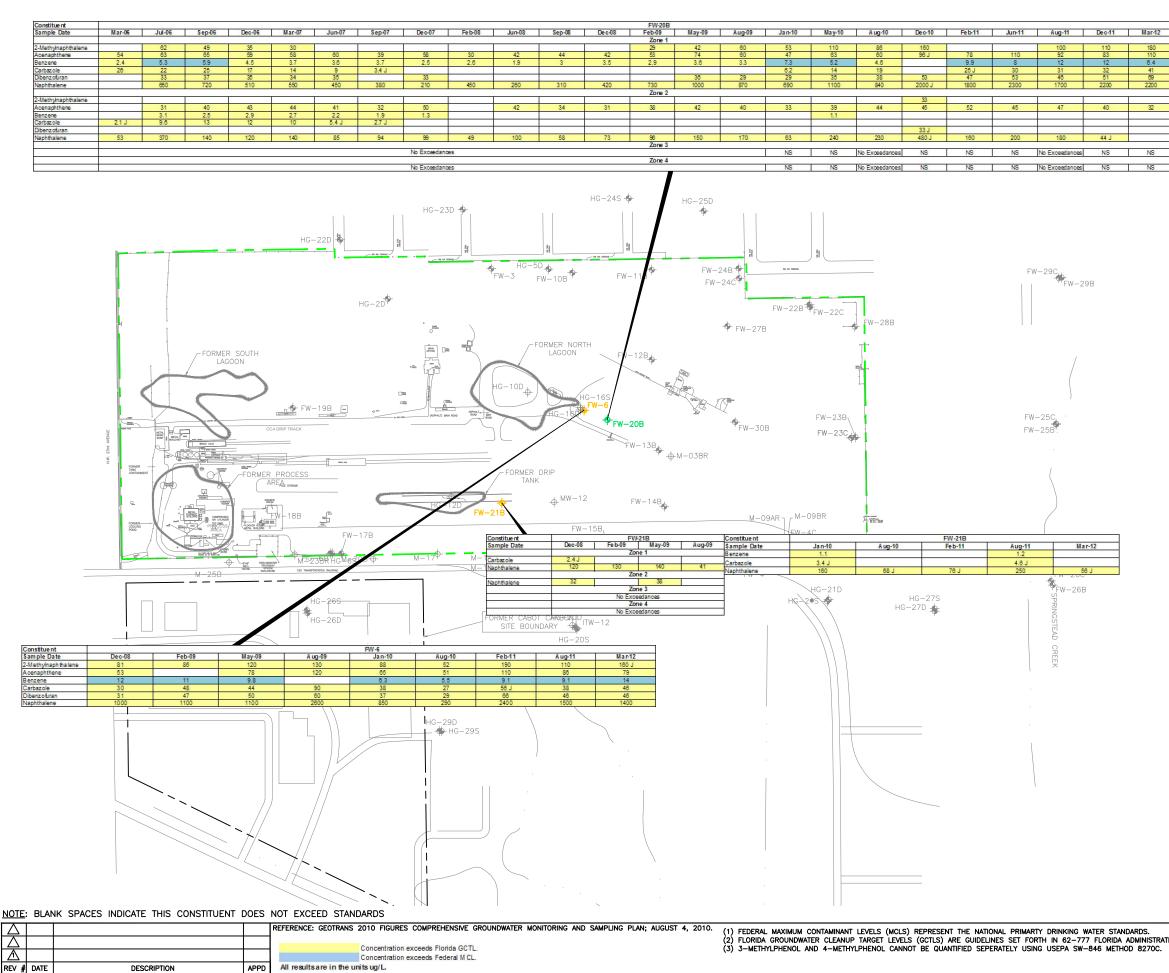


**Z** 










# FW-4 FLORIDAN MONITORING WELL 38.38 GROUNDWATER POTENTIOMETRIC 38.0 GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION (FT-MSL) GROUNDWATER POTENTIOMETRIC 38.0 GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION CONTOUR (FT-MSL) (FT-MSL) (DASHED WHERE INFERRED) \_\_\_\_\_\_ SUBJECT SITE PROPERTY LINE (APPROXIMATE) FORMER CABOT \_\_\_\_\_\_\_ FORMER CABOT \_\_\_\_\_\_\_\_ NM

\_\_\_\_\_ Z





| _ |        |
|---|--------|
|   | Jun-12 |
|   |        |
|   | 120    |
|   | 99     |
|   | 12     |
|   | 38     |
|   | 53     |
|   | 2100   |
|   |        |
|   |        |
|   |        |
|   |        |
| _ |        |
|   |        |
|   |        |
|   |        |
|   | NS     |
|   |        |
|   | NS     |
|   |        |

#### LEGEND

FW-20B

| FW-25B |
|--------|
| +      |

FLORIDAN WESTBAY MONITORING WELL

\_\_\_\_\_ Z

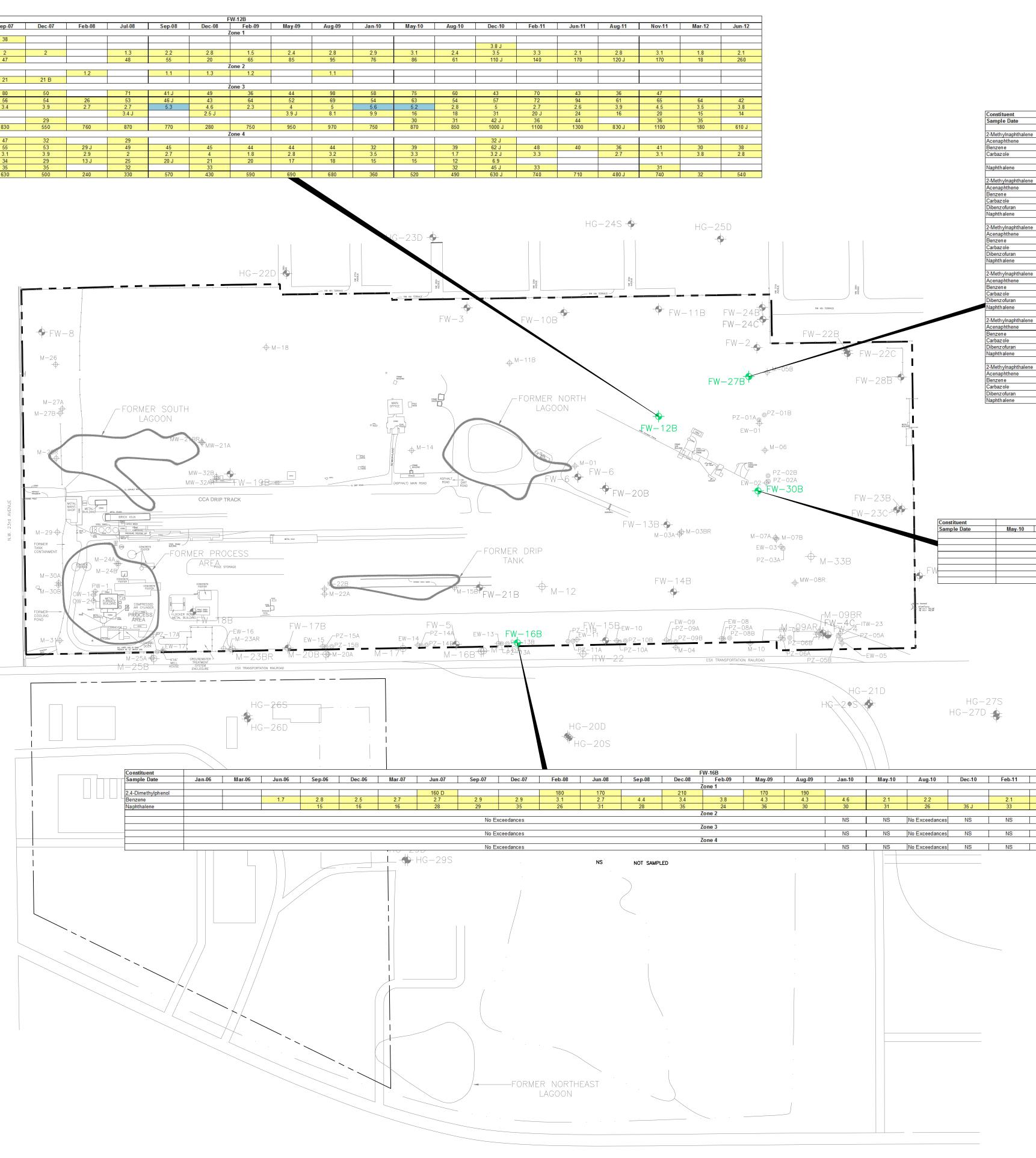
FLORIDAN STANDARD CONSTRUCTION MONITORING WELL

SUBJECT SITE PROPERTY LINE (APPROXIMATE)

----- FORMER CABOT CARBON SITE BOUNDARY

NOT SAMPLED

NS


DEDICATED PUMPING EQUIPMENT INSTALLED

#### STANDARDS

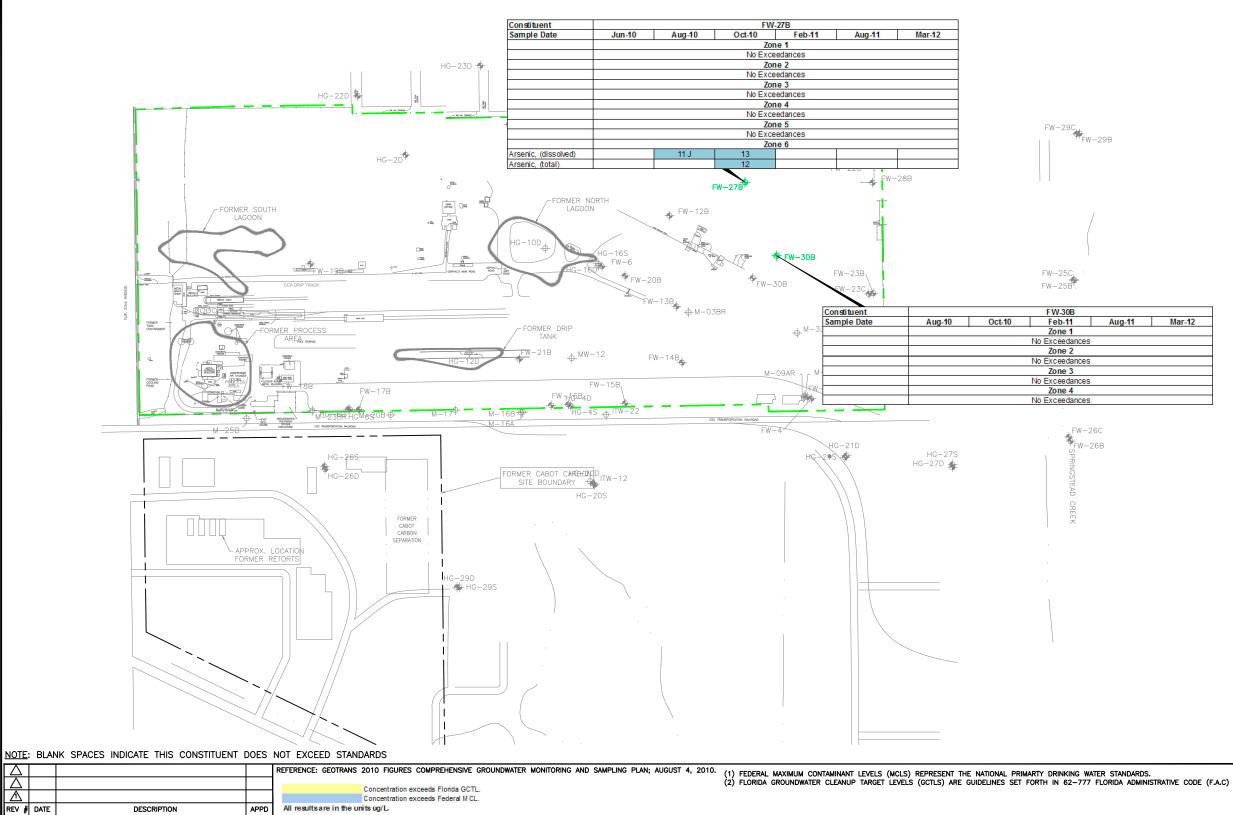
| Constituent         | Federal<br>MCL(1)<br>(ug/L) | Florida<br>GCTL(2)<br>(ug/L) |
|---------------------|-----------------------------|------------------------------|
| Organic Chemicals   |                             |                              |
| 2,4-Dimethylphenol  | -                           | 140                          |
| 2-Methylnaphthalene | -                           | 28                           |
| 2-Methylphenol      | =1                          | 35                           |
| 3&4-Methylphenol    | -                           | 3.50                         |
| Acenaphthene        |                             | 20                           |
| Ac enaphthylene     | -                           | 210                          |
| Anthracene          | -                           | 2100                         |
| Benzene             | 5                           | 1                            |
| Carbazole           | =                           | 1.8                          |
| Dibenzofuran        |                             | 28                           |
| Ethylbenzene        | 700                         | 30                           |
| Fluoranthene        | =                           | 280                          |
| Fluorene            | -                           | 280                          |
| Naphthalene         | -                           | 14                           |
| Pentachlorophenol   | 1                           | 1                            |
| Phenanthrene        | -                           | 210                          |
| Phenol              | -                           | 10                           |
| Pyrene              | =                           | 210                          |
| Toluene             | 10000                       | 40                           |
| Xylene (total)      | 1000                        | 20                           |

|                   | 0                                                                                                                                   | 400                                           | 800<br>FEET                                                                  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|--|--|--|
|                   |                                                                                                                                     | EAZER EAST,<br>BURGH, PENNS                   |                                                                              |  |  |  |
|                   | CHKD: KC DATE:                                                                                                                      | 06/19/12<br>06/19/12<br>06/19/12<br>N FTS     | FIELD & TECHNICAL<br>SERVICES, LLC<br>200 THIRD AVENUE<br>CARNEGIE, PA 15106 |  |  |  |
| TIVE CODE (F.A.C) | 2012 FIRST SEMIANNUAL<br>COMPREHENSIVE GROUNDWATER MONITORING REPORT<br>CABOT CARBON/KOPPERS SUPERFUND SITE<br>GAINESVILLE, FLORIDA |                                               |                                                                              |  |  |  |
|                   | MONITORI                                                                                                                            | ER SOURCE AREA<br>NG WELLS<br>CAL EXCEEDANCES | PROJECT NO: OMO45012<br>DRAWING NUMBER<br>FIGURE 4                           |  |  |  |

| Constituent         |        |        |        |        |        |        |        |        |         |        |        |        | I      | FW-12B |        |   |
|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---|
| Sample Date         | Jan-06 | Mar-06 | Jul-06 | Sep-06 | Dec-06 | Mar-07 | Jun-07 | Sep-07 | Dec -07 | Feb-08 | Jul-08 | Sep-08 | Dec-08 | Feb-09 | May-09 | Τ |
|                     |        |        | •      |        |        |        |        |        |         |        |        | 10 C   |        | Zone 1 |        |   |
| 2-Methylphenol      |        |        |        |        |        |        |        | 38     |         |        |        |        |        |        |        |   |
| 4-Methylphenol      |        |        |        |        |        |        |        |        |         |        | ~      |        |        |        |        |   |
| Benzene             |        |        | 1.5    |        | 1.6    | 1.6    | 1.7    | 2      | 2       |        | 1.3    | 2.2    | 2.8    | 1.5    | 2.4    | T |
| Naphthalene         |        |        | 49     | 40     | 45     | 44     | 46     | 47     |         |        | 48     | 55     | 20     | 65     | 85     |   |
|                     |        |        |        |        |        |        |        |        |         |        |        |        |        | Zone 2 |        |   |
| Benzene             |        |        |        |        |        |        |        |        |         | 1.2    |        | 1.1    | 1.3    | 1.2    |        | T |
| Naphthalene         |        |        | 15     |        | 17     | 15     | 16     | 21     | 21 B    |        | 4      |        |        |        |        |   |
|                     |        |        |        |        |        |        |        |        |         |        |        |        |        | Zone 3 |        |   |
| 2-Methylnaphthalene |        |        |        |        |        |        | 44     | 80     | 50      |        | 71     | 41 J   | 49     | 36     | 44     |   |
| Acenaphthene        | 29     | 28     | 52     | 35     | 33     | 35     | 43     | 56     | 54      | 26     | 53     | 46 J   | 43     | 64     | 52     | T |
| Benzene             | 1.7    |        |        |        | 2.1    | 3      | 4      | 3.4    | 3.9     | 2.7    | 2.7    | 5.3    | 4.6    | 2.3    | 4      |   |
| Carbazole           | 4.6 J  | 1.9 J  |        |        |        |        |        |        |         |        | 3.4 J  |        | 2.5 J  |        | 3.9 J  |   |
| Dibenzofuran        |        |        | 29     |        |        |        | -      |        | 29      |        |        |        |        |        |        |   |
| Naphthalene         | 160    | 380    | 500    | 370    | 410    | 540    | 780    | 830    | 550     | 760    | 870    | 770    | 280    | 750    | 950    |   |
|                     |        |        | 6)<br> |        |        |        | 13     |        |         |        |        |        |        | Zone 4 |        |   |
| 2-Methylnaphthalene |        |        | 32     | 31     | 33     | 32     | 41     | 47     | 32      |        | 29     |        |        |        |        | T |
| Acenaphthene        | 40     | 45     | 61     | 55     | 55     | 52     | 60     | 55     | 53      | 29 J   | 49     | 45     | 45     | 44     | 44     | T |
| Benzene             | 2.2    | 3.1    | 4.2    |        | 4.1    | 3.5    | 3.6    | 3.1    | 3.9     | 2.9    | 2      | 2.7    | 4      | 1.8    | 2.8    |   |
| Carbazole           | 16     | 23     | 32     | 34     | 31     | 31     | 32     | 34     | 29      | 13 J   | 25     | 20 J   | 21     | 20     | 17     | T |
| Dibenzofuran        |        |        |        | 29     | 33     | 30     | 38     | 35     | 35      |        | 32     |        | 33     |        |        |   |
| Naphthalene         | 280    | 660    | 650    | 630    | 550    | 620    | 780    | 630    | 500     | 240    | 330    | 570    | 430    | 590    | 690    | T |

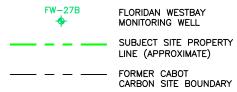


BLANK SPACES INDICATE THIS CONSTITUENT DOES NOT EXCEED STANDARDS


| $\square$  |             |      | REFERENCE: GEOTRANS 2010 FIGURES COMPREHENSIVE GROUNDWATER<br>J: The quantity is an estimated value. |
|------------|-------------|------|------------------------------------------------------------------------------------------------------|
|            |             |      | Concentration exceeds Florida GCTL.<br>Concentration exceeds Federal MCL.                            |
| REV # DATE | DESCRIPTION | APPD | All results are in the units ug/L.                                                                   |

MONITORING AND SAMPLING PLAN; AUGUST 4, 2010.

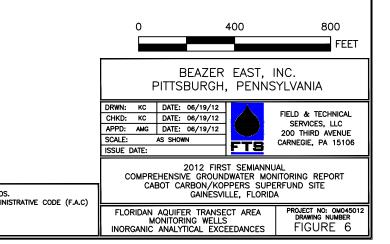
(1) FEDERAL MAXIMUM CONTAMINANT LEVELS (MCLS) REPRESENT THE NATIONAL PRIMARTY DRINKING W (2) FLORIDA GROUNDWATER CLEANUP TARGET LEVELS (GCTLS) ARE GUIDELINES SET FORTH IN 62-777 (3) 3-METHYLPHENOL AND 4-METHYLPHENOL CANNOT BE QUANTIFIED SEPERATELY USING USEPA SW-

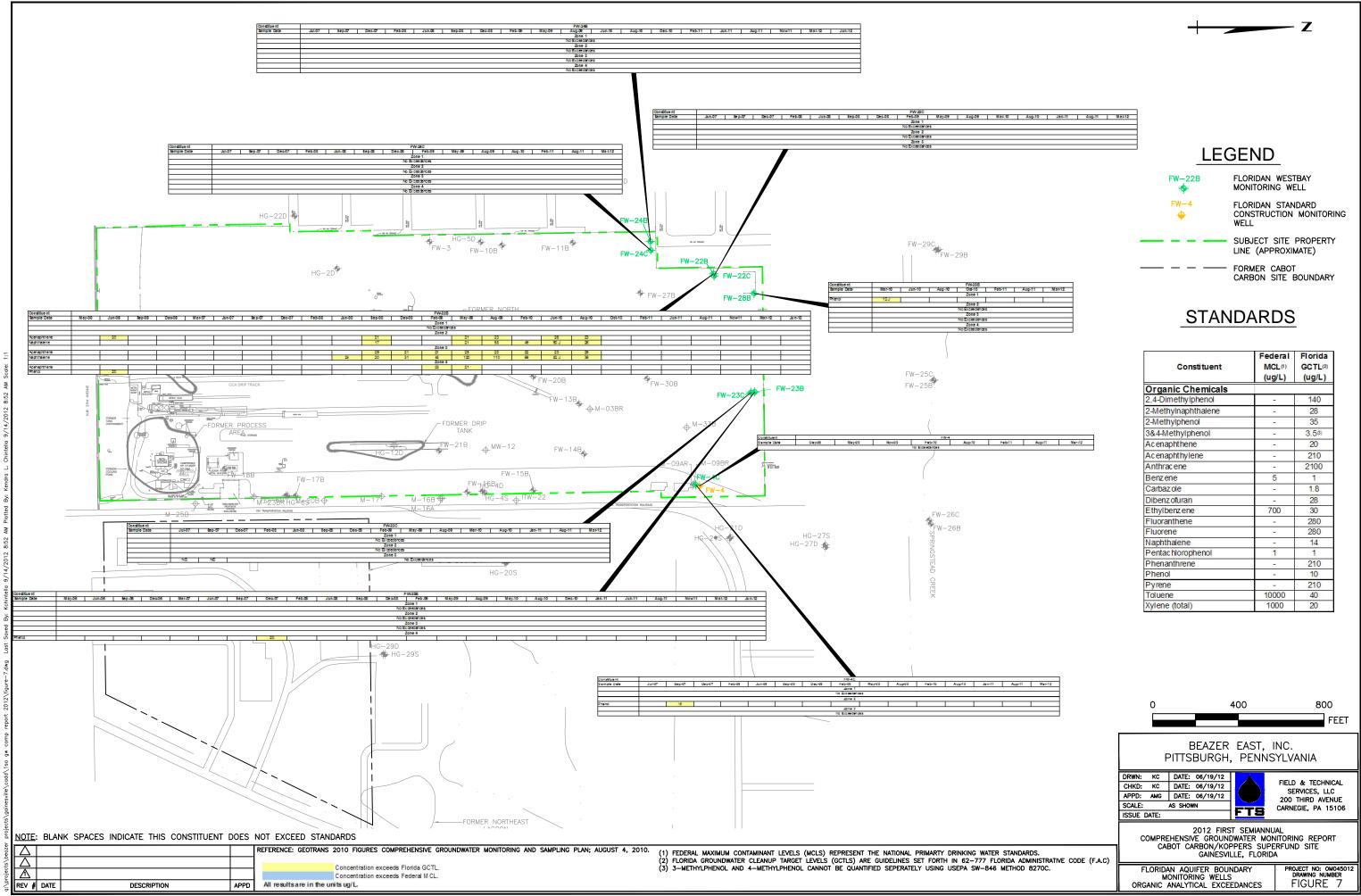

NS = NOT SAMPLED

|                                                                                                                                                                                                                                                                                                                                                                          | — Z                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FW-27B           Jun-10         Aug-10         Oct-10         Feb-11         Aug-11         Mar-12           Zone 1           alene         47           20         25         41         20         47                                                                                                                                                                  | LEGEND                                                                                                                                                                                                     |
| 39         35         41         29         47         53           2.1         2.7         2.2         2.6         3.8           1.9 J         1.9 J         29         29           560         450         590         480         650         670                                                                                                                    | FW-20B FLORIDAN WESTBAY                                                                                                                                                                                    |
| Zone 2           alene         130         96         110         71 J         95           98         78         75         94 J         78 J         83           4.1         6         8.4         3.8         4.6         7           24         18         17         18 J         11 J         9.4                                                                 | MONITORING WELL                                                                                                                                                                                            |
| 60         49         48         57 J         40 J         48           1700         1100         1600         1500 J         1200         1400           Zone 3           alene         80         86         59         100         75 J         100                                                                                                                   |                                                                                                                                                                                                            |
| 62         72         58         86         83 J         100           5.7         5.3         6.7         6.5         5.1         7.4           11         9.5         11         14 J         13 J         15 J           38         41         36         56         45 J         57           1100         1100         620         1300         1200 J         1800 | FORMER CABOT<br>CARBON SITE BOUNDARY                                                                                                                                                                       |
| Zone 4           alene         59         47         42         71         41         87           68         54         51         67         63         70           3         3.3         4.5         2.1         3 J         6.1                                                                                                                                     | CARDON SITE BOONDART                                                                                                                                                                                       |
| 10         7.2         8.3         10 J         8.6         11           36         32         31         39         32         42           1100         650         830         1300         920         1000           Zone 5           alene         110         79         84         72         31         58                                                      |                                                                                                                                                                                                            |
| 69         60         62         70         54         47           4.2         2.6         5.6         3.8         3.8         5.6           15         14         18         19 J         12         8           34         33         38         38         38         38                                                                                             |                                                                                                                                                                                                            |
| 1200         880         1300         1200         750         750           Zone 6           alene         46         33         50         69           54         48         48         65         44 J         69           3.8         2.6         4.4         4.6         3.6         5.7                                                                          |                                                                                                                                                                                                            |
| 10         9.6         10         12 J         6.4 J         10           35         29         29         38         42           850         540         98         990         640         790                                                                                                                                                                        |                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| FW-25C<br>FW-25B                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |
| FW-30B<br>0 Aug-10 Oct-10 Feb-11 Aug-11 Mar-12                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |
| Zone 1<br>No Exceedances<br>Zone 2<br>No Exceedances<br>Zone 3                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |
| No Exceedances Zone 4 No Exceedances                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| FW-26C                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |
| FW-26B SPR                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                            |
| SPRINGSTEAD                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |
| R<br>R                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |
| Jun-11         Aug-11         Nov-11         Mar-12         Jun-12           1.7         3.6         2.9         5.5         5.4           20         27         24         46         58                                                                                                                                                                                |                                                                                                                                                                                                            |
| 29         22 J         34         46         58 J           NS         No Exceedances         NS         NS         NS           NS         No Exceedances         NS         NS         NS                                                                                                                                                                             | STANDARDS                                                                                                                                                                                                  |
| NS No Exceedances NS NS NS                                                                                                                                                                                                                                                                                                                                               | Constituent     Federal<br>MCL <sup>(*)</sup> Florida<br>GCTL <sup>2*</sup><br>(ug/L)       Organic Chemicals       2,4-Dimethylphenol     -     140                                                       |
|                                                                                                                                                                                                                                                                                                                                                                          | 2-Methylnaphthalene-282-Methylphenol-353&4-Methylphenol-3.5 <sup>(3)</sup> Acenaphthene-20                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                          | Acenaphthylene-210Anthracene-2100Benzene51Carbazole-1.8Dibenzofuran-28                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                          | Ethylbenzene70030Fluoranthene-280Fluorene-280Naphthalene-14                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                          | Pertachlorophenol         1         1           Phenanthrene         -         210           Phenol         -         10           Pyrene         -         210           Toluene         10000         40 |
|                                                                                                                                                                                                                                                                                                                                                                          | Xylene (total) 1000 20                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                          | FEET                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                          | BEAZER EAST, INC.<br>PITTSBURGH, PENNSYLVANIA                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                          | DRWN: KC DATE: 06/19/12                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                          | CHKD:KCDATE:06/19/12FIELD & TECHNICALAPPD:AMGDATE:06/19/12SERVICES, LLC200THIRD AVENUE                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                          | SCALE:     AS SHOWN     FTS     200 THIRD AVENUE       ISSUE DATE:     FTS     CARNEGIE, PA 15106                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                          | 2012 FIRST SEMIANNUAL<br>COMPREHENSIVE GROUNDWATER MONITORING REPORT                                                                                                                                       |
| WATER STANDARDS.<br>777 FLORIDA ADMINISTRATIVE CODE (F.A.C)                                                                                                                                                                                                                                                                                                              | CABOT CARBON/KOPPERS SUPERFUND SITE<br>GAINESVILLE, FLORIDA                                                                                                                                                |
| V-846 METHOD 8270C.                                                                                                                                                                                                                                                                                                                                                      | FLORIDAN AQUIFER TRANSECT AREA<br>MONITORING WELLS<br>ORGANIC ANALYTICAL EXCEEDANCES                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                          | ORGANIC ANALYTICAL EXCEEDANCES   FIGURE 5                                                                                                                                                                  |



|

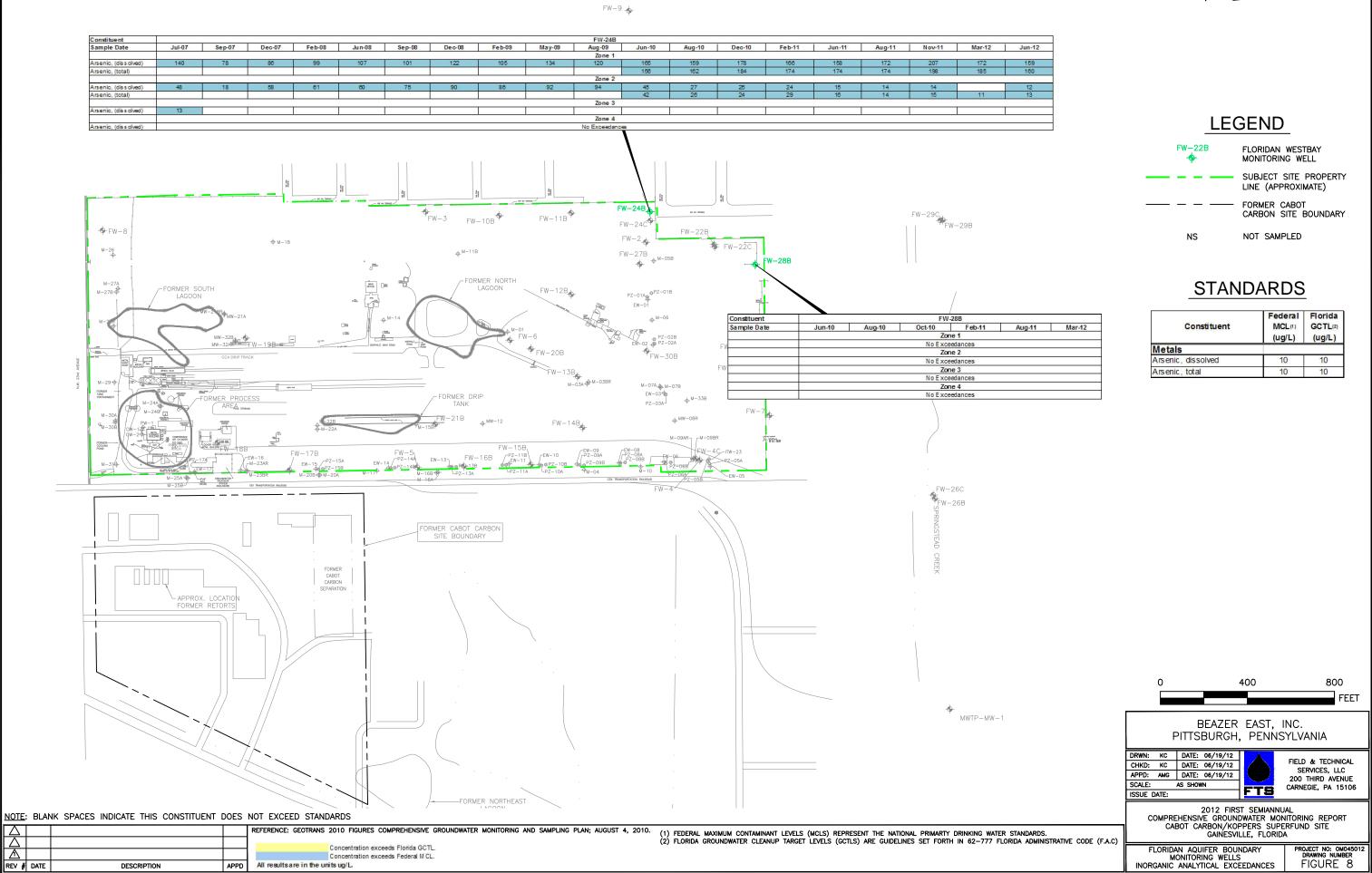

#### LEGEND




#### STANDARDS

| Constituent        | Federal<br>MCL <sup>(1)</sup><br>(ug/L) | Florida<br>GCTL <sup>(2)</sup><br>(ug/L) |
|--------------------|-----------------------------------------|------------------------------------------|
| Metals             |                                         |                                          |
| Arsenic, dissolved | 10                                      | 10                                       |
| Arsenic, total     | 10                                      | 10                                       |

| Mar-12 |   |
|--------|---|
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        | _ |
|        |   |
|        |   |



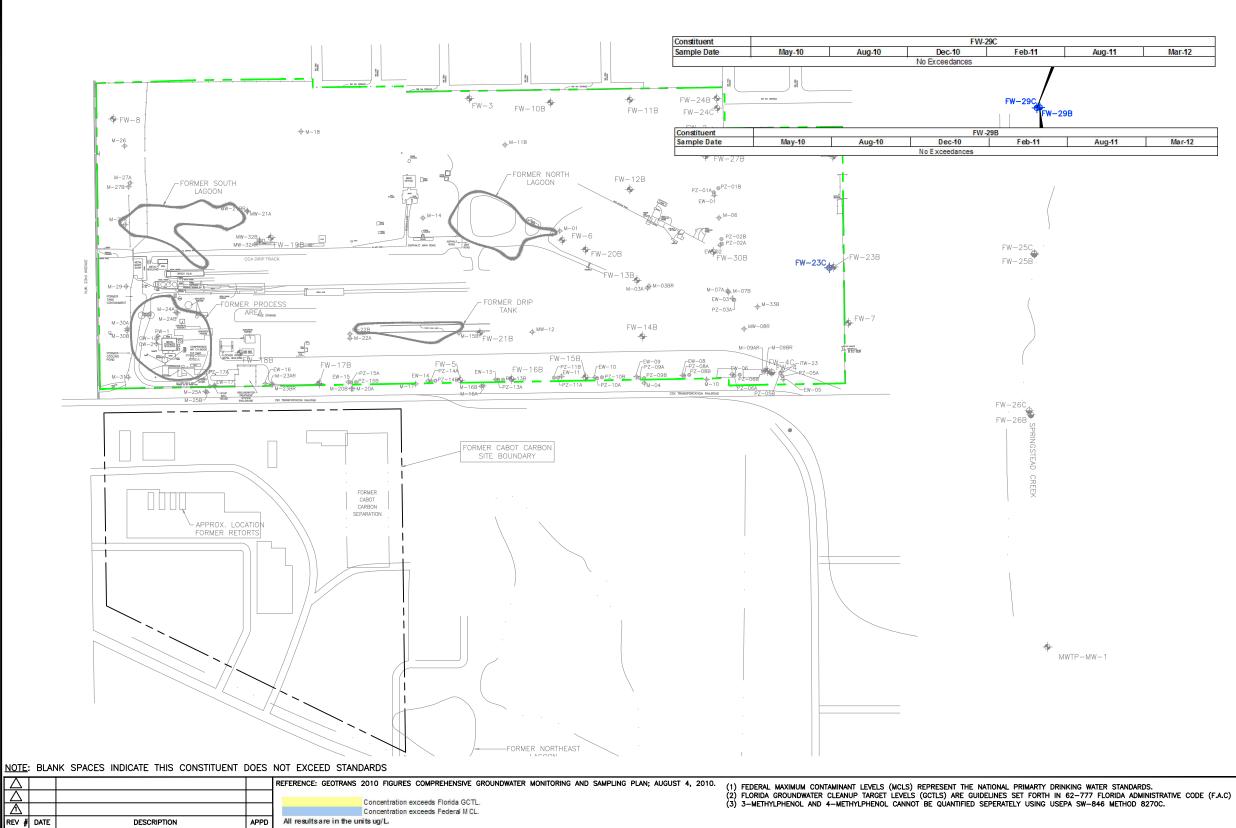



| Jan-11 | App 11 | Mar-12 |
|--------|--------|--------|
|        |        |        |
|        |        |        |
|        |        |        |
| -      |        |        |
| -      |        |        |



|                     | Federal | Florida             |
|---------------------|---------|---------------------|
| Constituent         | MCL(1)  | GCTL <sup>(2)</sup> |
|                     | (ug/L)  | (ug/L)              |
| Organic Chemicals   |         |                     |
| 2,4-Dimethylphenol  | -       | 140                 |
| 2-Methylnaphthalene | -       | 28                  |
| 2-Methylphenol      | -       | 35                  |
| 3&4-Methylphenol    | -       | 3.50                |
| Acenaphthene        | -       | 20                  |
| Acenaphthylene      | 2       | 210                 |
| Anthracene          | -       | 2100                |
| Benzene             | 5       | 1                   |
| Carbazole           | -       | 1.8                 |
| Dibenzofuran        | Ξ.      | 28                  |
| Ethylbenzene        | 700     | 30                  |
| Fluoranthene        | -       | 280                 |
| Fluorene            | -       | 280                 |
| Naphthalene         | 2       | 14                  |
| Pentac hiorophenol  | 1       | 1                   |
| Phenanthrene        | -       | 210                 |
| Phenol              | -       | 10                  |
| Pyrene              | -       | 210                 |
| Toluene             | 10000   | 40                  |
| Xylene (total)      | 1000    | 20                  |




 $\triangle$ 

| -12 |  |
|-----|--|
|     |  |
| 9   |  |
| 0   |  |
|     |  |
| 2   |  |
| 3   |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |

| LEC    | GEND                                        |
|--------|---------------------------------------------|
| FW-22B | FLORIDAN WESTBAY<br>MONITORING WELL         |
|        | SUBJECT SITE PROPERTY<br>LINE (APPROXIMATE) |
|        | FORMER CABOT<br>CARBON SITE BOUNDARY        |
| NS     | NOT SAMPLED                                 |

**–** Z

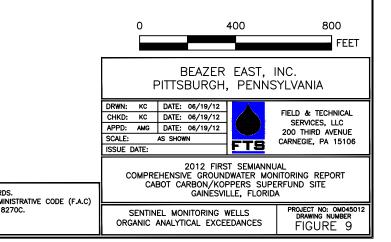
| Constituent        | Federal<br>MCL(1)<br>(ug/L) | Florida<br>GCTL <sup>(2)</sup><br>(ug/L) |
|--------------------|-----------------------------|------------------------------------------|
| Metals             |                             |                                          |
| Arsenic, dissolved | 10                          | 10                                       |
| Arsenic, total     | 10                          | 10                                       |



FW-9

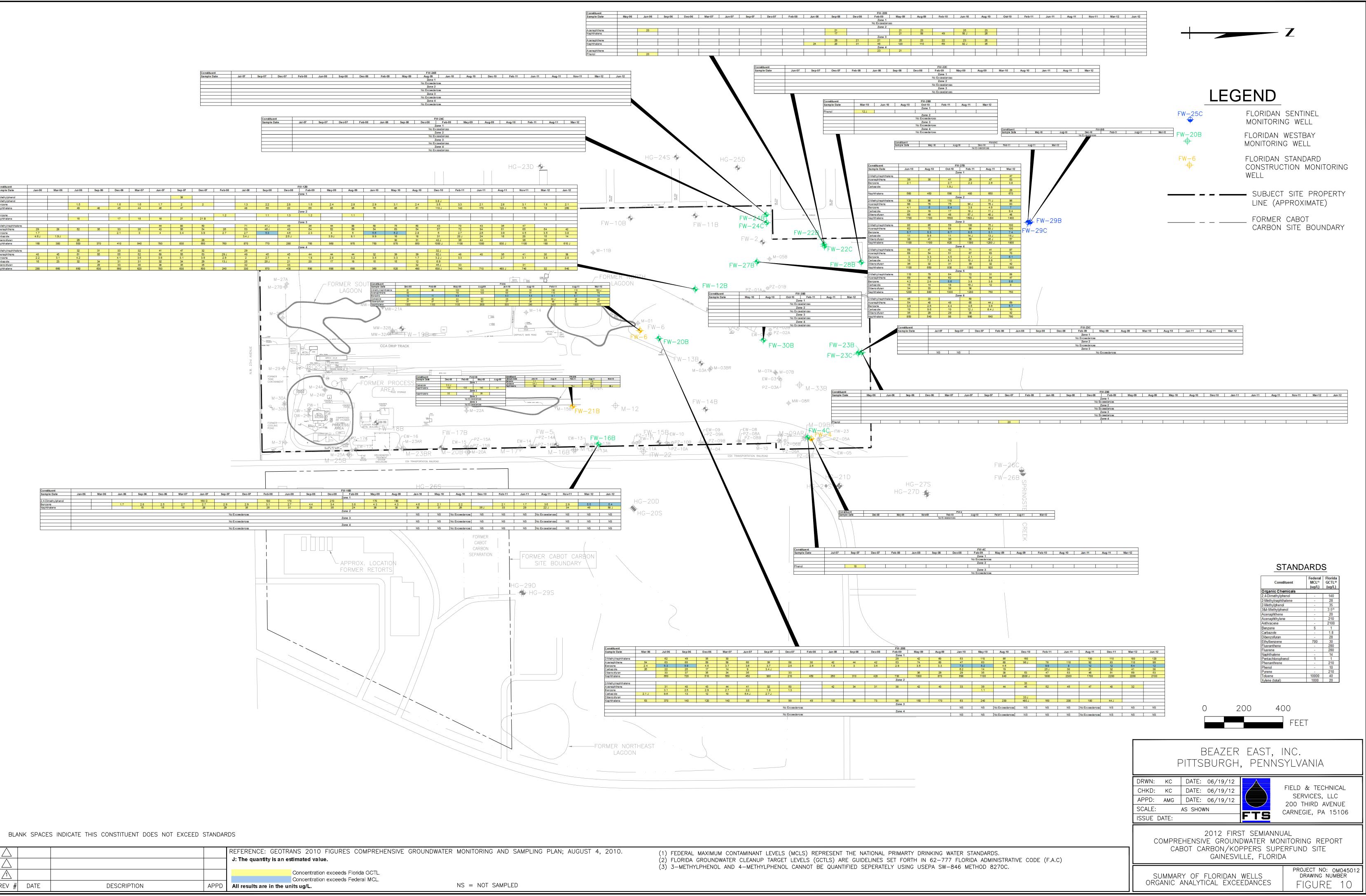
#### LEGEND

FW-25C


FLORIDAN SENTINEL MONITORING WELL

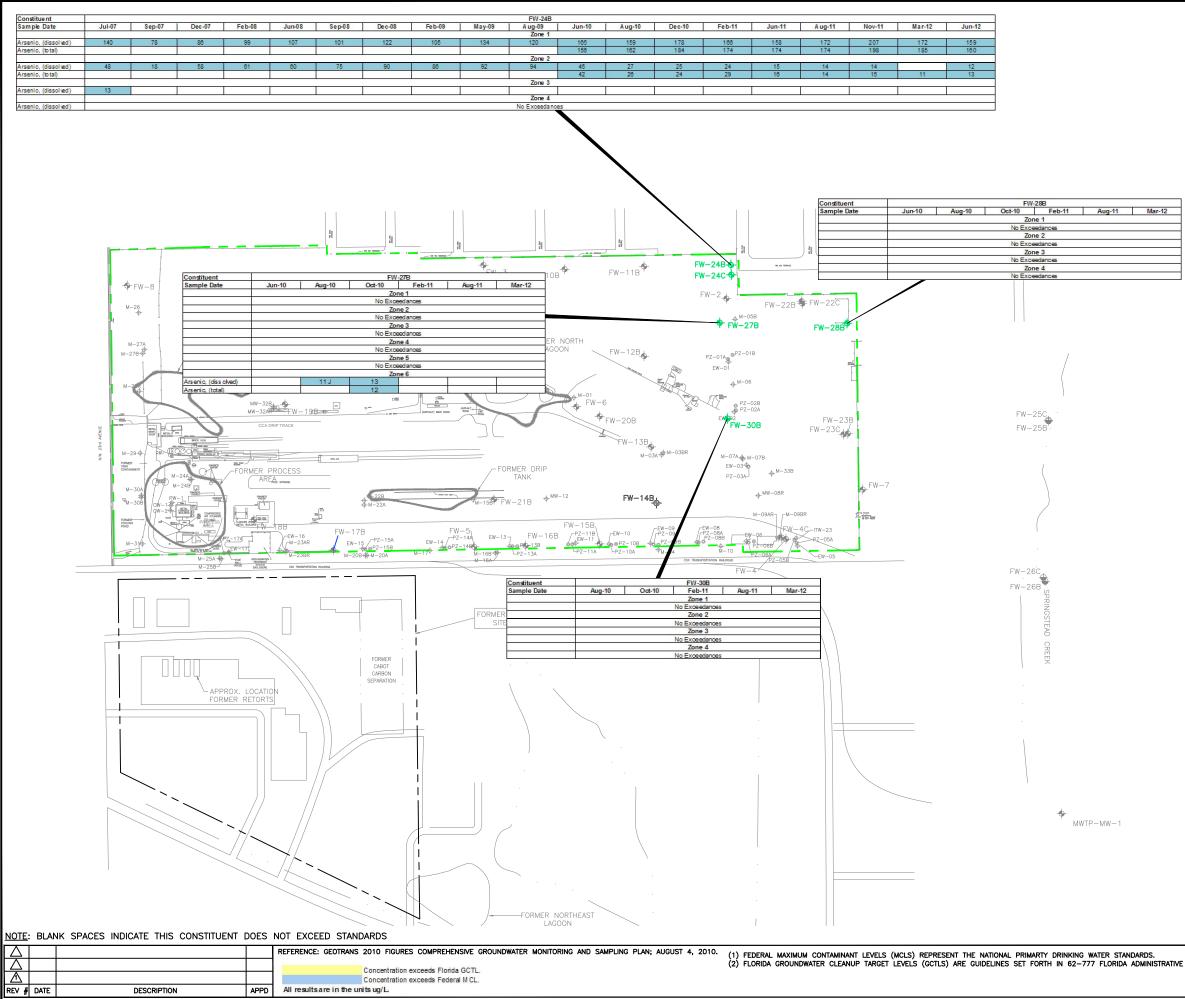
SUBJECT SITE PROPERTY LINE (APPROXIMATE)

FORMER CABOT CARBON SITE BOUNDARY


#### STANDARDS

| Constituent         | Federal<br>MCL(1)<br>(ug/L) | Florida<br>GCTL®<br>(ug/L) |
|---------------------|-----------------------------|----------------------------|
| Organic Chemicals   |                             |                            |
| 2,4-Dimethylphenol  | 17                          | 140                        |
| 2-Methylnaphthalene |                             | 28                         |
| 2-Methylphenol      | -                           | 35                         |
| 3&4-Methylphenol    | -                           | 3.5(3)                     |
| Acenaphthene        | -                           | 20                         |
| Acenaphthylene      | -                           | 210                        |
| Anthracene          | -                           | 2100                       |
| Benzene             | 5                           | 1                          |
| Carbazole           | -                           | 1.8                        |
| Dibenzofuran        | <u>, 1</u>                  | 28                         |
| Ethylbenzene        | 700                         | 30                         |
| Fluoranthene        | -                           | 280                        |
| Fluorene            | 12                          | 280                        |
| Naphthalene         | -                           | 14                         |
| Pentachlorophenol   | 1                           | 1                          |
| Phenanthrene        | -                           | 210                        |
| Phenol              | -                           | 10                         |
| Pyrene              | 12                          | 210                        |
| Toluene             | 10000                       | 40                         |
| Xylene (total)      | 1000                        | 20                         |




Mar-12

Mar-12



BLANK SPACES INDICATE THIS CONSTITUENT DOES NOT EXCEED STANDARDS

|   | $\bigtriangleup$ |             |      | REFERENCE: GEOTRANS 2010 FIGURES COMPREHENSIVE GROUNDWAT J: The quantity is an estimated value. | ER M |
|---|------------------|-------------|------|-------------------------------------------------------------------------------------------------|------|
| - | $  \triangle  $  |             |      |                                                                                                 |      |
| ` |                  |             |      | Concentration exceeds Florida GCTL.<br>Concentration exceeds Federal MCL.                       |      |
| - | REV # DATE       | DESCRIPTION | APPD | All results are in the units ug/L.                                                              | N    |



#### LEGEND

FW-22B •• FW-25C • FLORIDAN WESTBAY MONITORING WELL

\_\_\_\_\_Z

FLORIDAN SENTINEL MONITORING WELL

SUBJECT SITE PROPERTY LINE (APPROXIMATE)

\_\_\_\_\_ FORMER CABOT CARBON SITE BOUNDARY

#### STANDARDS

| Constituent        | Federal<br>MCL(0)<br>(ug/L) | Florida<br>GCTL <sup>(2)</sup><br>(ug/L) |
|--------------------|-----------------------------|------------------------------------------|
| Metals             |                             |                                          |
| Arsenic, dissolved | 10                          | 10                                       |
| Arsenic, total     | 10                          | 10                                       |

|                    | 0                                                                                                                                   | 400                                       | 800<br>FEET                                                                  |  |  |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                    |                                                                                                                                     | EAZER EAST,<br>BURGH, PENNS               |                                                                              |  |  |  |  |  |  |  |  |  |
|                    | CHKD: KC DATE:                                                                                                                      | 06/19/12<br>06/19/12<br>06/19/12<br>N FTS | FIELD & TECHNICAL<br>SERVICES, LLC<br>200 THIRD AVENUE<br>CARNEGIE, PA 15106 |  |  |  |  |  |  |  |  |  |
| ATIVE CODE (F.A.C) | 2012 FIRST SEMIANNUAL<br>COMPREHENSIVE GROUNDWATER MONITORING REPORT<br>CABOT CARBON/KOPPERS SUPERFUND SITE<br>GAINESVILLE, FLORIDA |                                           |                                                                              |  |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                     | FLORIDAN WELLS<br>TICAL EXCEEDANCES       | PROJECT NO: 0M045012<br>DRAWING NUMBER<br>FIGURE 11                          |  |  |  |  |  |  |  |  |  |

# **APPENDIX A**

## **FIELD FORMS**





<u>.</u>

Project Name: 1st Quarter 2012 Gainesville Sampling

Client: Beazer East, Inc.

Project Number: <u>OM-0450-12-091</u>

Location: Gainesville

| Order | Well   | Date    | Time   | Previous | Depth to   | Previous   | Total  | Previous | Depth to | LNAPL                   | Previous           | Depth to   | DNAPL           | PID     | Notes                                                                                                            |
|-------|--------|---------|--------|----------|------------|------------|--------|----------|----------|-------------------------|--------------------|------------|-----------------|---------|------------------------------------------------------------------------------------------------------------------|
|       |        |         |        | Depth to | Ground     | Total      | Depth  | Depth to | LNAPL    | Thickness               | Depth to           | DNAPL      | Thickness       | reading |                                                                                                                  |
|       |        |         |        | Ground   | water (ft) | Depth (ft) | (ft)   | LNAPL    | (ft)     | (ft)                    | DNAPL              | (ft)       | (ft)            | (ppm)   |                                                                                                                  |
|       |        |         |        |          |            |            |        | (ft)     |          |                         | (ft)               | Letter and |                 |         |                                                                                                                  |
| .1.   | ITW-12 | 3/19/12 | . 8:18 | 11.36    | 12.48      | 20.05      | 20.05  | e NP 18  | i ⊴NP ⊕  | ≦_N/A                   | ::;/NP ;:/         | NP         | ≅≣N/A ,,        | 0.0     | Broken hinge                                                                                                     |
| 2     | ITW-22 | 3/19/12 | 13:39  | 14.75    | 16.06      | 16.75      | 16.72  | NP       | NP       | N/A                     | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| 3     | FW-4   | 3/19/12 | 13:48  | 133.90   | .135.53    | 160.00     | 159.89 | N/A ≤    | NP       | - <b>N/A</b> tate       | . N/A -            | NP         | N/A             | :0.0    |                                                                                                                  |
| 4     | EW-2   | 3/19/12 | 14:01  | 17.22    | 19.26      | 26.07      | 26.10  | NP       | NP       | N/A                     | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| 5     | FW-29B | 3/19/12 | 9:56   | 122.82   | 124.48     | 247.80     | 247.80 | N/A      | S NP     | <b>N/A</b> <sup>1</sup> | ::: <b>N/A</b> ::> | NP :       | N/A             | 0.0     |                                                                                                                  |
| 6     | FW-29C | 3/19/12 | 10:00  | 123.20   | 124.78     | 371.05     | 371.00 | N/A      | NP       | N/A                     | N/A                | NP         | N/A             | 0.0     |                                                                                                                  |
| 7     | M-12   | 3/19/12 | 14:03  | DRY      | DRY        | 14.37      | 14.34  | Son NP 🔗 | NP       | S∂ <b>N/A</b> ⊴≦        | NP                 | SNP 🖉      | . N/A .         | 0.0     | and the second |
| 8     | EW-8   | 3/19/12 | 14:05  | 10.18    | 11.60      | 25.87      | 25.89  | NP       | NP       | N/A                     | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| 9     | HG-5D  | 3/19/12 | 14:07  | 58.06    | 59.80      | 112.71     | 112.70 | N/A      | NP       | N/A                     | <b>N/A</b> ::      | ŇP         | N/A             | 0.0     |                                                                                                                  |
| 10    | M-9AR  | 3/19/12 | 10:40  | 14.70    | 14.82      | 17.75      | 17.76  | NP       | NP       | N/A                     | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| 11    | EW-1   | 3/19/12 | 14:10  | 17.23    | 18.60      | 25.70      | 25.70  | NP       | NP       |                         | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| 12    | HG-24S | 3/19/12 | 14:12  | 17.90    | 19.08      | 71.39      | 71.45  | NP       | NP       | N/A                     | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| 13    | HG-27S | 3/19/12 | 10:14  | 10.39    | 10.84      | 59.85      | :59.85 | NP       | NP       | N/A                     | NP                 | NP         | . N/A -         | 0.0     |                                                                                                                  |
| 14    | HG-25D | 3/19/12 | 14:14  | 54.25    | 55.29      | 85.91      | 85.91  | NP       | NP       | N/A                     | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| .15   | HG-22D | 3/19/12 | 10:24  | 47.91    | 49.93      | 82.55      | 82.55  | NP :::   | NP       | N/A                     | NP                 | NP :::     | N/A             | 0.0     |                                                                                                                  |
| 16    | HG-23D | 3/19/12 | 14:17  | 55.11    | 56.00      | 89.40      | 89.47  | NP       | NP       | N/A                     | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| . 17  | HG-27D | 3/19/12 | 14:19  | 35.58    | 36.28      | 96.32      | 96.38  | NP of    | NP       |                         | NP                 | SNP -      | N/A             | 0.0     |                                                                                                                  |
| 18    | HG-26D | 3/19/12 | 14:21  | 43.41    | 44.32      | 94.00      | 94.00  | NP       | NP       | N/A                     | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| . 19  | EW-9   | 3/19/12 | 14:23  |          | 13.12      | N/M        | 30.81  |          | ∵ NP 🤤   | N/A                     | ⊠N/M ○             | NP N       | ::: <b>:N/A</b> | 0.0     | and the second |
| 20    | EW-6   | 3/19/12 | 14:25  | 24.50    | 24.45      | 29.10      | 29.10  | NP       | NP       | N/A                     | NP                 | NP         | N/A             | 0.0     |                                                                                                                  |
| 21    | HG-21S | 3/19/12 | 14:27  | 12.19    | 13.28      | 41.10      | 41.10  | NP       | NP       | N/A                     | NP                 | NP         |                 | 0.0     |                                                                                                                  |

Notes:

N/A = not available ND = not determined NP = no product



Project Name: 1st Quarter 2012 Gainesville Sampling

Client: Beazer East, Inc.

Project Number: <u>OM-0450-12-091</u>

Location: <u>Gainesville</u>

| Order | Well    | Date    | Time  | Previous           | Depth to             | Previous            | Total         | Previous          | Depth to<br>LNAPL | LNAPL<br>Thickness | Previous<br>Depth to | 1 •  | DNAPL<br>Thickness         | PID<br>reading | Notes                                                                                                           |
|-------|---------|---------|-------|--------------------|----------------------|---------------------|---------------|-------------------|-------------------|--------------------|----------------------|------|----------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|
|       |         |         |       | Depth to<br>Ground | Ground<br>water (ft) | Total<br>Depth (ft) | Depth<br>(ft) | Depth to<br>LNAPL | (ft)              | (ft)               | DNAPL                | (ft) | (ft)                       | (ppm)          |                                                                                                                 |
|       |         |         |       |                    |                      |                     |               | (ft)              |                   |                    | (ft)                 |      |                            |                |                                                                                                                 |
| 22    | EW-5    | 3/19/12 | 14:29 | 14.75              | 15.20                | 25.95               | 25.96         | NP                | NP                | N/A                | NP                   | NP   | N/A                        | 0.0            |                                                                                                                 |
| 23 :  | HG-20D  | 3/19/12 | 14:31 | 41.18              | 41.92                | 84.17               | 84.15         | NP                | NP                | N/A                | NP                   | NP   | N/A                        | .0.0           | a la transferia de la companya de la |
| 24    | FW-31BE | 3/19/12 | 14:35 | NA                 | N/M                  | NA                  | N/M           | NP                | N/M               | N/M                | NP                   | N/M  | N/M                        |                | PUMPING WELL UNABLE TO<br>GAUGE                                                                                 |
| 25    | M-16A   | 3/19/12 | 11:00 | 14.10              | 15.20                | 15.42               | 15.44         | NP                | NP                | 13 N/A             | NP                   | NP   | N/A                        | 0.0            |                                                                                                                 |
| 26    | M-32B   | 3/19/12 | 14:37 | 15.01              | 16.18                | 25.25               | 25.27         | NP                | NP                | N/A                | NP                   | NP   | N/A                        | 0.0            |                                                                                                                 |
| 27    | HG-6S   | 3/19/12 | 11:05 | 15.18              | 18.38                | 52.82               | 52.82         | N/A               | NP                | N/A                | N/A                  | NP   | N/A                        | 0.0            |                                                                                                                 |
| 28    | M-9BR   | 3/19/12 | 14:39 | 14.09              | 14.82                | 28.43               | 28.42         | NP                | NP                | N/A                | NP                   | NP   | N/A                        | 0.0            |                                                                                                                 |
| 29    | FW-21B  | 3/19/12 | 14:42 | NA                 | N/M                  | NA sa               | N/M           | NA                | N/M               | N/M                | NA                   | N/M  | N/M                        | N/M            | PUMPING WELL UNABLE TO<br>GAUGE                                                                                 |
|       |         | - 11 A  |       |                    |                      |                     |               |                   | ND                | NI/A               |                      | NP   | N/A                        | 0.0            |                                                                                                                 |
| 30    | EW-11   | 3/19/12 | 14:50 | 17.35              | 24.94                | 30.40               | 30.40         | NP                | NP                | N/A                | NP                   |      |                            |                |                                                                                                                 |
| 31    | HG-20S  | 3/19/12 | 14:52 | 9.86               | 11.62                | 39,80               | 39.80         | THE NP IN         | NP                | N/A                | NP                   | NP . | N/A                        | 0.0            |                                                                                                                 |
| 32    | HG-4D   | 3/19/12 | 11:18 | 45.31              | 47.13                | 107.94              | 107.95        | N/A               | NP                | N/A                | N/A                  | NP   | N/A                        | 0.0            |                                                                                                                 |
| 33    | EW-3    | 3/19/12 | 17:37 | 15.00              | 19.16                | 23.90               | 23.90         | NP                | : NP              | N/A -              | I SNP //             | /:NP | • • • • <b>N/A</b> • • • • | 0.0            |                                                                                                                 |
| 34    | HG-2D   | 3/19/12 | 12:24 | 56.02              | 57.84                | 112.95              | 112.95        | N/A               | NP                | N/A                | N/A                  | NP   | N/A                        | 0.0            |                                                                                                                 |
| 35    | M-17    | 3/19/12 | 14:55 | 15.14              | DRY                  | 15.36               | 15.25         | NP                | NP                | N/A                | NP                   | NP   | N/A                        | 0.0            |                                                                                                                 |
| 36    | EW-16   | 3/19/12 | 17:40 | 19.80              | 18.68                | 23.05               | 23.05         | NP                | NP                | N/A                | NP                   | NP   | N/A                        | 0.0            |                                                                                                                 |
| 37    | M-33B   | 3/19/12 | 14:57 | 14.73              | 15.74                | 27.24               | 27.27         | NP                | NP                | in <b>N/A</b> ⇒    | : NP                 | NP   | N/A                        | 0.0            |                                                                                                                 |
| 38    | HG-12D  | 3/19/12 | 12:29 | 48.18              | 49.99                | 115,47              | 115.50        | N/A               | NP                | N/A                | N/A                  | NP   | N/A                        | 0.0            |                                                                                                                 |
| 39    | FW-6    | 3/19/12 | 12:42 | NM                 | N/M                  | NM                  | N/M           | NM                | N/M               | N/M                | NM                   | N/M  | N/M                        | N/M            | PUMPING WELL UNABLE TO<br>GAUGE                                                                                 |

Notes:

N/A = not available ND = not determined NP = no product NM = not measured



Project Name: 1st Quarter 2012 Gainesville Sampling

Client: Beazer East, Inc.

Project Number: <u>OM-0450-12-091</u>

Location: <u>Gainesville</u>

|       |                          |         |       |                                |                                  |                                 |                        | ,                             | 4   |                            |                               |       | 1                          | 1                       |                   |
|-------|--------------------------|---------|-------|--------------------------------|----------------------------------|---------------------------------|------------------------|-------------------------------|-----|----------------------------|-------------------------------|-------|----------------------------|-------------------------|-------------------|
| Order | Well                     | Date    | Time  | Previous<br>Depth to<br>Ground | Depth to<br>Ground<br>water (ft) | Previous<br>Total<br>Depth (ft) | Total<br>Depth<br>(ft) | Previous<br>Depth to<br>LNAPL | 1 1 | LNAPL<br>Thickness<br>(ft) | Previous<br>Depth to<br>DNAPL |       | DNAPL<br>Thickness<br>(ft) | PID<br>reading<br>(ppm) | Notes             |
|       |                          |         |       |                                |                                  |                                 |                        | (ft)                          |     |                            | (ft)                          |       |                            |                         |                   |
| 40    | NORTH<br>LAGOON<br>DRAIN | 3/19/12 | 14:59 | 14.78                          | 17.95                            | 15.71                           | 18.00                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     |                   |
| .41   | M-3BR                    | 3/19/12 | 15:01 | 14.57                          | 15.92                            | 26.36                           | 26.31                  | P NP :::                      | NP  |                            | ≥⊲NP :∞                       | ିNP - | N/A 🤷                      | 0.0 🦉                   |                   |
| 42    | EW-15                    | 3/19/12 | 17:42 | 24.40                          | 24.26                            | 27.60                           | 27.60                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     |                   |
| 43    | EW-14                    | 3/19/12 | 17:44 | 20.70                          | 25.69                            | 28.20                           | 28.20                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     | ·                 |
| 44    | EW-13                    | 3/19/12 | 17:46 | 17.45                          | 20.78                            | 27.60                           | 27.60                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     |                   |
| 45    | M-20B                    | 3/19/12 | 15:03 | 14.22                          | 14.80                            | 25.53                           | 25.45                  | NP                            | NP  | N/A                        | NP                            | NP    | ∷N/A                       | 0.0                     | the street of the |
| 46    | HG-21D                   | 3/19/12 | 12:54 | 39.70                          | 40.50                            | 94,95                           | 94.95                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     |                   |
| 47    | PROCESS<br>AREA DRAIN    | 3/20/12 | 5:47  | 12.04                          | 15.80                            | 15.32                           | 17.90                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     | NO BARCODE        |
| 48    | HG-26S                   | 3/19/12 | 15:06 | 15.86                          | 16.78                            | 44.25                           | 44.25                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     |                   |
| 49    | EW-17                    | 3/19/12 | 17:48 | 23,50                          | 23.96                            | 26.55                           | 26.55                  | NP                            | NP  | N/A 💬                      | NP                            | NP    | N/A                        | 0.0                     |                   |
| 50    | M-23BR                   | 3/19/12 | 15:07 | 14.63                          | 15.64                            | 25.94                           | 25.80                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     |                   |
| 51    | HG-6D                    | 3/19/12 | 13:11 | 43.60                          | 45.49                            | 107.82                          | 107.80                 | N/A                           | NP  | N/A                        | N/A                           | NP    | N/A                        | 0.0                     |                   |
| 52    | DRIP TRACK<br>DRAIN      | 3/20/12 | 6:01  | 13.11                          | 15.22                            | 16.36                           | 18.69                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     |                   |
| ,53   | M-16B                    | 3/19/12 | 15:09 | 13.63                          | 14.75                            | 23.34                           | 23.28                  | NP                            | NP  | N/A                        | NP                            | NP :  | N/A                        | 0.2                     |                   |
| 54    | SOUTH<br>LAGOON<br>DRAIN | 3/20/12 | 6:07  | 10.48                          | 14.50                            | 15.05                           | 17.71                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 0.0                     |                   |
| 55    | HG-4S                    | 3/19/12 | 15:12 | 13.47                          | 16.75                            | 52.57                           | 52.55                  |                               |     | N/A                        | N/A                           | NP    | N/A                        | .0.4                    |                   |
| 56    | HG-29S                   | 3/19/12 | 15:15 | 15.19                          | 15.99                            | 54.77                           | 54.78                  | NP                            | NP  | N/A                        | NP                            | NP    | N/A                        | 5.0                     |                   |

Notes:

N/A = not available ND = not determined

Print Date: 5/18/2012

NP = no product Print Time: 7:51:48AM

NM = not measured



Project Name: 1st Quarter 2012 Gainesville Sampling

Client: Beazer East, Inc.

Project Number: <u>OM-0450-12-091</u>

Location: Gainesville

| Order | Well   | Date    | Time  | Previous | Depth to   | Previous   | Total  | Previous | Depth to | LNAPL     | Previous | Depth to | DNAPL     | PID     | Notes                  |
|-------|--------|---------|-------|----------|------------|------------|--------|----------|----------|-----------|----------|----------|-----------|---------|------------------------|
|       |        |         |       | Depth to | Ground     | Total      | Depth  | Depth to | LNAPL    | Thickness | Depth to | DNAPL    | Thickness | reading |                        |
|       |        |         |       | Ground   | water (ft) | Depth (ft) | (ft)   | LNAPL    | (ft)     | (ft)      | DNAPL    | (ft)     | (ft)      | (ppm)   |                        |
|       |        |         |       |          |            |            |        | (ft)     |          |           | (ft)     |          |           |         |                        |
| 57    | HG-29D | 3/19/12 | 15:17 | 44.62    | .45.36     | 96.98      | 96.97  | NP       | NP       | N/A       | NP       | NP       | N/A       | 0.3     |                        |
| 58    | M-25B  | 3/19/12 | 15:19 | 15.06    | 16.00      | 25.30      | 25.22  | NP       | NP       | N/A       | NP       | NP       | N/A       | 8.7     |                        |
| 59    | EW-10  | 3/19/12 | 17:49 | 13.29    | .15.84     | 27.81      | 27.80  | NP       | NP       | N/A       | TRACE    | 27.80    | Trace     | 0.2     | TRACE ON TIP OF PROBE  |
| 60    | HG-16D | 3/19/12 | 13:25 | 48.42    | 50.40      | 117.49     | 117.49 | N/A      | NP       | N/A       | N/A      | 117.49   | Trace     | 6.8     | TRACE ON SIDE OF PROBE |



Project No.: <u>OM-0450-12-091</u>

#### Project Name: 1st Quarter 2012 Gainesville Sampling

Location: Gainesville

| Location<br>Well | Date    | Well Type   |       | Well Outer (                  | Casing             | ľ                         | Well Inner Casi               | ing               | Well Pad<br>Condition | Vegetation/<br>Accessibility | Potential<br>Hazard | Well Head<br>Locked & | Photo | Notes |
|------------------|---------|-------------|-------|-------------------------------|--------------------|---------------------------|-------------------------------|-------------------|-----------------------|------------------------------|---------------------|-----------------------|-------|-------|
|                  |         |             | Label | Lock                          | Condition          | Survey<br>Mark<br>Present | Cap                           | Condition         |                       |                              |                     | Secure @<br>Departure |       |       |
| ITW-12           | 3/19/12 | Stick up    | Yes   | Yes -<br>Secure on<br>Arrival | needs<br>new hinge | Yes                       | Yes -<br>Secure on<br>Arrival | good              | Good                  | Clear                        | hornets             | Yes                   | Yes   |       |
| ITW-22           | 3/19/12 | Stick up    | Yes   | Yes -<br>Secure on<br>Arrival | GOOD               | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD              | Good                  | Clear                        | NONE                | Yes                   | Yes   |       |
| FW-4             | 3/19/12 | Stick up    | Yes   | Yes -<br>Secure on<br>Arrival | GOOD               | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD              | Good                  | Clear                        | NONE                | Yes                   | Yes   |       |
| EW-2             | 3/19/12 | Stick up    | Yes   | Yes -<br>Secure on<br>Arrival | GOOD               | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD              | Good                  | Clear                        | NONE                | Yes                   | Yes   |       |
| FW-29B           | 3/19/12 | Flush Mount | Yes   | Yes -<br>Secure on<br>Arrival | good               | Yes                       | Yes -<br>Secure on<br>Arrival | good              | Good                  | Clear                        | vehicle<br>traffic  | Yes                   | Yes   |       |
| FW-29C           | 3/19/12 | Flush Mount | Yes   | Yes -<br>Secure on<br>Arrival | good               | Yes                       | Yes -<br>Secure on<br>Arrival | good              | Good                  | Clear                        | vehicle<br>traffic  | Yes                   | Yes   |       |
| M-12             | 3/19/12 | Stick up    | Yes   | Yes -<br>Secure on<br>Arrival | GOOD               | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD              | Good                  | Clear                        | NONE                | Yes                   | Yes   |       |
| EW-8             | 3/19/12 | Stick up    | Yes   | Yes -<br>Secure on<br>Arrival | GOOD               | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD              | Good                  | Clear                        | NONE                | Yes                   | Yes   |       |
| HG-5D            | 3/19/12 | Stick up    | Yes   | Yes -<br>Secure on<br>Arrival | GOOD               | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD              | Good                  | Clear                        | NONE                | Yes                   | Yes   |       |
| M-9AR            | 3/19/12 | Stick up    | Yes   |                               | good<br>condition  | Yes                       | Yes -<br>Secure on<br>Arrival | good<br>condition | Good                  | Clear                        | none                | Yes                   | Yes   |       |

Notes: N/A = not available

ND = not determined

NP = no Product



Project No.: <u>OM-0450-12-091</u>

Project Name: 1st Quarter 2012 Gainesville Sampling

Location: Gainesville

| Locatior<br>Well                         | Date            | ainesville<br>Well Type |       | Well Outer           | Casing    | )                         | Well Inner Casi  | ing       | Well Pad<br>Condition | Vegetation/<br>Accessibility | Potential<br>Hazard | Well Head<br>Locked & | Photo          | Notes                                 |
|------------------------------------------|-----------------|-------------------------|-------|----------------------|-----------|---------------------------|------------------|-----------|-----------------------|------------------------------|---------------------|-----------------------|----------------|---------------------------------------|
|                                          |                 |                         | Label | Lock                 | Condition | Survey<br>Mark<br>Present | Сар              | Condition |                       |                              |                     | Secure @<br>Departure |                |                                       |
| EW-1                                     | 3/19/12         | Stick up                | Yes   | Yes -                | GOOD      | Yes                       | Yes -            | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes            | Sec. 2                                |
| <u>μνν-ι</u>                             | UNUTZ           | Suckup                  |       | Secure on            |           |                           | Secure on        |           |                       |                              |                     |                       | ан.<br>1997 г. |                                       |
|                                          |                 |                         |       | Arrival              |           |                           | Arrival          |           |                       |                              |                     | ante e la             |                |                                       |
| HG-24S                                   | 3/19/12         | Flush Mount             | Yes   | Yes -                | GOOD      | Yes                       | Yes -            | GOOD      | Good                  | Clear                        | VEHICLE             | Yes                   | Yes            |                                       |
|                                          |                 |                         |       | Secure on            |           |                           | Secure on        |           |                       |                              | TRAFFIC             |                       |                |                                       |
|                                          |                 |                         |       | Arrival              |           |                           | Arrival          |           |                       | 010-7                        |                     | Yes                   | Yes            |                                       |
| HG-27S                                   | 3/19/12         | Flush Mount             | Yes   | Yes -                | good      | Yes                       | Yes -            | good      | Good                  | Clear                        | vehicle<br>traffic  | 165                   | 165            |                                       |
|                                          |                 | en en sint sint se serv |       | Secure on            |           |                           | Secure on        |           |                       |                              | uamo                |                       |                |                                       |
|                                          |                 |                         |       | Arrival              | 0000      |                           | Arrival<br>Yes - | GOOD      | Good                  | Clear                        | VEHICLE             | Yes                   | Yes            |                                       |
| HG-25D                                   | 3/19/12         | Flush Mount             | Yes   | Yes -                | GOOD      | Yes                       | Secure on        |           | 6000                  | - Oldar                      | TRAFFIC             |                       |                |                                       |
|                                          |                 |                         |       | Secure on<br>Arrival |           |                           | Arrival          |           |                       |                              | 1.1.1.1.1.1         |                       |                |                                       |
| 110,000                                  | 3/19/12         |                         | Yes   |                      | good      | Yes                       | Yes -            | good      | Cracked               | Clear                        | vehicle             | Yes                   | Yes            |                                       |
| HG-22D                                   | 3/19/12         | Flush Mount             | 163   | Secure on            | good      |                           | Secure on        |           |                       |                              | traffic             |                       |                |                                       |
| an a | en ditter<br>av | and states              |       | Arrival              |           |                           | Arrival          |           |                       | and a second state of the    |                     |                       |                |                                       |
| HG-23D                                   | 3/19/12         | Flush Mount             | Yes   |                      | GOOD      | Yes                       | Yes -            | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes            |                                       |
| 110-200                                  | 0,10,12         |                         |       | Secure on            |           |                           | Secure on        |           |                       |                              |                     |                       |                |                                       |
|                                          |                 |                         |       | Arrival              |           |                           | Arrival          |           |                       |                              |                     |                       |                |                                       |
| HG-27D                                   | 3/19/12         | Flush Mount             | Yes   | Yes -                | GOOD      | Yes                       | Yes -            | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes            |                                       |
|                                          |                 |                         |       | Secure on            |           |                           | Secure on        |           |                       |                              |                     |                       |                |                                       |
|                                          | n se data       |                         |       | Arrival              |           |                           | Arrival          |           |                       | 01                           | NONE                | Yes                   | Yes            | · · · · · · · · · · · · · · · · · · · |
| HG-26D                                   | 3/19/12         | Flush Mount             | Yes   |                      | GOOD      | Yes                       | Yes -            | GOOD      | Good                  | Clear                        | NONE                | 165                   | 165            |                                       |
|                                          |                 |                         |       | Secure on            |           |                           | Secure on        |           |                       |                              |                     |                       |                |                                       |
|                                          |                 |                         |       | Arrival              | GOOD      | Yes                       | Arrival<br>Yes - | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes            |                                       |
| EW-9                                     | 3/19/12         | Stick up                | Yes   | Yes -<br>Secure on   | 1         | Tes                       | Secure on        |           |                       |                              |                     |                       |                |                                       |
| ant di para                              |                 | i stand                 |       | Arrival              |           |                           | Arrival          |           |                       |                              |                     |                       |                |                                       |
| EW-6                                     | 2/10/12         | Ctick up                | Yes   |                      | GOOD      | Yes                       | Yes -            | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes            |                                       |
| EVV-0                                    | 3/19/1Z         | Stick up                | 105   | Secure on            |           |                           | Secure on        |           |                       |                              |                     |                       |                |                                       |
|                                          |                 |                         |       | Arrival              |           |                           | Arrival          |           |                       |                              |                     |                       |                |                                       |

Notes: N/A = not available

NO = not determined

NP = no Product



180) 1900

Project No.: \_\_\_\_OM-0450-12-091

Project Name: 1st Quarter 2012 Gainesville Sampling

Location Gainesville

| Well     | Date                                      | Well Type         |       | Well Outer (                  | Casing                                                                                                                               |                           | Vell Inner Cas                | ing       | Well Pad<br>Condition | Vegetation/<br>Accessibility | Potential<br>Hazard         | Well Head<br>Locked & | Photo         | Notes                                                                                                            |
|----------|-------------------------------------------|-------------------|-------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|-----------|-----------------------|------------------------------|-----------------------------|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------|
|          |                                           |                   | Label | Lock                          | Condition                                                                                                                            | Survey<br>Mark<br>Present | Сар                           | Condition |                       |                              |                             | Secure @<br>Departure |               |                                                                                                                  |
| HG-21S   | 3/19/12                                   | Flush Mount       | Yes   | Yes -                         | GOOD                                                                                                                                 | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                        | Yes                   | Yes           | NEEDS BOLTS                                                                                                      |
|          | ari<br>1914 - Santa<br>1914 - Santa Santa |                   |       | Secure on<br>Arrival          |                                                                                                                                      |                           | Secure on<br>Arrival          |           |                       |                              |                             |                       |               |                                                                                                                  |
| EW-5     | 3/19/12                                   | Stick up          | Yes   | Yes -<br>Secure on<br>Arrival | GOOD                                                                                                                                 | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Clear                        | NÓNÉ                        | Yes                   | Yes           |                                                                                                                  |
| HG-20D   | 3/19/12                                   | Flush Mount       | Yes   | Yes -                         | GOOD                                                                                                                                 | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | VEHICLE                     | Yes                   | Yes           | and the second |
| an an th |                                           | entre de entre de |       | Secure on<br>Arrival          |                                                                                                                                      |                           | Secure on<br>Arrival          |           |                       |                              | TRAFFIC                     |                       |               |                                                                                                                  |
| FW-31BE  | 3/19/12                                   | Stick up          | Yes   | Yes -<br>Secure on<br>Arrival | GOOD                                                                                                                                 | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Clear                        | NONE                        | Yes                   | Yes           |                                                                                                                  |
| M-16A    | 3/19/12                                   | Stick up          | Yes   | Yes -<br>Secure on<br>Arrival | good                                                                                                                                 | Yes                       | Yes -<br>Secure on<br>Arrival | good      | Good                  | Clear                        | none                        | Yes                   | Yes           |                                                                                                                  |
| M-32B    | 3/19/12                                   | Stick up          | Yes   | Yes -<br>Secure on<br>Arrival | GOOD                                                                                                                                 | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Clear                        | NONE                        | Yes                   | Yes           |                                                                                                                  |
| HG-6S    | 3/19/12                                   | Stick up          | Yes   | Yes -                         | good                                                                                                                                 | Yes                       | Yes -                         | good      | Good                  | Clear                        | none                        | Yes                   | Yes           | a fine a data                                                                                                    |
|          | alara arasin<br>Dariya arasin             |                   |       | Secure on<br>Arrival          |                                                                                                                                      |                           | Secure on<br>Arrival          |           |                       |                              |                             |                       |               |                                                                                                                  |
| M-9BR    | 3/19/12                                   | Stick up          | Yes   | Yes -<br>Secure on<br>Arrival | GOOD                                                                                                                                 | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Clear                        | NONE                        | Yes                   | Yes           |                                                                                                                  |
| FW-21B   | 3/19/12                                   | Pumping           | Yes   | Yes -                         | GOOD                                                                                                                                 | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                        | Yes                   | Yes           |                                                                                                                  |
|          |                                           | Well              |       | Secure on<br>Arrival          | l data setera<br>Si setera setera<br>Si setera s |                           | Secure on<br>Arrival          |           |                       |                              | an an Ala<br>Tarihan an Ala |                       | 1 - 1 - 1<br> |                                                                                                                  |
| EW-11    | 3/19/12                                   | Stick up          | Yes   | Yes -<br>Secure on<br>Arrival | GOOD                                                                                                                                 | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Clear                        | NONE                        | Yes                   | Yes           |                                                                                                                  |

Notes:

N/A = not available

NP = no Product

ND = not determined



Project No.: <u>OM-0450-12-091</u>

Project Name: 1st Quarter 2012 Gainesville Sampling

Location: Gainesville

| Location<br>Well | Date    | Well Type       |       | Well Outer                    | Casing                                                   |                           | Well Inner Cas                | ing       | Well Pad<br>Condition | Vegetation/<br>Accessibility | Potential<br>Hazard | Well Head<br>Locked & | Photo | Notes                                                                                                            |
|------------------|---------|-----------------|-------|-------------------------------|----------------------------------------------------------|---------------------------|-------------------------------|-----------|-----------------------|------------------------------|---------------------|-----------------------|-------|------------------------------------------------------------------------------------------------------------------|
|                  |         |                 | Label | Lock                          | Condition                                                | Survey<br>Mark<br>Present | Сар                           | Condition |                       |                              |                     | Secure @<br>Departure |       |                                                                                                                  |
| HG-20S           | 3/19/12 | Flush Mount     | Yes   | Yes -                         | GOOD                                                     | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes   |                                                                                                                  |
|                  |         |                 |       | Secure on<br>Arrival          | andra<br>Santa an santa fi<br>Santa an santa fi<br>Santa |                           | Secure on<br>Arrival          |           |                       |                              |                     |                       |       |                                                                                                                  |
| HG-4D            | 3/19/12 | Stick up        | Yes   | Yes -<br>Secure on<br>Arrival | good                                                     | Yes                       | Yes -<br>Secure on<br>Arrival | good      | Good                  | Clear                        | noné                | Yes                   | Yes   |                                                                                                                  |
| EW-3             | 3/19/12 | Stick up        | Yes   | Yes -<br>Secure on            | GOOD                                                     | Yes                       | Yes -<br>Secure on            | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes   |                                                                                                                  |
|                  |         |                 | 11 A. | Arrival                       |                                                          |                           | Arrival                       |           |                       |                              |                     |                       |       |                                                                                                                  |
| HG-2D            | 3/19/12 | Stick up        | Yes   | Yes -<br>Secure on<br>Arrival | good                                                     | Yes                       | Yes -<br>Secure on<br>Arrival | good      | Good                  | Clear                        | none                | Yes                   | Yes   |                                                                                                                  |
| ∴M-17            | 3/19/12 | Stick up        | Yes   | Yes -                         | GOOD                                                     | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes   |                                                                                                                  |
|                  |         |                 |       | Secure on<br>Arrival          |                                                          |                           | Secure on<br>Arrival          |           |                       |                              |                     |                       |       |                                                                                                                  |
| EW-16            | 3/19/12 | Stick up        | Yes   | Yes -<br>Secure on<br>Arrival | GOOD                                                     | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes   |                                                                                                                  |
| M-33B            | 3/19/12 | Stick up        | Yes   | Yes -                         | GOOD                                                     | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes   |                                                                                                                  |
|                  |         |                 |       | Secure on<br>Arrival          |                                                          |                           | Secure on<br>Arrival          |           |                       |                              |                     |                       |       |                                                                                                                  |
| HG-12D           | 3/19/12 | Stick up        | Yes   | Yes -<br>Secure on<br>Arrival | good                                                     | Yes                       | Yes -<br>Secure on<br>Arrival | good      | Good                  | Clear                        | fire ants           | Yes                   | Yes   |                                                                                                                  |
| FW-6             | 3/19/12 | Pumping         | Yes   | Yes -                         | GOOD                                                     | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes   | and the second |
|                  |         | Well            |       | Secure on<br>Arrival          |                                                          |                           | Secure on<br>Arrival          |           |                       |                              |                     |                       |       |                                                                                                                  |
| 1 LAGOON         | 3/19/12 | Pumping<br>Well | Yes   |                               | GOOD                                                     | Yes                       | Not<br>Applicable             | GOOD      | Good                  | Clear                        | NONE                | Yes                   | Yes   |                                                                                                                  |

Notes:



Project No.: \_OM-0450-12-091

Project Name: 1st Quarter 2012 Gainesville Sampling

Location: Gainesville

| Location<br>Well | Date    | Well Type       |       | Well Outer (                  | Casing    | ``                        | Weil Inner Cas                | ing       | Well Pad<br>Condition | Vegetation/<br>Accessibility | Potential<br>Hazard | Locked &                                 | Photo | Notes      |
|------------------|---------|-----------------|-------|-------------------------------|-----------|---------------------------|-------------------------------|-----------|-----------------------|------------------------------|---------------------|------------------------------------------|-------|------------|
|                  |         |                 | Labei | Lock                          | Condition | Survey<br>Mark<br>Present | Сар                           | Condition |                       |                              |                     | Secure @<br>Departure                    |       |            |
| M-3BR            | 3/19/12 | Stick up        | Yes   | Yes -                         | GOOD      | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                | Yes                                      | Yes   |            |
| in obit          |         |                 |       | Secure on                     |           |                           | Secure on                     |           |                       |                              |                     | an a |       |            |
| 1.1.1.1          |         |                 |       | Arrival                       | 0000      |                           | Arrival                       | C00D      | Good                  | Clear                        | NONE                | Yes                                      | Yes   |            |
| EW-15            | 3/19/12 | Stick up        | Yes   | Yes -<br>Secure on<br>Arrival | GOOD      | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Cicai                        | NONE                | 103                                      | 100   |            |
| EW-14            | 3/19/12 | Stick up        | Yes   | Yes -                         | GOOD      | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                | Yes                                      | Yes   |            |
| EVV-1-4          | 5/15/12 |                 | 105   | Secure on<br>Arrival          |           |                           | Secure on<br>Arrival          |           |                       |                              |                     |                                          |       |            |
| EW-13            | 3/19/12 | Stick up        | Yes   | Yes -<br>Secure on<br>Arrival | GOOD      | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Clear                        | NONE                | Yes                                      | Yes   |            |
| M-20B            | 3/19/12 | Stick up        | Yes   | Yes -                         | GOOD      | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                | Yes                                      | Yes   | Sector St. |
|                  |         |                 |       | Secure on<br>Arrival          |           |                           | Secure on<br>Arrival          |           |                       |                              |                     |                                          |       |            |
| HG-21D           | 3/19/12 | Flush Mount     | Yes   | Yes -<br>Secure on<br>Arrival | GOOD      | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Requires<br>Attention | Clear                        | VEHICLE<br>TRAFFIC  | Yes                                      | Yes   |            |
| ESS AREA         | 3/20/12 | Pumping<br>Well | Yes   | Not<br>Applicable             | GOOD      | Yes                       | Not<br>Applicable             | GOOD      | Good                  | Clear                        | NONE                | Yes                                      | Yes   |            |
| HG-26S           | 3/19/12 | Flush Mount     | Yes   | Yes -<br>Secure on<br>Arrival | GOOD      | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Clear                        | NONE                | Yes                                      | Yes   |            |
| EW-17            | 3/19/12 | Stick up        | Yes   | Yes -                         | GOOD      | Yes                       | Yes -                         | GOOD      | Good                  | Clear                        | NONE                | Yes                                      | Yes   |            |
|                  |         |                 |       | Secure on<br>Arrival          |           |                           | Secure on<br>Arrival          |           |                       |                              |                     |                                          |       |            |
| M-23BR           | 3/19/12 | Stick up        | Yes   | Yes -<br>Secure on<br>Arrival | GOOD      | Yes                       | Yes -<br>Secure on<br>Arrival | GOOD      | Good                  | Clear                        | NONE                | Yes                                      | Yes   |            |

Notes: N/A = not available

ND = not determined

NP = no Product



İа.,

Project No.: <u>OM-0450-12-091</u>

Project Name: 1st Quarter 2012 Gainesville Sampling

Location: Gainesville

| Location                                                                                                        | <u>ı: G</u> | ainesville  | ,     |                  |                        |                           |                      |              |                                |                              |                                         |                       |          | Notes                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------|-------------|-------------|-------|------------------|------------------------|---------------------------|----------------------|--------------|--------------------------------|------------------------------|-----------------------------------------|-----------------------|----------|----------------------------------------------------------------------------------------------------------------|
| Well                                                                                                            | Date        | Well Type   |       | Well Outer       | Casing                 | \                         | Vell Inner Cas       | ing          | Well Pad<br>Condition          | Vegetation/<br>Accessibility | Potential<br>Hazard                     | Well Head<br>Locked & | Photo    | Holes                                                                                                          |
|                                                                                                                 |             |             | Label | Lock             | Condition              | Survey<br>Mark<br>Present | Сар                  | Condition    |                                |                              |                                         | Secure @<br>Departure |          |                                                                                                                |
| HG-6D                                                                                                           | 3/19/12     | Stick up    | Yes   | Yes -            | GOOD                   | Yes                       | Yes -                | GOOD         | Good                           | Clear                        | NONE                                    | Yes                   | Yes      | ana ang ang ang ang ang ang ang ang ang                                                                        |
|                                                                                                                 |             |             | 2.4.4 | Secure on        | an<br>Taona ang katala |                           | Secure on            |              |                                |                              |                                         |                       |          |                                                                                                                |
|                                                                                                                 |             |             |       | Arrival          |                        |                           | Arrival              | i dang Karad |                                | kakuwa na p                  |                                         |                       |          |                                                                                                                |
| ' TRACK DI                                                                                                      | 3/20/12     | Pumping     | Yes   | Not              | good                   | Yes                       | Not                  | good         | Good                           | Clear                        | none                                    | Yes                   | Yes      |                                                                                                                |
|                                                                                                                 |             | Well        |       | Applicable       |                        |                           | Applicable           |              |                                |                              |                                         |                       |          |                                                                                                                |
| M-16B                                                                                                           | 3/19/12     | Stick up    | Yes   | Yes -            | GOOD                   | Yes                       | Yes -                | GOOD         | Good                           | Clear                        | NONE                                    | Yes                   | Yes      |                                                                                                                |
|                                                                                                                 |             |             | 1.11  | Secure on        |                        |                           | Secure on            |              |                                |                              | and |                       |          |                                                                                                                |
| 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |             |             |       | Arrival          |                        |                           | Arrival              |              |                                | <u> </u>                     |                                         | Yes                   | Yes      |                                                                                                                |
| 1 LAGOON                                                                                                        | 3/20/12     | Pumping     | Yes   | Not              | GOOD                   | Yes                       | Not                  | GOOD         | Good                           | Clear                        | NONE                                    | res                   | res      |                                                                                                                |
|                                                                                                                 |             | Well        |       | Applicable       |                        | ļ                         | Applicable           |              |                                | 0                            | NONE                                    |                       | Vaa      |                                                                                                                |
| HG-4S                                                                                                           | 3/19/12     | Stick up    | Yes   | Yes -            | GOOD                   | Yes                       | Yes -                | GOOD         | Good                           | Clear                        | NONE                                    | Yes                   | Yes      | and the second second                                                                                          |
|                                                                                                                 |             |             |       | Secure on        |                        |                           | Secure on            |              |                                |                              |                                         |                       |          | and a second |
|                                                                                                                 | · · ·       |             |       | Arrival          | 0000                   |                           | Arrival              |              | Good                           | Clear                        | NONE                                    | Yes                   | Yes      |                                                                                                                |
| HG-29S                                                                                                          | 3/19/12     | Flush Mount | Yes   | Yes -            | GOOD                   | Yes                       | Yes -                | GOOD         | Guu                            | Cieai                        |                                         | 163                   | 163      |                                                                                                                |
|                                                                                                                 |             |             |       | Secure on        |                        |                           | Secure on<br>Arrival |              |                                |                              |                                         |                       |          |                                                                                                                |
|                                                                                                                 | 0/10/10     |             | Yes   | Arrival<br>Yes - | GOOD                   | Yes                       | Yes -                | GOOD         | Good                           | Clear                        | NONE                                    | Yes                   | Yes      |                                                                                                                |
| HG-29D                                                                                                          | 3/19/12     | Flush Mount | res   | Secure on        | 0000                   | 165                       | Secure on            |              |                                |                              |                                         |                       |          |                                                                                                                |
|                                                                                                                 | 1.11        |             |       | Arrival          | a tha na gtí           |                           | Arrival              |              |                                |                              |                                         |                       |          |                                                                                                                |
| M-25B                                                                                                           | 3/19/12     | Stick up    | Yes   | Yes -            | GOOD                   | Yes                       | Yes -                | GOOD         | Good                           | Clear                        | NONE                                    | Yes                   | Yes      |                                                                                                                |
| 141-2.50                                                                                                        |             |             |       | Secure on        |                        |                           | Secure on            |              |                                |                              |                                         |                       |          |                                                                                                                |
|                                                                                                                 |             |             |       | Arrival          |                        |                           | Arrival              |              |                                |                              |                                         |                       |          |                                                                                                                |
| EW-10                                                                                                           | 3/19/12     | Stick up    | Yes   | Yes -            | GOOD                   | Yes                       | Yes -                | GOOD         | Good                           | Clear                        | NONE                                    | Yes                   | Yes      | all and the second second<br>All and the second second second second                                           |
| and the second second                                                                                           |             | ·           |       | Secure on        |                        |                           | Secure on            |              |                                |                              |                                         |                       |          |                                                                                                                |
|                                                                                                                 |             |             |       | Arrival          |                        |                           | Arrival              | 100000       | ngen veren også verge het vers |                              |                                         |                       |          |                                                                                                                |
| HG-16D                                                                                                          | 3/19/12     | Stick up    | Yes   | Yes -            | GOOD                   | Yes                       | Yes -                | GOOD         | Good                           | Clear                        | NONE                                    | Yes                   | Yes      | 1                                                                                                              |
|                                                                                                                 |             |             | 1     | Secure on        |                        |                           | Secure on            |              |                                |                              |                                         |                       |          |                                                                                                                |
|                                                                                                                 |             |             |       | Arrival          | <u> </u>               |                           | Arrival              |              | I                              |                              | 1                                       | 1                     | <u>}</u> |                                                                                                                |



#### LOW-FLOW GROUNDWATER SAMPLE COLLECTION RECORD



| Cliant.                 | R                                     | Beazer East, Inc.<br><u>1st Quarter 2012 Gainesville S</u><br>r: <u>OM-0450-12-091</u><br>Gainesville |                                    |               |                                |          |              |                                       |                    | ): <u>FW-4</u> |           |                                                                                                |  |  |  |
|-------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|---------------|--------------------------------|----------|--------------|---------------------------------------|--------------------|----------------|-----------|------------------------------------------------------------------------------------------------|--|--|--|
| Client:<br>Project Nai  |                                       |                                                                                                       |                                    | e Sampling    |                                |          |              |                                       |                    |                | /2012 100 | ek (ft)<br>(ft)<br>(ft)<br>(ft)<br>(ft)<br><br>Dedica<br><br>Notes                             |  |  |  |
| •                       |                                       |                                                                                                       |                                    | <u> </u>      |                                |          | -            |                                       | Technician         |                |           | IP (ft)<br>IP (ft)<br>IP (ft)<br>I/A (ft)<br>I/A (ft)<br>I/A (ft)<br>Dedica<br>Dedica<br>Notes |  |  |  |
| Project Nu<br>Location: |                                       |                                                                                                       |                                    |               |                                |          | Weatho       | er Condition                          | s: <u>80 degre</u> | es sunr        | <u>IV</u> |                                                                                                |  |  |  |
| -                       | LEVEL DAT                             |                                                                                                       |                                    |               |                                |          | · -          | d. 4 . T                              |                    |                | NP        | (ਜ)                                                                                            |  |  |  |
| a.) Deptl               | h To Groundy                          | water:                                                                                                |                                    | (ft)          |                                |          |              | th to LNAPL                           |                    |                | NP<br>NP  |                                                                                                |  |  |  |
| b.) Total               | Well Depth:                           | . <u> </u>                                                                                            |                                    | (fl)          |                                |          | , i          | th to DNAPL                           |                    |                |           |                                                                                                |  |  |  |
| c.) Lengi               | th of Water C                         | Column:                                                                                               | 24.32                              | (ft)          |                                |          | 2,           | APL Thicknes                          |                    |                | N/A       |                                                                                                |  |  |  |
| d.) Well                | Volume:                               | _                                                                                                     | 4.0 (                              | (gal)         |                                |          | h.) DN.      | APL Thickne                           | :SS:               |                | N/A       | (ft)                                                                                           |  |  |  |
|                         | PURGE DA                              |                                                                                                       | Vodia-turi T                       | ddor Du-      |                                |          | סיוויק       | ge Start: <u>03/2</u>                 | <u>20/201</u> 2 10 | 22             |           |                                                                                                |  |  |  |
| Purge M                 |                                       |                                                                                                       | Dedicated Bla                      | uder Pump     |                                |          |              | ge End: <u>03/2</u>                   |                    |                |           |                                                                                                |  |  |  |
|                         | tivity Unit:                          | ms/cm                                                                                                 | n                                  |               |                                | <u> </u> | Pur          | <sub>е</sub> стна, <u>001</u>         |                    | <u></u>        |           |                                                                                                |  |  |  |
| Total Vo                | olume Remo                            | wed (gals):                                                                                           |                                    |               | 1.90                           |          | ¥.           |                                       |                    |                |           |                                                                                                |  |  |  |
| FieldEqui               | ipment                                |                                                                                                       |                                    |               | Calibrated                     | 1        | Sampling E   |                                       |                    |                |           | 1                                                                                              |  |  |  |
| LaMotte 2               | 2020e Turbi                           | dity Meter M                                                                                          | E10326                             |               | Yes                            |          | FTS001682    | 2                                     |                    |                |           | <u>  N</u>                                                                                     |  |  |  |
| FTS00127                |                                       |                                                                                                       |                                    |               | Yes                            |          | L            |                                       |                    |                |           |                                                                                                |  |  |  |
| Water Lev               | vel Meter 20                          | 0247                                                                                                  |                                    |               | No                             |          | ]            |                                       |                    |                |           |                                                                                                |  |  |  |
| PRE-PUR                 | GE VALUE                              | s                                                                                                     |                                    |               |                                |          | I            | · · · · · · · · · · · · · · · · · · · | T                  |                | T         |                                                                                                |  |  |  |
| Reading<br>#            | Time                                  | Purge<br>Rate                                                                                         | Temp<br>(degree)                   | pН            | Specific<br>Conductivit        |          | Eh/ORP<br>mV | Dissolve<br>O2 (mg/l)                 | Turbidity<br>(NTU) | Water<br>Level | 1         | Notes                                                                                          |  |  |  |
|                         |                                       | ml/minute                                                                                             | Constant                           | +/- 0.2       | +/- 3%                         |          | +/- 10 mV    | +/- 10 %                              | < 10 NTU           | ft             |           |                                                                                                |  |  |  |
| Initial                 | 1022                                  | 300                                                                                                   | 22.11                              | 8.38          | 0.390                          |          | -18.7        | 1.58                                  | 150.00             | 136.70         | STABILI   | ZING FLOV                                                                                      |  |  |  |
| PURGE V                 | 'ALUES                                |                                                                                                       |                                    |               |                                | -        |              |                                       |                    |                |           |                                                                                                |  |  |  |
| Reading<br>#            | Time                                  | Purge<br>Rate                                                                                         | Temp<br>(degree)                   | рН            | Specific<br>Conductivit        |          | Eh/ORP<br>mV | Dissolve<br>O2 (mg/l)                 | Turbidity<br>(NTU) | Water<br>Level |           | Notes                                                                                          |  |  |  |
|                         |                                       | ml/minute                                                                                             | Constant                           | +/- 0.2       | +/- 3%                         | ,        | +/- 10 mV    | +/- 10 %                              | < 10 NTU           | ft             |           |                                                                                                |  |  |  |
| 1                       | 1027                                  | 300                                                                                                   | 22.28                              | 8.30          | 0.387                          |          | -143.4       | 0.82                                  | 31.09              |                | NONE      |                                                                                                |  |  |  |
| 2                       | 1032                                  | 300                                                                                                   | 22.27                              | 8.22          | 0.384                          |          | -177.4       | 0.61                                  | 9.87               |                | NONE      |                                                                                                |  |  |  |
| 3                       | 1037                                  | 300                                                                                                   | 22,27                              | 8.23          | 0.385                          |          | -179.0       | 0.60                                  | 9.85               | 1              | NONE      |                                                                                                |  |  |  |
| 4                       | 1042                                  | 300                                                                                                   | 22.26                              | 8.24          | 0.381                          |          | -183.2       | 0.60                                  | 9.88               |                |           |                                                                                                |  |  |  |
| 5                       | 1047                                  | 300                                                                                                   | 22.27                              | 8.24          | 0.385                          |          | -185.5       | 0.58                                  | 9.88               | 1136.75        | INUNE     |                                                                                                |  |  |  |
| SAMPLE                  | COLLECT                               | ION INFORM                                                                                            |                                    |               |                                |          |              |                                       | 844                |                |           |                                                                                                |  |  |  |
|                         | Parameter                             | <b>F</b> -                                                                                            | Methor<br>-846 8260B               | d             | Quantity                       | 10       | Bottle T     | уре                                   | Preserva<br>HCL    |                |           |                                                                                                |  |  |  |
| BTEX A                  | SW-                                   |                                                                                                       |                                    |               | ml glass vial<br>ter amber bol | ttle     | HCL<br>None  |                                       |                    |                |           |                                                                                                |  |  |  |
| SVOA_A                  | SIM                                   |                                                                                                       |                                    | iter amber bo |                                | None     |              |                                       |                    |                |           |                                                                                                |  |  |  |
| <u>/</u>                |                                       | PLE IDENTIF                                                                                           | -846 8270C S                       |               |                                |          |              |                                       |                    |                |           |                                                                                                |  |  |  |
| Normal :                |                                       | AIN-FW-4-032                                                                                          |                                    |               |                                |          |              |                                       |                    |                |           |                                                                                                |  |  |  |
|                         | · · · · · · · · · · · · · · · · · · · |                                                                                                       | Sample Start time: 03/20/2012 1048 |               |                                |          |              |                                       |                    |                |           |                                                                                                |  |  |  |
|                         |                                       |                                                                                                       |                                    |               |                                |          | Sample I     | Finish time:                          | 03/20/20           | 12 1057        |           |                                                                                                |  |  |  |
|                         |                                       |                                                                                                       |                                    |               | <del></del>                    |          |              |                                       |                    |                |           |                                                                                                |  |  |  |
| Comm                    | nents: no                             | ne                                                                                                    |                                    |               |                                |          |              |                                       |                    |                |           |                                                                                                |  |  |  |



#### WELL No.:

LOW-FLOW GROUNDWATER SAMPLE COLLECTION RECORD



| Client:<br>Project Name:<br>Project Number:<br>Location:                                                                                                            | Beazer East, Inc.<br>1st Quarter 2012 Gainesville Sampling<br>OM-0450-12-091<br>Gainesville                                           | L          | Well ID: <u>M-16A</u><br>Date: <u>03/20/2012 1100</u><br>Technician: <u>Greg Bzorek</u><br>Weather Conditions: <u>Sunny 80</u> |  |                              |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|--|------------------------------|--|--|--|
| WATER LEVEL I<br>a.) Depth To Gro<br>h.) Total Weil De<br>c.) Length of Wa<br>d.) Well Volume:<br>WATER PURGI<br>Purge Method:<br>Conductivity Ur<br>Total Volume R | undwater:0 (ft)<br>pth:15.44 (ft)<br>ter Column:24 (ft)<br>0.04 (gal)<br>E DATA<br><u>Non-Dectrationale Pump</u><br>sit: <u>ms/cm</u> | 0.00       | e.) Depth to LNAPL:                                                                                                            |  | (ft)<br>(ft)<br>(ft)<br>(ft) |  |  |  |
| FieldEquipment                                                                                                                                                      |                                                                                                                                       | Calibrated | Sampling Equipment                                                                                                             |  | Dedicated                    |  |  |  |
|                                                                                                                                                                     | NEC.                                                                                                                                  |            |                                                                                                                                |  |                              |  |  |  |

| Reading<br># | <u>GE VALUE</u><br>Time | Purge<br>Rate | Temp<br>(degree) | pН      | Specific<br>Conductivity | Eh/ORP<br>mV | Dissolve<br>O2 (mg/l) | Turbidity<br>(NTU) | Water<br>Levei | Notes |
|--------------|-------------------------|---------------|------------------|---------|--------------------------|--------------|-----------------------|--------------------|----------------|-------|
|              |                         | ml/minute     | Constant         | +/- 0.2 | +/- 3%                   | +/- 10 mV    | +/- 10 %              | < 10 NTU           |                |       |
| Initial      | 0                       | 0.00          | 0.00             | 0.00    | 0.000                    | 0.0          | 0.00                  | 0.00               | 0.00           | dry   |

#### PURGE VALUES

| I Choo       |      |               |                  |         |                          |              |                       |                    |                |       |
|--------------|------|---------------|------------------|---------|--------------------------|--------------|-----------------------|--------------------|----------------|-------|
| Reading<br># | Time | Purge<br>Rate | Temp<br>(degree) | pН      | Specific<br>Conductivity | Eh/ORP<br>mV | Dissolve<br>O2 (mg/l) | Turbidity<br>(NTU) | Water<br>Level | Notes |
|              |      | ml/minute     | Constant         | +/- 0.2 | +/- 3%                   | +/- 10 mV    | +/- 10 %              | < 10 NTU           | ft             |       |
|              |      |               |                  |         |                          |              |                       |                    |                |       |

#### SAMPLE COLLECTION INFORMATION

| Parameter       | Method           | Quantity | Bottle Type           | Preservative |
|-----------------|------------------|----------|-----------------------|--------------|
| METALS AQ DISS  | SW-846 6020/6010 | 1        | 125 ml plastic bottle | HNO3         |
| METALS AQ TOTAL | SW-846 6020/6010 | 1        | 125 ml plastic bottle | HNO3         |
| BTEX AQ         | SW-846 8260B     | 3        | 40 ml glass vial      | HCL          |
| SVOA AQ         | SW-846 8270C     | 1        | 1 liter amber bottle  | None         |
| SVOA AQ         | SW-846 8270C SIM | 1        | 1 liter amber bottle  | None         |

SAMPLE IDENTIFICATION(S)

Sample Start time: ······

Sample Finish time:

Comments:

well dry no sample collected



#### THREE VOLUME GROUNDWATER SAMPLE COLLECTION RECORD

# WELL No.: <u>FW-21B</u>

| Client:                  | Beazer Ea      | ast, Inc.  |                  |                                   |                            | Well ID:                                 | FW-21B                        |             |      |
|--------------------------|----------------|------------|------------------|-----------------------------------|----------------------------|------------------------------------------|-------------------------------|-------------|------|
| Project Name:            | 4.4.0          |            | inesville Sampli | ing                               |                            | Date:                                    | 03/19/2012 1350               |             |      |
| 5                        |                |            |                  |                                   |                            | Collector:                               | Jesse Marczak                 |             |      |
| Project Number Location: | Gainesvi       |            |                  |                                   | Weather                    |                                          | iny 80                        |             |      |
| Location.                | <u> </u>       |            |                  | = = = = = = = = = = = = = = = = = |                            |                                          |                               |             |      |
| 1. WATER L               | EVEL DATA      |            |                  |                                   |                            | ,, 11 0.00000000000000000000000000000000 |                               |             |      |
| a.) Total Ca             | sing Length:   | <u> </u>   | I/A(ft)          |                                   | b.) Well Casing            | g Type: <u>steel</u>                     |                               | <del></del> |      |
| c.) Depth to             | o Water:       | N          | I/A(ft)          |                                   | d.) Casing Dia             | meter: <u>4</u>                          | (in)                          |             |      |
| -                        | of Water Colum | in: N      | I/A (ft)         |                                   |                            |                                          |                               |             |      |
| f.) Well Vo              |                |            | I/A (gal)        |                                   |                            |                                          |                               |             |      |
|                          | PURGE DATA     |            | (847)            |                                   | N                          | Vall                                     | Total Required                | r           |      |
| 2. WATER<br>Purge Me     | _              |            | trifugal Pump    |                                   | Number of V<br>Volume to R | <b>b</b> 1 f.                            |                               | N 1 / A     | (gal |
| Fuige Me                 | uloa. <u></u>  |            |                  |                                   |                            |                                          | Tuige (oraline)               |             |      |
| Field Test               | ing Equipmen   | +          | Calil            | orated                            | SamplingE                  | quipment                                 |                               | Dedicated   |      |
|                          | 020e 0397-43   |            |                  | Yes                               | Dedicated                  | well pump                                |                               | Yes         |      |
|                          | 0B100136       |            |                  | Yes                               |                            |                                          |                               |             |      |
|                          |                |            |                  |                                   | _1                         |                                          |                               |             |      |
| PURGE VAL                | UES            |            |                  |                                   |                            |                                          |                               |             |      |
| Reading #                | Temp           | pН         | Spec. Cond.      | Turbidity                         | Notes                      |                                          |                               |             |      |
|                          | (degree C)     | (s.u)      | (ms/cm)          | (NTU)                             |                            |                                          |                               |             |      |
|                          |                |            |                  |                                   |                            |                                          |                               |             |      |
| Initial                  | 24.89          | 7.61       | 0.526            | 1.58                              |                            |                                          |                               |             |      |
| 1 (5.0)                  | 24.91          | 7.68       | 0.529            | 1.36                              | Direct fill from           | spigot                                   |                               |             |      |
| 3. SAMPLE                | COLLECTION     | N INFORM   | ATION            |                                   |                            |                                          |                               |             |      |
|                          |                |            |                  |                                   | Sample                     |                                          |                               | 1           |      |
| Method                   |                |            |                  |                                   | Bottle                     |                                          |                               |             |      |
| Analytic G               | Group A        | nalytic Me | thod             |                                   | QTY                        | BottleType                               | Preservative                  |             |      |
| METALS_                  | AQ_DISS S      | W-846 602  | 20/6010          |                                   | 1                          | 125 ml plastic b                         |                               |             |      |
| METALS_                  | AQ_TOTAL S     |            |                  |                                   | 1                          | 125 ml plastic b                         |                               | •           |      |
| BTEX_AQ                  |                | SW-846 826 |                  |                                   | 3                          | 40 ml glass vial                         |                               |             |      |
| SVOA AC                  |                | W-846 827  |                  |                                   | 1                          | 1 liter amber bo<br>1 liter amber bo     |                               | -           |      |
| SVOA_AC                  |                | SW-846 827 |                  |                                   |                            |                                          |                               | -1          |      |
|                          | SAMPLE I       |            |                  |                                   |                            |                                          |                               |             |      |
|                          | nple :GAIN-F   |            |                  |                                   |                            | Somul                                    | - Stort time: 02/10/20        | 10 1400     |      |
|                          | Jale .OAIN-IN- | -337-00131 | L <u>C</u>       |                                   |                            | -                                        | e Start time: <u>03/19/20</u> |             |      |
|                          |                |            |                  |                                   |                            | Sample F                                 | inish time: 03/19/20          | 12 1405     |      |
|                          |                |            |                  |                                   |                            |                                          |                               |             |      |

Comments: Pumping well, unable to gauge. IRM duplicate equals metals only.



#### THREE VOLUME GROUNDWATER SAMPLE COLLECTION RECORD

# WELL No.: <u>FW-29B</u>

| Client:<br>Project Name:<br>Project Numbe<br>Location: |                                          | er 2012 Ga<br>-12-091  | nesville Sampli                                  | ng                          | Weather                                          | Well ID:<br>Date:<br>Collector:<br>Conditions: <u>Clea</u> | FW-29B<br>03/21/2012 0850<br>Jesse Marczak<br>ar 80 degrees  |   |     |
|--------------------------------------------------------|------------------------------------------|------------------------|--------------------------------------------------|-----------------------------|--------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|---|-----|
| c.) Depth to<br>e.) Length o<br>f.) Well Vol           | sing Length:<br>Water:<br>of Water Colur |                        | 5.37 (ft)<br>4.50 (ft)<br>1.87 (ft)<br>.58 (gal) |                             | b.) Well Casing<br>d.) Casing Dia<br>Number of V | meter: <u>4</u>                                            | ush mount (in)<br>Total Require                              |   |     |
| Purge Me                                               | ihod: <u>De</u><br>ng Equipmer           | dicated Cen            | <u> </u>                                         | <u>prated</u><br>Yes<br>Yes | Volume to R SamplingE Dedicated                  | emove: <u>3</u><br>guipment                                | Purge Volume                                                 |   | al) |
| Reading #                                              | Temp<br>(degree C)                       | pH<br>(s.u)            | Spec. Cond.<br>(ms/cm)                           | Turbidity<br>(NTU)          | Notes                                            |                                                            |                                                              |   |     |
| Initial                                                | 21.62                                    | 9.38                   | 0.343                                            | 3.32                        |                                                  |                                                            |                                                              |   |     |
| 1 (79.58)                                              | 23.16                                    | 8.38                   | 0.399                                            | 1.39                        |                                                  |                                                            |                                                              |   |     |
| 2 (159.16)                                             | 23,32                                    | 7.96                   | 0.393                                            | 0.97                        |                                                  |                                                            |                                                              |   |     |
| 3 (238.74)                                             | 23.35                                    | 7,97                   | 0.392                                            | 0.92                        |                                                  |                                                            |                                                              |   |     |
| 3. SAMPLE (                                            |                                          | 1                      |                                                  |                             |                                                  |                                                            |                                                              | ٦ |     |
| Method<br>Analytic G                                   | roup                                     | Analytic Me            | thod                                             |                             | Sample<br>Bottle<br>QTY                          | BottleType                                                 | Preservative                                                 |   |     |
| BTEX AQ                                                | -                                        | SW-846 826             |                                                  |                             | 3                                                | 40 ml glass vial                                           | HCL                                                          | _ |     |
| SVOA_AC                                                | :                                        | SW-846 827             | '0C                                              |                             | 1                                                | 1 liter amber bo                                           |                                                              | _ |     |
| SVOA_AC                                                |                                          | SW-846 827             | OC SIM                                           |                             | 1                                                | 1 liter amber bo                                           | ttle None                                                    |   |     |
| Normal Sar                                             | nple :GAIN-F                             | IDENTIFIC<br>W-29B-032 | 112                                              |                             |                                                  |                                                            |                                                              |   |     |
|                                                        | ank :GAIN-F<br>cate :GAIN-F              |                        |                                                  |                             |                                                  | •                                                          | e Start time: <u>03/21/20</u><br>`inish time: <u>3/21/20</u> |   |     |

Comments:



Client:

Location:

Project Name:

Beazer East, Inc.

Gainesville

#### **THREE VOLUME GROUNDWATER SAMPLE COLLECTION RECORD**

#### FW-29C WELL No.:

FW-29C Well ID: Date: 03/21/2012 1055 1st Quarter 2012 Gainesville Sampling Jesse Marczak Collector: Weather Conditions: Sunny, 80's

#### 1. WATER LEVEL DATA

Project Number: OM-0450-12-091

| , WAIDA DE DE DAINE                            |                          |                                        |                       |                                 |                  |       |
|------------------------------------------------|--------------------------|----------------------------------------|-----------------------|---------------------------------|------------------|-------|
| a.) Total Casing Length:                       | <u>379.84</u> (ft)       | b.) Well Casing Type:                  | <u>steel flush mo</u> | ount                            |                  |       |
| e.) Depth to Water:                            | 124.90 (ft)              | d.) Casing Diameter:                   | 4                     | (in)                            |                  |       |
| e.) Length of Water Column:                    | 254.94 (ft)              |                                        |                       |                                 |                  |       |
| f.) Well Volume:                               | <u>166.49</u> (gal)      |                                        |                       |                                 |                  |       |
| 2. WATER PURGE DATA<br>Purge Method: Dedicated | Centrifugal Pump         | Number of Well<br>Volume to Remove:    | 3                     | Total Required<br>Purge Volume: | 499.44           | (gal) |
| Field Testing Equipment                        | <u>Calibrated</u><br>Yes | SamplingEquipmen<br>dedicated well pum |                       | <u>[</u><br>                    | Dedicated<br>Yes |       |

| PUDCE | VALUES |
|-------|--------|
| LUKGE | YALULO |

YSI 556 FTS001270

| Reading #  | Temp<br>(degree C) | pH<br>(s.u) | Spec. Cond.<br>(ms/cm) | Turbidity<br>(NTU) | Notes |
|------------|--------------------|-------------|------------------------|--------------------|-------|
| Initial    | 23.60              | 8.43        | 0.375                  | 2.85               |       |
| 1 (166.48) | 24.10              | 8.35        | 0.376                  | 2.31               |       |
| 2 (332.96) | 24.19              | 8.00        | 0.376                  | 2.63               |       |
| 3 (499.44) | 24.16              | 8.04        | 0.381                  | 1.96               |       |

Yes

#### **3. SAMPLE COLLECTION INFORMATION**

| Method<br>Analytic Group |                       | Sample<br>Bottle<br>QTY | BottleType           | Preservative |
|--------------------------|-----------------------|-------------------------|----------------------|--------------|
| Analytic Group           | Analytic Method       |                         |                      |              |
| BTEX AQ                  | SW-846 8260B          | 3                       | 40 ml glass vial     | HCL.         |
| SVOA AQ                  | SW-846 8270C          | 1                       | 1 liter amber bottle | None         |
| SVOA_AQ                  | SW-846 8270C SIM      | 1                       | 1 liter amber bottle | None         |
| SAME                     | PLE IDENTIFICATION(S) |                         |                      |              |
| Vormal Sample :GA        | IN-FW-29C-032112      |                         |                      |              |

Sample Start time: 03/21/2012 1315

Sample Finish time: 03/21/2012 1335

Comments:



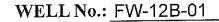
#### THREE VOLUME GROUNDWATER SAMPLE COLLECTION RECORD

# WELL No.: <u>FW-6</u>

| Client:                                                                                                           | Beazer Ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ast. Inc.                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                              | Well ID:                                                                                         | <u>FW-6</u>                                   |                                     |           |       |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|-----------|-------|
| Project Name:                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   | inesville Sampli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng            |                              | Date:                                                                                            | 03/19/                                        | 2012 1525                           |           |       |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                              | Collector:                                                                                       | Jesse                                         | Marczak                             |           |       |
| Project Number<br>Location:                                                                                       | er: <u>OM-0450-</u><br>Gainesvil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | Weather (                    | Conditions: <u>Sun</u>                                                                           | <u>ny 70</u>                                  |                                     |           |       |
| Location.                                                                                                         | <u>OBINCOVI</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                              |                                                                                                  |                                               |                                     |           |       |
| 1. WATER L                                                                                                        | EVEL DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                              | ******                                                                                           |                                               |                                     |           |       |
| a ) Total Ca                                                                                                      | using Length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N                                                                                                                 | / <u>A</u> (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | b.) Well Casing              | Type: stainles                                                                                   | is steel                                      |                                     | _         |       |
| c.) Depth to                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   | I/A (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | d.) Casing Diar              | neter: 2                                                                                         | (                                             | in)                                 |           |       |
| <i>,</i> ,                                                                                                        | of Water Colum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   | I/A (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | , 0                          |                                                                                                  |                                               |                                     |           |       |
| f.) Well Vol                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   | I/A(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                              |                                                                                                  |                                               |                                     |           |       |
| ·                                                                                                                 | PURGE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   | (gai)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                              | 7. 11                                                                                            | ,                                             | Total Required                      |           |       |
|                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                   | trifugal Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | Number of W<br>Volume to Re  | N.1.4                                                                                            |                                               | Purge Volume:                       | N/A       | (gal) |
| Purge Me                                                                                                          | anou. <u><u> </u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                              |                                                                                                  |                                               |                                     |           |       |
| Field Test                                                                                                        | ing Equipmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +                                                                                                                 | Calit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | orated        | SamplingEo                   | uipment                                                                                          |                                               |                                     | Dedicated |       |
|                                                                                                                   | /el Meter 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No            | dedicated w                  | ell pump                                                                                         |                                               |                                     | Yes       |       |
| LaMotte 2                                                                                                         | 2020e 0397-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes           |                              |                                                                                                  |                                               |                                     |           |       |
| YSI 556 1                                                                                                         | 0B100136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes           |                              |                                                                                                  |                                               |                                     |           |       |
| PURGE VAL                                                                                                         | LIFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                              |                                                                                                  |                                               |                                     |           |       |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b></b>       | N                            |                                                                                                  |                                               |                                     |           |       |
| Reading #                                                                                                         | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | рΉ                                                                                                                | Spec. Cond.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turbidity     | Notes                        |                                                                                                  |                                               |                                     |           |       |
| -                                                                                                                 | (4 C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /a\                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -             |                              |                                                                                                  |                                               |                                     |           |       |
|                                                                                                                   | (degree C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (s.u)                                                                                                             | (ms/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (NTU)         |                              |                                                                                                  |                                               |                                     |           |       |
| Initial                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   | (ms/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -             |                              |                                                                                                  |                                               |                                     |           |       |
| Initial                                                                                                           | 24.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (s.u)<br>7.47<br>7.45                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (NTU)         |                              |                                                                                                  |                                               |                                     |           |       |
| 1 (5.00)                                                                                                          | 24.04<br>24.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.47                                                                                                              | (ms/cm)<br>0.432<br>0.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (NTU)<br>8.35 |                              |                                                                                                  |                                               |                                     |           |       |
| 1 (5.00)                                                                                                          | 24.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.47                                                                                                              | (ms/cm)<br>0.432<br>0.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (NTU)<br>8.35 |                              |                                                                                                  |                                               |                                     |           |       |
| 1 (5.00)<br>3. SAMPLE                                                                                             | 24.04<br>24.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.47                                                                                                              | (ms/cm)<br>0.432<br>0.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (NTU)<br>8.35 | Sample                       |                                                                                                  |                                               |                                     |           |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method                                                                                 | 24.04<br>24.04<br>COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.47<br>7.45<br>N INFORM.                                                                                         | (ms/cm)<br>0.432<br>0.435<br>ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (NTU)<br>8.35 | Bottle                       | BottleTune                                                                                       | Pr                                            | eservative                          |           |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method<br>Analytic C                                                                   | 24.04<br>24.04<br>COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.47<br>7.45<br>NINFORM.                                                                                          | (ms/cm)<br>0.432<br>0.435<br>ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (NTU)<br>8.35 | •                            | BottleType                                                                                       |                                               | eservative<br>HNO3                  |           |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method<br>Analytic C<br>METALS                                                         | 24.04<br>24.04<br>COLLECTION<br>Group A<br>AQ_DISS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.47<br>7.45<br>NINFORM.<br>Malytic Me<br>W-846 602                                                               | (ms/cm)<br>0.432<br>0.435<br>ATION<br>ethod<br>20/6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (NTU)<br>8.35 | Bottle<br>QTY<br>1<br>1      | 125 ml plastic b<br>125 ml plastic b                                                             | ottle<br>ottle                                | HNO3<br>HNO3                        |           |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method<br>Analytic C<br>METALS                                                         | 24.04<br>24.04<br>COLLECTION<br>Group A<br>AQ_DISS S<br>AQ_TOTAL S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.47<br>7.45<br>NINFORM<br>Malytic Me<br>W-846 602<br>W-846 602                                                   | (ms/cm)<br>0.432<br>0.435<br>ATION<br>20/6010<br>20/6010<br>20/6010<br>50B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (NTU)<br>8.35 | Bottle<br>QTY<br>1<br>1<br>3 | 125 ml plastic b<br>125 ml plastic b<br>40 ml glass vial                                         | ottle<br>ottle                                | HNO3<br>HNO3<br>HCL                 |           |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method<br>Analytic C<br>METALS<br>METALS                                               | 24.04<br>24.04<br>COLLECTION<br>AQ_DISS_S<br>AQ_TOTAL_S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.47<br>7.45<br>NINFORM<br>W-846 602<br>W-846 602<br>W-846 826<br>W-846 826<br>W-846 826                          | (ms/cm)<br>0.432<br>0.435<br>ATION<br>20/6010<br>20/6010<br>20/6010<br>50B<br>70C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (NTU)<br>8.35 | Bottle<br>QTY<br>1<br>1      | 125 ml plastic b<br>125 ml plastic b<br>40 ml glass vial<br>1 liter amber bo                     | ottle<br>ottie<br>ttle                        | HNO3<br>HNO3<br>HCL<br>None         |           |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method<br>Analytic C<br>METALS<br>BTEX_AC                                              | 24.04<br>24.04<br>COLLECTION<br>AQ_DISS_S<br>AQ_TOTAL_S<br>CS<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.47<br>7.45<br>NINFORM<br>W-846 602<br>W-846 602<br>W-846 602<br>W-846 827<br>W-846 827<br>W-846 827             | (ms/cm)<br>0.432<br>0.435<br>ATION<br>20/6010<br>20/6010<br>20/6010<br>30B<br>70C<br>70C SIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (NTU)<br>8.35 | Bottle<br>QTY<br>1<br>1<br>3 | 125 ml plastic b<br>125 ml plastic b<br>40 ml glass vial                                         | ottle<br>ottie<br>ttle                        | HNO3<br>HNO3<br>HCL                 |           |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method<br>Analytic C<br>METALS<br>METALS<br>BTEX_AC<br>SVOA_AC<br>SVOA_AC              | 24.04<br>24.04<br>COLLECTION<br>AQ_DISS S<br>AQ_TOTAL S<br>COLLECTION<br>STOUP<br>AQ_DISS S<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLEC | 7.47<br>7.45<br>NINFORM<br>W-846 602<br>W-846 602<br>W-846 802<br>W-846 827<br>W-846 827<br>W-846 827<br>DENTIFIC | (ms/cm)<br>0.432<br>0.435<br>ATION<br>20/6010<br>20/6010<br>20/6010<br>30B<br>70C<br>70C SIM<br>ATION(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (NTU)<br>8.35 | Bottle<br>QTY<br>1<br>1<br>3 | 125 ml plastic b<br>125 ml plastic b<br>40 ml glass vial<br>1 liter amber bo                     | ottle<br>ottie<br>ttle                        | HNO3<br>HNO3<br>HCL<br>None         |           |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method<br>Analytic C<br>METALS<br>METALS<br>BTEX_AC<br>SVOA_AC<br>SVOA_AC<br>Normal Sa | 24.04<br>24.04<br>COLLECTION<br>AQ_DISS S<br>AQ_TOTAL S<br>QS<br>QS<br>SAMPLE I<br>mple : GAIN-FY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.47<br>7.45<br>NINFORM<br>W-846 602<br>W-846 602<br>W-846 827<br>W-846 827<br>W-846 827<br>DENTIFIC<br>W-6-03191 | (ms/cm)<br>0.432<br>0.435<br>ATION<br>ation<br>20/6010<br>20/6010<br>20/6010<br>20/6010<br>30B<br>70C<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>30B<br>30B<br>70C<br>30B<br>30B<br>30B<br>30B<br>30B<br>30B<br>30B<br>30B | (NTU)<br>8.35 | Bottle<br>QTY<br>1<br>1<br>3 | 125 ml plastic b<br>125 ml plastic b<br>40 ml glass vial<br>1 liter amber bo<br>1 liter amber bo | ottle<br>ottle<br>ttle<br>ttle                | HNO3<br>HNO3<br>HCL<br>None<br>None | 10 15 20  |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method<br>Analytic C<br>METALS<br>METALS<br>BTEX_AC<br>SVOA_AC<br>SVOA_AC<br>Normal Sa | 24.04<br>24.04<br>COLLECTION<br>AQ_DISS S<br>AQ_TOTAL S<br>COLLECTION<br>STOUP<br>AQ_DISS S<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLECTION<br>COLLEC | 7.47<br>7.45<br>NINFORM<br>W-846 602<br>W-846 602<br>W-846 827<br>W-846 827<br>W-846 827<br>DENTIFIC<br>W-6-03191 | (ms/cm)<br>0.432<br>0.435<br>ATION<br>ation<br>20/6010<br>20/6010<br>20/6010<br>20/6010<br>30B<br>70C<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>30B<br>30B<br>70C<br>30B<br>30B<br>30B<br>30B<br>30B<br>30B<br>30B<br>30B | (NTU)<br>8.35 | Bottle<br>QTY<br>1<br>1<br>3 | 125 ml plastic b<br>125 ml plastic b<br>40 ml glass vial<br>1 liter amber bo<br>1 liter amber bo | ottle<br>ottle<br>ttle<br>ttle                | HNO3<br>HNO3<br>HCL<br>None         | 12 1530   |       |
| 1 (5.00)<br>3. SAMPLE (<br>Method<br>Analytic C<br>METALS<br>METALS<br>BTEX_AC<br>SVOA_AC<br>SVOA_AC<br>Normal Sa | 24.04<br>24.04<br>COLLECTION<br>AQ_DISS S<br>AQ_TOTAL S<br>QS<br>QS<br>SAMPLE I<br>mple : GAIN-FY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.47<br>7.45<br>NINFORM<br>W-846 602<br>W-846 602<br>W-846 827<br>W-846 827<br>W-846 827<br>DENTIFIC<br>W-6-03191 | (ms/cm)<br>0.432<br>0.435<br>ATION<br>ation<br>20/6010<br>20/6010<br>20/6010<br>20/6010<br>30B<br>70C<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>70C<br>30B<br>30B<br>30B<br>70C<br>30B<br>30B<br>30B<br>30B<br>30B<br>30B<br>30B<br>30B | (NTU)<br>8.35 | Bottle<br>QTY<br>1<br>1<br>3 | 125 ml plastic b<br>125 ml plastic b<br>40 ml glass vial<br>1 liter amber bo<br>1 liter amber bo | ottle<br>ottle<br>ttle<br>ttle<br>e Start tin | HNO3<br>HNO3<br>HCL<br>None<br>None |           |       |

Comments: Pumping well unable to gauge.




#### WESTBAY GROUNDWATER SAMPLE COLLECTION RECORD



| Client:<br>Project Nan                    |             | ·······        | ter 2012 G              | ainesville    | e Sampling                             |                |                                                                                                         |                                         |             |                           |               |                          |           | Đa         | D: <u>FW-1</u><br>ite: <u>03/22</u><br>ian: <u>Greg</u> | /2012 0940        |                                        |
|-------------------------------------------|-------------|----------------|-------------------------|---------------|----------------------------------------|----------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|---------------------------|---------------|--------------------------|-----------|------------|---------------------------------------------------------|-------------------|----------------------------------------|
| Project Nun                               | nber: _     | OM-045         |                         |               |                                        |                |                                                                                                         | eather Con                              | ditions     | 75 sunny                  |               |                          |           |            |                                                         |                   |                                        |
| Location:                                 |             | Gainesv        | llie                    |               |                                        |                |                                                                                                         |                                         |             | 10.00000                  |               |                          |           |            | 00/00/00                                                | 12 1020           |                                        |
| Sampling EquipmentDedicatedWestbay 2499NO |             |                |                         |               |                                        |                | Sampling Start Time: 03/22/2012 1020<br>Sampling End Time: 03/22/2012 1035<br>Ambient Barometric: 14.71 |                                         |             |                           |               |                          |           |            |                                                         |                   |                                        |
|                                           |             |                |                         |               |                                        |                | Comments                                                                                                |                                         |             |                           |               |                          |           |            |                                                         | 1                 | ······································ |
| Run #                                     |             | Surf           | ace Functi              | on Tests      |                                        |                | Position<br>Sampler                                                                                     | (Pro                                    |             | mple Colle<br>Ited at sam |               |                          | casing)   |            |                                                         | Volumes<br>Tubes  |                                        |
|                                           | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum         | Open<br>Valve | Evacuate<br>Container                  | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe                                                              | Pressure<br>in MP1                      | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressui<br>e (2) | Close     | Shoe<br>In | Pressure<br>in MP (2)                                   |                   |                                        |
| 1                                         | <u></u>     | M              |                         | Ŋ             | V                                      | ত              | 174.9                                                                                                   | 30.20                                   | Ø           | 28.37                     | Ø             | 28.37                    | V         | $\square$  | 30.20                                                   | 5                 | ł                                      |
| 2                                         | <br>        |                |                         | N             | <u> </u>                               |                | 174.9                                                                                                   | 30.19                                   |             | 28.37                     |               | 28.37                    | V         | $\square$  | 30.19                                                   | 5                 |                                        |
| SAMPLE CO                                 |             |                | <b></b>                 |               |                                        |                | 1                                                                                                       | • • • • • • • • • • • • • • • • • • • • |             |                           |               |                          |           | SAMI       | PLE IDENT                                               | TFICATION         | (S)                                    |
| r                                         | ameter      |                | 346 8270C               | Method        |                                        | Qı             | uantity                                                                                                 | Bottle<br>ter amber                     |             | Preser                    | vative        | N                        | ormal Sam | ple :GA    | IN-FW-12E                                               | <u>-02-032212</u> |                                        |
| BTEX A                                    |             |                | 346 8260B               | OIM           |                                        |                |                                                                                                         | ml glass v                              |             | Н                         | CL            |                          |           |            |                                                         |                   |                                        |
| METALS_AQ_DIS SW-846 6020/6010<br>S       |             |                |                         |               |                                        |                | 1 125 ml plastic bottle                                                                                 |                                         |             |                           | HNO3          |                          |           |            |                                                         |                   |                                        |
| SVOA_A<br>METALS<br>AL                    |             |                | 346 8270C<br>346 6020/6 |               | ······································ |                | 1     1 liter amber bottle     None       1     125 ml plastic bottle     HNO3                          |                                         |             |                           |               |                          |           |            |                                                         |                   |                                        |



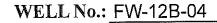
#### WESTBAY GROUNDWATER SAMPLE COLLECTION RECORD





|             |                      |           |            |            |            |                                      |                                    |             |          |                 |        |                  |                | Well I   | D: _EW-1          | 2B-01             |     |
|-------------|----------------------|-----------|------------|------------|------------|--------------------------------------|------------------------------------|-------------|----------|-----------------|--------|------------------|----------------|----------|-------------------|-------------------|-----|
| Client:     | -                    |           | East, Inc. |            | D          |                                      |                                    |             |          |                 |        |                  |                | Da       | nte: <u>03/22</u> | /2012 1026        |     |
| Project Nat | ne: .                | 1st Quai  | ter 2012 G | ainesville | e Sampling |                                      |                                    |             |          |                 |        |                  |                |          | ian: <u>Greg</u>  |                   |     |
| Project Nu  | nber: ,              | OM-045    | 0-12-091   |            |            |                                      |                                    |             |          |                 |        |                  |                | ICCHIN   | .ian. <u>0109</u> |                   |     |
| Location:   |                      | Gainesv   | ille       |            |            |                                      | W                                  | eather Con  | ditions  | <u>75 sunny</u> |        |                  |                |          |                   |                   |     |
|             |                      |           |            |            |            |                                      |                                    |             |          |                 |        | Sa               | moling Sta     | ut Time: | 03/22/20          | 12 1055           |     |
| Sampling    | Equipme              | ent       |            |            | Dedicated  | Sampling Start Time: 03/22/2012 1055 |                                    |             |          |                 |        |                  |                |          |                   |                   |     |
|             | Westbay 2499 NO      |           |            |            |            |                                      | Sampling End Time: 03/22/2012 1120 |             |          |                 |        |                  |                |          |                   |                   |     |
|             |                      |           |            |            |            |                                      |                                    |             |          |                 |        | Aı               | nbient Bar     | ometric: | 14.71             |                   |     |
|             |                      |           |            |            |            |                                      | _                                  |             |          |                 |        |                  |                |          |                   |                   |     |
|             |                      |           |            |            |            |                                      | Comments                           |             |          |                 |        |                  |                |          |                   |                   |     |
| Run #       |                      | Surf      | ace Functi | ion Tests  | 1          |                                      | Position                           |             |          | ample Colle     |        |                  |                |          |                   | Volumes           | ŧ   |
|             |                      |           |            |            |            |                                      | Sampler                            |             | τ        | ted at sam      |        |                  |                | Shoe     | Pressure          | Tubes             |     |
|             | Shoe                 | Close     | Check      | Ореп       | Evacuate   | Close                                | Locate                             | Pressure    | Shoe     | Zone            | Ореп   | Zone             | Close<br>Valve | In       | in MP (2)         |                   |     |
|             | Out                  | Vaive     | Vacuum     | Valve      | Container  | Valve                                | Port Arm<br>Out                    | In MP1      | Out      | Pressure        | Valve  | Pressur<br>e (2) | Valve          |          |                   |                   |     |
|             |                      |           |            |            |            |                                      | Land                               |             |          |                 |        | C (2)            |                |          |                   |                   |     |
|             |                      |           |            |            |            |                                      | Probe                              |             |          |                 |        |                  |                |          |                   |                   | ļ   |
|             |                      |           |            |            | 1          |                                      | 154.8                              | 21.43       | Ø        | 19.70           | V      | 19.69            |                | M        | 21.43             | 5                 |     |
| 1           |                      | Ø         |            | Ø          |            |                                      |                                    |             |          | 19.71           |        | 19.71            |                |          | 21.43             | 5                 |     |
| 2           | $\Box$               | $\square$ |            |            | <u> </u>   |                                      | 154.8                              | 21.43       |          | 19.71           |        |                  |                |          | 1                 |                   | (5) |
| SAMPLE C    | OLLECT               | ION INFO  | ORMATIO    | N          |            |                                      |                                    |             |          |                 |        |                  |                |          |                   | <b>FIFICATION</b> |     |
|             |                      |           |            | Method     | 4          | 0                                    | uantity                            | Bottle      | Туре     | Preser          | vative | <u>No</u>        | rmal Sam       | pie :GA  | IN-FW-12E         | 3-01-032212       |     |
| METALS      | ameter               |           | 346 6020/6 |            | 4          |                                      |                                    | 5 ml plasti |          | IH              | 103    |                  |                |          |                   |                   |     |
| AL          | IC                   | / 000-    |            | .010       |            |                                      |                                    | •           |          |                 |        |                  |                |          |                   |                   |     |
|             | AQ_DI                | S SW-     | 846 6020/6 | 010        |            |                                      | 1 12                               | 5 ml plasti | c bottle | н               | 103    |                  |                |          |                   |                   |     |
| S           |                      |           |            |            |            |                                      |                                    |             |          |                 |        |                  |                |          |                   |                   |     |
|             | BTEX AQ SW-846 8260B |           |            |            |            |                                      |                                    | ml glass v  |          |                 | HCL    |                  |                |          |                   |                   |     |
| SVOA A      |                      |           | 846 82700  |            |            |                                      | 1 1 liter amber bottle None        |             |          |                 |        |                  |                |          |                   |                   |     |
| SVOA A      |                      |           | 846 82700  |            |            |                                      | 1 1 liter amber bottle None        |             |          |                 |        |                  |                |          |                   |                   |     |




#### WESTBAY GROUNDWATER SAMPLE COLLECTION RECORD



| Client:<br>Project Nat<br>Project Nut<br>Location:<br>Sampling<br>Westbay 2                                                                                                                                      | mber:       | OM-045<br>Gainesvi | ter 2012 G<br>0-12-091  |                         | ∋ Sampling<br>Dedicated<br>NO |                | Wo                                                                                                                                                   | eather Con                | ditions                                                                             | sunny 80         | )                 |         |                         | npling Sta<br>mpling Er | Da<br>Technic<br>rt Tíme: | ian: <u>Greq</u>      | 2/2012 1235<br>Bzorek<br>2 1235 |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-------------------------|-------------------------|-------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------|------------------|-------------------|---------|-------------------------|-------------------------|---------------------------|-----------------------|---------------------------------|---|
|                                                                                                                                                                                                                  |             |                    |                         |                         |                               |                | Ambient Barometric: 14.71                                                                                                                            |                           |                                                                                     |                  |                   |         |                         |                         |                           |                       |                                 |   |
|                                                                                                                                                                                                                  |             |                    |                         |                         |                               |                | Comments:                                                                                                                                            |                           |                                                                                     |                  |                   |         |                         |                         |                           |                       | r                               | 1 |
| Run #                                                                                                                                                                                                            |             | Surfa              | ace Functi              | ол Tests                | ;                             |                | Position                                                                                                                                             | (Dr                       | Sample Collection Checks Volumes (Probe Located at samplin zone in MP casing) Tubes |                  |                   |         |                         |                         |                           |                       |                                 |   |
|                                                                                                                                                                                                                  | Shoe<br>Out | Close<br>Valve     | Check<br>Vacuum         | Open<br>Valve           | Evacuate<br>Container         | Ciose<br>Vaive | Sampler<br>Locate<br>Port Arm<br>Out<br>Land<br>Probe                                                                                                | Pressure<br>In MP1        | Shoe<br>Out                                                                         | Zone<br>Pressure | Open<br>Valve     | Z<br>Pr | Cone<br>ressur<br>e (2) | Close<br>Valve          | Shoe<br>In                | Pressure<br>in MP (2) | Tubes                           |   |
| 1                                                                                                                                                                                                                |             | -<br>              | <b>N</b>                | $\overline{\mathbf{N}}$ |                               | V              | 194.2                                                                                                                                                | 38.62                     | Ø                                                                                   | 37.01            | V                 | 3       | 37.01                   | V                       | Q                         | 38.62                 | 5                               |   |
| 2                                                                                                                                                                                                                | M           | M                  |                         | Ø                       | <u> </u>                      | V              | 194.3                                                                                                                                                | 38.61                     | V                                                                                   | 37.01            | V                 | 3       | 7.03                    | V                       | Ø                         | 38.61                 | 5                               |   |
| SAMPLE C                                                                                                                                                                                                         | , <u> </u>  |                    | DRMATIO                 | N                       | s                             | ***            |                                                                                                                                                      |                           |                                                                                     |                  |                   |         |                         |                         |                           |                       | <b>FIFICATION</b>               |   |
| SAMPLE COLLECTION INFORMATION         Parameter       Method         METALS_AQ_DIS       SW-846 6020/6010         S       SW-846 8260B         BTEX_AQ       SW-846 8260B         SVOA_AQ       SW-846 8270C SIM |             |                    |                         |                         |                               | 0              | Quantity         Bottle Type           1         125 ml plastic bottle           3         40 ml glass vial           1         1 liter amber bottle |                           |                                                                                     | H<br>N           | NO3<br>ICL<br>one | 3       |                         |                         |                           |                       |                                 |   |
| SVOA A                                                                                                                                                                                                           | ٩Q          |                    | 346 8270C<br>346 6020/6 |                         |                               |                |                                                                                                                                                      | iter amber<br>5 ml plasti |                                                                                     |                  | None<br>HNO3      |         |                         |                         |                           |                       |                                 |   |

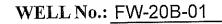
AL





| Client:<br>Project Nar<br>Project Nur<br>Location:<br>Sampling<br>Westbay 2 | nber:       | OM-045<br>Gainesv | ter 2012 G<br>0-12-091               |               | e Sampling<br>Dedicated<br>NO |                |                                            | cather Con                              | ditions     | <u>80 sunny</u>           | <u>/</u>              | S                        | impling Sta<br>ampling Ea<br>mbient Baa | D:<br>Technic<br>art Time:<br>nd Time: | 03/22/20<br>03/22/20          | 2/2012 1105<br>Bzorek<br>012 1140 | ······································ |
|-----------------------------------------------------------------------------|-------------|-------------------|--------------------------------------|---------------|-------------------------------|----------------|--------------------------------------------|-----------------------------------------|-------------|---------------------------|-----------------------|--------------------------|-----------------------------------------|----------------------------------------|-------------------------------|-----------------------------------|----------------------------------------|
| Run #                                                                       |             | Surf              | ace Functi                           | ion Tests     |                               |                | Comments<br>Position<br>Sampler            |                                         |             | ample Coll<br>ated at san |                       |                          | casing)                                 |                                        |                               | Volumes<br>Tubes                  |                                        |
|                                                                             | Shoe<br>Out | Close<br>Valve    | Check<br>Vacuum                      | Open<br>Valve | Evacuate<br>Container         | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1                      | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve         | Zone<br>Pressur<br>e (2) | Close                                   | Shoe<br>In                             | Pressure<br>in MP (2)         | . Tubeb                           |                                        |
| 1                                                                           |             |                   |                                      | N             |                               | ম              | 214.2                                      | 47.43                                   | Ø           | 45.66                     | Ø                     | 45.66                    | N                                       | M                                      | 47.43                         | 5                                 |                                        |
| 2                                                                           |             |                   |                                      | N             | <u> </u>                      |                | 214.0                                      | 47.43                                   | Ø           | 45.66                     | Ø                     | 45.66                    | Q                                       | Ø                                      | 47.43                         | 5                                 |                                        |
| 3                                                                           |             |                   |                                      | <u></u>       |                               | N              | 214.3                                      | 47.43                                   | $\square$   | 45.66                     | $\Box$                | 45.66                    |                                         |                                        | 47.43                         | 5                                 |                                        |
| 4                                                                           |             | <u> </u>          |                                      |               |                               |                | 214.2                                      | 46.43                                   |             | 45.66                     | V                     | 45.66                    | $\square$                               | $\Box$                                 | 46.43                         | 3                                 |                                        |
| SAMPLE C                                                                    |             |                   |                                      | N             |                               |                |                                            |                                         |             |                           |                       |                          |                                         | SAM                                    | PLE IDEN                      | <b>FIFICATION</b>                 | (S)                                    |
|                                                                             | ameter<br>Q | SW-8              | 346 8270C<br>346 6020/6              | Methoo<br>SIM | 1                             |                |                                            | Bottle<br>iter amber<br>5 ml plastic    | bottle      |                           | rvative<br>one<br>NO3 |                          |                                         |                                        | <u>IN-FW-128</u><br>IN-FW-998 | <u>3-04-032212</u><br>-032212     |                                        |
| AL<br>SVOA_A<br>BTEX_A                                                      | Q           | SW-8              | 346 8270C<br>346 8260B<br>346 6020/6 |               |                               |                | 3 40                                       | iter amber<br>ml glass v<br>5 ml plasti | rial        | H                         | one<br>ICL<br>NO3     |                          |                                         |                                        |                               |                                   |                                        |





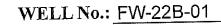

| Client:<br>Project Nar<br>Project Nur<br>Location:<br>Sampling<br>PROBE-3 | mber: ,<br>Equipm  | 1st Quar<br>OM-045<br>Gainesv | 0-12-091        |                       | e Sampling<br>Dedicated<br>NO |                                        | W                                                     | eather Con                 | ditions     | SUNNY                     | 70                |           | Sa                 |                         | Da<br>Technic<br>rt Time:<br>nd Time: | 03/22/20              | 2/2012 0835<br>Robertson<br>012 0836 |     |
|---------------------------------------------------------------------------|--------------------|-------------------------------|-----------------|-----------------------|-------------------------------|----------------------------------------|-------------------------------------------------------|----------------------------|-------------|---------------------------|-------------------|-----------|--------------------|-------------------------|---------------------------------------|-----------------------|--------------------------------------|-----|
|                                                                           | ·····              |                               |                 |                       |                               |                                        | Comment                                               | s:                         |             |                           |                   | baak      |                    | nbient Bar              | ometric:                              | 14./2                 | Volumes                              |     |
| Run #                                                                     |                    | Surf                          | ace Funct       | ion Tests             | 5                             |                                        | Position                                              | (Dr                        |             | ample Coll<br>ated at sam |                   |           |                    | asino)                  |                                       |                       | Tubes                                | l   |
|                                                                           | Shoe<br>Out        | Close<br>Valve                | Check<br>Vacuum | Open<br>Valve         | Evacuate<br>Container         | Close<br>Valve                         | Sampler<br>Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure                   | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve     | Zo<br>Pre | ine<br>ssur<br>(2) | Close<br>Valve          | Shoe<br>In                            | Pressure<br>in MP (2) |                                      |     |
| 1                                                                         |                    | $\square$                     | ত               | Ø                     | V                             | Ø                                      | 164.1                                                 | 31.56                      |             | 24.86                     | $\mathbf{\nabla}$ | 24        | .85                | $\overline{\mathbf{A}}$ | $\checkmark$                          | 31.56                 | 4                                    |     |
| 2                                                                         |                    |                               | N               | <u> </u>              |                               | V                                      | 165.0                                                 | 31.53                      |             | 24.85                     | Ŋ                 | 24        | .83                |                         | $\Box$                                | 31.54                 | 4                                    |     |
| 3                                                                         |                    | Ø                             | M               |                       | <u> </u>                      | N                                      | 163.9                                                 | 31.51                      |             | 24.86                     | N                 | 24        | .84                | $\square$               | $\square$                             | 31.52                 | 4                                    |     |
|                                                                           |                    | - L                           |                 | L                     |                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | _4                                                    |                            |             |                           | .#                |           |                    |                         | SAM                                   | PLE IDEN              | FIFICATION                           | (S) |
| SAMPLE C                                                                  |                    | 10N INFO                      | ORMATIO         |                       | -                             |                                        |                                                       | 10 - 46 a                  |             | Preser                    | vativo            |           | No                 | mal Sam                 | ple :GA                               | IN-FW-16              | 3-01-032212                          |     |
| Par<br>METALS<br>S                                                        | rameter<br>S_AQ_DI | s sw-                         | 846 6020/6      | <u>Methoo</u><br>3010 | 1                             |                                        | uantity<br>1 12                                       | Bottle<br>25 ml plasti     |             | н                         | NO3               |           |                    |                         |                                       |                       |                                      |     |
| METALS                                                                    | S_AQ_TC            |                               | 846 6020/6      |                       |                               |                                        |                                                       | 25 ml plasti               |             |                           | NO3               |           |                    |                         |                                       |                       |                                      |     |
| BTEX_A                                                                    |                    |                               | 846 8260B       |                       |                               |                                        |                                                       | <u>) mi glass v</u>        |             |                           |                   |           |                    |                         |                                       |                       |                                      |     |
| SVOA_A                                                                    |                    |                               | 846 82700       |                       |                               |                                        |                                                       | liter amber<br>liter amber |             |                           | one<br>one        |           |                    |                         |                                       |                       |                                      |     |
| SVOA A                                                                    | 40                 | ISW-                          | 846 82700       | ;                     |                               | 1                                      | 1                                                     | Ingi shingi                | ບບເມຍ       | in                        | 0.10              |           |                    |                         |                                       |                       |                                      |     |

SVOA\_AQ

SW-846 8270C

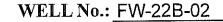





|                       |           |           |            |            |                                        |           |               |               |          |                    |           |                |                    | Well I           | D: <u>EW-2</u>   | 20B-01             |          |
|-----------------------|-----------|-----------|------------|------------|----------------------------------------|-----------|---------------|---------------|----------|--------------------|-----------|----------------|--------------------|------------------|------------------|--------------------|----------|
| Client:               | -         | Beazer B  |            |            |                                        |           |               |               |          |                    |           |                |                    |                  |                  | /2012 1355         |          |
| Project Nai           | me:       | 1st Quar  | ter 2012 G | ainesville | Sampling                               |           | . <u></u>     |               |          |                    |           |                |                    |                  |                  |                    |          |
| -                     |           | OM-045    |            |            |                                        |           |               |               |          |                    |           |                |                    | Technic          | ian: <u>Greg</u> | BZOIEK             |          |
| Project Nu            | mber: _   | Gainesvi  |            |            | ······································ |           | W             | Veather Con   | ditions  | sunny 85           | 5         |                |                    |                  |                  |                    |          |
| Location:             | -         | Gamesv    |            |            |                                        |           |               |               |          |                    |           |                |                    |                  | 3/22/201         | 2 1545             |          |
|                       |           |           |            | г          | Dedicated                              |           |               |               |          |                    |           |                | ampling Sta        |                  |                  |                    |          |
| Sampling<br>Westbay 2 |           | ent       |            | L          | NO                                     |           |               |               |          |                    |           | 5              | Sampling Er        | nd Time:         | 3/22/201         | 2 1610             |          |
| vvestbay .            | 2499      |           |            |            |                                        |           |               |               |          |                    |           |                | mbient Bar         |                  |                  |                    |          |
|                       |           |           |            |            |                                        |           |               |               |          |                    |           | 7              |                    | 011101101        |                  |                    |          |
|                       |           |           |            |            |                                        |           | Comment       | s:            |          |                    |           |                |                    |                  |                  | r1                 |          |
| Run #                 |           | Surf      | ace Functi | ion Tests  | ······································ |           | Position      |               |          | ample Coll         |           |                |                    |                  |                  | Volumes            | ł        |
| Run#                  |           | Jun       | ace i uncu |            | ·                                      |           | Sampler       | (Pro          | obe Loca | <u>ited at san</u> | nolin zor | <u>e in MP</u> |                    | 1                |                  | Tubes              |          |
|                       | Shoe      | Close     | Check      | Open       | Evacuate                               | Close     | Locate        | Pressure      | Shoe     | Zone               | Орел      | Zone           | Close              | Shoe             | Pressure         |                    | ł        |
|                       | Out       | Valve     | Vacuum     | Valve      | Container                              | Valve     | Port Arm      | In MP1        | Out      | Pressure           | Valve     | Pressu         | r Valve            | in               | in MP (2)        |                    | ĺ        |
|                       |           |           |            |            |                                        |           | Out           |               |          |                    |           | e (2)          |                    |                  |                  |                    |          |
|                       |           |           |            |            |                                        |           | Land<br>Probe |               |          |                    |           |                |                    |                  |                  |                    |          |
|                       |           |           | ļ          |            |                                        |           |               |               |          | 20.55              |           | 20.55          |                    |                  | 23.91            | 5                  |          |
| 1                     | $\square$ | $\square$ |            | $\Box$     | <u> </u>                               | Ø         | 157.1         | 23.91         |          |                    |           |                |                    |                  | 23.91            | 5                  |          |
| 2                     | ম         | $\square$ | $\square$  | $\square$  | $\square$                              | $\square$ | 157.4         | 23.90         |          | 20.55              |           | 20.55          |                    |                  | <u> </u>         | <u></u>            | <u> </u> |
| SAMPLE C              |           |           |            | N          |                                        |           |               |               |          |                    |           | ŀ              |                    | SAMI             | PLE IDEN         | FIFICATION         | (S)      |
|                       |           |           | JKMATIO    |            | -                                      |           |               | Bottle        | Type     | Preset             | rvative   | N              | ormal Sam          | ple :GA          | IN-FW-20E        | <u>3-01-032212</u> |          |
|                       | rameter   |           | 240,0000/0 | Method     | 1                                      | <u> </u>  | uantity       | 25 ml plasti  |          |                    | NO3       |                |                    |                  | ilterBlank0      |                    |          |
| 31                    | S_AQ_TO   | 1 500-8   | 346 6020/6 | 010        |                                        |           |               |               | 0.00000  |                    |           | <u> </u>       | <u>eld Blank :</u> | GAIN-F           | <u>B-0403221</u> | <u>12</u>          |          |
| AL                    |           |           | 346 6020/6 | 010        |                                        |           | 1 1:          | 25 ml plasti  | c bottle | Н                  | NO3       | ļ              | quipment E         | <u> 3lank :G</u> | AIN-EB-04        | <u>1032212</u>     |          |
|                       | S_AQ_DIS  | 5  500-0  | 540 0020/0 | 010        |                                        |           |               |               |          |                    |           |                |                    |                  |                  |                    |          |
| S                     | <u>^</u>  | CIAL S    | 846 8270C  | SIM        |                                        |           | 1 1           | liter amber   | bottle   | N                  | lone      |                |                    |                  |                  |                    |          |
| SVOA /                |           |           | 846 8270C  |            |                                        |           |               | liter amber   |          | N                  | lone      |                |                    |                  |                  |                    |          |
|                       |           |           | 846 8260B  |            |                                        |           | 3 4           | 0 ml glass v  | /ial     | ŀ                  | ICL       |                |                    |                  |                  |                    |          |
| BTEX A                | AQ        | [SVV-     | 846 82608  |            |                                        |           | J 7           | u nii gidoo i | 100      |                    |           | <b>4</b>       |                    |                  |                  |                    |          |



WELL No.: FW-20B-02


| Client:<br>Project Nan<br>Project Nun<br>Location:<br>Sampling    | ne: _<br>nber: _<br>Equipme | OM-045<br>Gainesv      | ter 2012 G<br>0-12-091                                          |               | e Sampling<br>Dedicated |                | W                                          | /eather Con                                                                      | ditions                    | SUNNY 8                    | 85                                         |                          | mpling Sta              | D:<br>Technic<br>urt Time: | 3/22/201              | 2/2012 1355<br>Bzorek<br>12 1515 |     |
|-------------------------------------------------------------------|-----------------------------|------------------------|-----------------------------------------------------------------|---------------|-------------------------|----------------|--------------------------------------------|----------------------------------------------------------------------------------|----------------------------|----------------------------|--------------------------------------------|--------------------------|-------------------------|----------------------------|-----------------------|----------------------------------|-----|
| Westbay 2                                                         | 499                         |                        |                                                                 |               | <u>NO</u>               |                | Comments                                   |                                                                                  |                            |                            |                                            |                          | mpling Er<br>nbient Bar |                            |                       |                                  |     |
| Run #                                                             |                             | Surf                   | ace Functi                                                      | ion Tests     |                         |                | Position<br>Sampler                        | (Pro                                                                             |                            | imple Colle<br>ited at sam |                                            |                          | asing)                  |                            |                       | Volumes<br>Tubes                 |     |
|                                                                   | Shoe<br>Out                 | Close<br>Valve         | Check<br>Vacuum                                                 | Open<br>Valve | Evacuate<br>Container   | Ciose<br>Vaive | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1                                                               | Shoe<br>Out                | Zone<br>Pressure           | Open<br>Valve                              | Zone<br>Pressur<br>e (2) | Ciose<br>Valve          | Shoe<br>In                 | Pressure<br>in MP (2) | Tubeo                            |     |
| 1                                                                 | V                           |                        | V                                                               | Ø             | Ŋ                       | V              | 176.9                                      | 32.63                                                                            | Ø                          | 29.19                      | Ø                                          | 29.19                    |                         |                            | 32.63                 | 5                                |     |
| 2                                                                 | V                           |                        | V                                                               | Q             | V                       | V              | 176.9                                      | 32.61                                                                            | Ø                          | 29.18                      | Ø                                          | 29.19                    |                         | Ø                          | 32.61                 | 5                                |     |
| SAMPLE CO                                                         | OLLECTI                     | ION INFO               | ORMATIO                                                         | N             |                         |                |                                            |                                                                                  |                            |                            |                                            |                          |                         | SAMI                       | PLE IDENT             | FIFICATION                       | (S) |
| Par<br>METALS<br>S<br>SVOA_A<br>METALS<br>AL<br>BTEX_A0<br>SVOA A | ຊ<br>_AQ_TO<br>ຊ            | SW-8<br>T SW-8<br>SW-8 | 346 6020/6<br>346 8270C<br>346 6020/6<br>346 8260B<br>346 8270C | SIM<br>010    | 1                       |                | 1 11<br>1 12<br>3 40                       | Bottle<br>5 ml plastic<br>iter amber<br>5 ml plastic<br>ml glass v<br>iter amber | bottle<br>bottle<br>bottle | No<br>HM                   | vative<br>NO3<br>Dine<br>NO3<br>CL<br>Dine | No                       | <u>mal Sam</u>          | <u>ple :GA</u>             | IN-FW-20E             | 3-02-032212                      |     |





| Client:<br>Project Nan<br>Project Nur<br>Location:<br>Sampling<br>PROBE-33 | nber:<br>Equipme    | OM-045<br>Gainesv      | ter 2012 G<br>0-12-091                         |                           | e Sampling<br>Dedicated<br>NO |                | Wo                                                                    | eather Con                                       | litions                       | SUNNY 8                                        | 30                                    | Sa    | mpling Er | Da<br>Technic<br>rt Time:<br>od Time: | D: <u>FW-2</u><br>ite: <u>03/21</u><br>ian: <u>Ken F</u><br>03/21/20<br>03/21/20<br>14.72 | /2012 1426<br>Robertson<br>112 1430 |          |
|----------------------------------------------------------------------------|---------------------|------------------------|------------------------------------------------|---------------------------|-------------------------------|----------------|-----------------------------------------------------------------------|--------------------------------------------------|-------------------------------|------------------------------------------------|---------------------------------------|-------|-----------|---------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------|----------|
| Run #                                                                      | Shoe<br>Out         | Surf<br>Close<br>Valve | ace Functi<br>Check<br>Vacuum                  | on Tests<br>Open<br>Valve | Evacuate<br>Container         | Close<br>Vaive | Comments:<br>Position<br>Sampler<br>Locate<br>Port Arm<br>Out<br>Land |                                                  | Sa<br>bbe Loca<br>Shoe<br>Out | ample Colle<br>ated at san<br>Zone<br>Pressure | ection C<br>plin zor<br>Open<br>Valve | hecks |           | Shoe<br>In                            | Pressure<br>in MP (2)                                                                     | Volumes<br>Tubes                    |          |
| 1                                                                          |                     | R                      | V                                              | Ø                         | Ø                             | Ø              | Probe<br>154.2                                                        | 26.88                                            | Ø                             | 20.61                                          | Ø                                     | 20.60 | N         | নি                                    | 26.88<br>26.86                                                                            | 4                                   | -        |
| 2                                                                          | V                   |                        | N                                              | Ø                         |                               |                | 154.4                                                                 | 26.86                                            |                               | 20.61                                          |                                       | 20.61 | <u> </u>  |                                       | 1                                                                                         | L<br>FIFICATION                     | <u>1</u> |
| SAMPLE C<br>Par<br>SVOA A<br>SVOA A<br>BTEX A                              | rameter<br>AQ<br>AQ | SW-                    | ORMATIO<br>846 8270C<br>846 8270C<br>846 8260B | Methoo<br>SIM             | 1                             | Q              | 1 11                                                                  | Bottle<br>iter amber<br>iter amber<br>ml glass v | bottle<br>bottle              | N                                              | vative<br>one<br>one<br>ICL           | Nor   | mal Sam   |                                       |                                                                                           | 3-01-032112                         |          |





| Client:<br>Project Nar<br>Project Nur<br>Location: |             | 1st Quar       | 0-12-091               | ainesville    | e Sampling            |                |                                            | eather Con                        | ditions     | OVERCA                     | AST 75               |                         | ampling Sta     | D:<br>Technie | cian: Ken F           | /2012 1532<br>Robertson |     |
|----------------------------------------------------|-------------|----------------|------------------------|---------------|-----------------------|----------------|--------------------------------------------|-----------------------------------|-------------|----------------------------|----------------------|-------------------------|-----------------|---------------|-----------------------|-------------------------|-----|
| Sampling<br>PROBE-3                                |             | ent            |                        |               | Dedicated<br>NO       |                | Comments:                                  |                                   |             |                            |                      | ŝ                       |                 | nd Time:      | 03/21/20              | 12 1620                 |     |
| Run #                                              |             | Surf           | ace Functi             | on Tests      |                       |                | Position<br>Sampler                        | (Pro                              |             | ample Colle<br>ated at sam |                      |                         | casin <u>q)</u> |               |                       | Volumes<br>Tubes        |     |
|                                                    | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum        | Open<br>Valve | Evacuate<br>Container | Ciose<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1                | Shoe<br>Out | Zone<br>Pressure           | Open<br>Valve        | Zone<br>Pressu<br>e (2) | Close           | Shoe<br>In    | Pressure<br>in MP (2) |                         |     |
| 1                                                  |             |                | Ø                      | V             | Ŋ                     | Ø              | 174.3                                      | 35.44                             | Ø           | 29.25                      | Ŋ                    | 29.25                   | V               | Ø             | 35,44                 | 4                       |     |
| 2                                                  | <u>_</u>    | V              | N                      | V             | V                     | V              | 174.3                                      | 35.42                             | _ <b>√</b>  | 29.25                      | $\square$            | 29.25                   |                 |               | 35.42                 |                         | (5) |
| SAMPLE CO                                          | OLLECT      | ION INFO       | ORMATIO                | N             |                       |                |                                            |                                   |             |                            |                      | L                       |                 |               |                       | TIFICATION              |     |
| Par<br>SVOA_A<br>BTEX_A                            |             |                | 346 8270C<br>346 8260B | Method        | 1                     | Q(             |                                            | Bottle<br>ter amber<br>ml glass v | bottle      |                            | vative<br>one<br>ICL | <u>N</u>                | ormal Sam       | ple :GA       | <u>IN-FW-22E</u>      | 3-02-032112             |     |

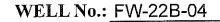
None

SVOA AQ

SW-846 8270C SIM

1 liter amber bottle




WELL No.: FW-22B-03



| Client:<br>Project Nan<br>Project Nun |                  |                |                                     | ainesville    | Sampling              |                |                                   |                                                |                         |                           |                             |                          |                 | Da               | D: <u>FW-2</u><br>nte: <u>03/21</u><br>sian: <u>Ken F</u> | /2012 1500         |   |
|---------------------------------------|------------------|----------------|-------------------------------------|---------------|-----------------------|----------------|-----------------------------------|------------------------------------------------|-------------------------|---------------------------|-----------------------------|--------------------------|-----------------|------------------|-----------------------------------------------------------|--------------------|---|
| Location:                             |                  | Gainesv        | ille                                |               |                       |                | Wo                                | eather Con                                     | ditions                 | OVERCA                    | <u>\ST75</u>                |                          |                 |                  | 00/04/00                                                  | 40.4506            |   |
| Sampling<br>PROBE-35                  |                  | ent            |                                     |               | Dedicated<br>NO       |                |                                   |                                                |                         |                           |                             | Sa                       |                 | nd Time:         | 03/21/20<br>03/21/20<br>14.72                             |                    |   |
| Run #                                 |                  | Surf           | ace Functi                          | on Tests      |                       |                | Comments:<br>Position<br>Sampler  |                                                |                         | ample Coll<br>ated at san |                             | <u>ie in MP c</u>        |                 | 1                | Г <u>_</u>                                                | Volumes<br>Tubes   |   |
|                                       | Shoe<br>Out      | Close<br>Valve | Check<br>Vacuum                     | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land | Pressure<br>In MP1                             | Shoe<br>Out             | Zone<br>Pressure          | Open<br>Valve               | Zone<br>Pressur<br>e (2) | Close<br>Valve  | Shoe<br>In       | Pressure<br>in MP (2)                                     |                    |   |
|                                       |                  |                |                                     |               |                       |                | Probe                             |                                                |                         |                           |                             |                          |                 |                  |                                                           |                    | 1 |
| 1                                     |                  | Ø              | Ø                                   | $\square$     | V                     | V              | 194.0                             | 44.20                                          | $\overline{\mathbf{V}}$ | 37.89                     | $\square$                   | 37.89                    | V               |                  | 44.20                                                     | 4                  | - |
| 2                                     |                  |                |                                     | Ø             | V                     | Ø              | 194.2                             | 44.16                                          | $\square$               | 37.89                     | $\overline{\mathbf{V}}$     | 37.89                    | <u> </u>        |                  | 44.16                                                     | 4                  |   |
| SAMPLE CO                             |                  | ION INF        | ORMATIO                             | N             |                       |                |                                   |                                                |                         |                           |                             | _ L                      |                 |                  |                                                           | <b>TIFICATION</b>  |   |
| 1                                     | ameter<br>Q<br>Q | SW-0           | 846 8270C<br>846 8260B<br>846 8270C | Method        | 1                     | Q              | 3 40                              | Bottle<br>ter amber<br>ml glass v<br>ter amber | bottle<br>⁄ial          |                           | vative<br>one<br>ICL<br>one | Nor                      | <u>mal Sarr</u> | i <u>ple :GA</u> | <u>IN-FW-22E</u>                                          | <u>3-03-032112</u> |   |

SVOA AQ






.....

| Client:<br>Project Nar<br>Project Nur<br>Location:<br>Sampling<br>PROBE-3 | mber:<br>Equipm | 1st Quar<br>OM-045<br>Gainesv | 0-12-091        |               | e Sampling<br>Dedicated<br>NO |                | W                                          | eather Con         | ditions           | <u>SUNNY-</u>             | 30            | Sa                       | unpling Ei              | D:<br>Technic<br>urt Time:<br>nd Time: |                       | 1/2012 1245<br>Robertson<br>012 1256 |         |
|---------------------------------------------------------------------------|-----------------|-------------------------------|-----------------|---------------|-------------------------------|----------------|--------------------------------------------|--------------------|-------------------|---------------------------|---------------|--------------------------|-------------------------|----------------------------------------|-----------------------|--------------------------------------|---------|
| Run #                                                                     |                 | Surf                          | ace Functi      | ion Tests     | 3                             |                | Comments<br>Position<br>Sampler            |                    |                   | ample Coll<br>ated at san |               |                          | asinq)                  |                                        |                       | Volumes<br>Tubes                     |         |
|                                                                           | Shoe<br>Out     | Close<br>Valve                | Check<br>Vacuum | Орел<br>Valve | Evacuate<br>Container         | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out       | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve          | Shoe<br>In                             | Pressure<br>in MP (2) |                                      |         |
| 1                                                                         |                 |                               | Ø               |               |                               |                | 209.0                                      | 51.50              | Ø                 | 44.36                     | Ŋ             | 44,36                    | M                       | $\overline{\mathbf{A}}$                | 51.49                 | 5                                    |         |
| 2                                                                         |                 |                               | <u> </u>        | N             |                               |                | 209.0                                      | 51.43              | V                 | 44.35                     | V             | 44.35                    | Ø                       |                                        | 51.43                 | 5                                    |         |
| 3                                                                         |                 |                               | V               | Ø             | Ø                             | $\Box$         | 209.0                                      | 51.38              | V                 | 44.36                     | Ø             | 44.36                    | Ø                       |                                        | 51.38                 | 5                                    |         |
| 4                                                                         |                 |                               | Ø               | V             | V                             |                | 208.9                                      | 51.35              | $\square$         | 44.36                     | Ø             | 44.36                    | $\overline{\mathbf{V}}$ | V                                      | 51.35                 | 5                                    |         |
| 5                                                                         |                 |                               |                 |               | $\square$                     | Ø              | 208.9                                      | 51.32              | ${\bf \boxtimes}$ | 44.36                     |               | 44.36                    | Ø                       | M                                      | 51.32                 | 5                                    |         |
| 6                                                                         |                 |                               |                 | V             | Ø                             | Ø              | 209.1                                      | 50.78              | Ø                 | 44.36                     |               | 44.36                    |                         |                                        | 50.78                 | 4                                    |         |
| SAMPLE C                                                                  | OLLECT          | ION INF                       | ORMATIO         | N             |                               |                |                                            |                    |                   |                           |               | [                        |                         |                                        |                       | TIFICATION(S                         | 5)      |
| Par                                                                       | rameter         |                               |                 | Metho         | d                             | Q              | uantity                                    | Bottle             | Туре              | Preser                    | vative        |                          |                         |                                        |                       | <u>B-04-032112</u>                   | <u></u> |

SW-846 8270C SIM 1 liter amber bottle None SVOA\_AQ 1 1 liter amber bottle None SW-846 8270C 1 SVOA\_AQ 3 40 ml glass vial HCL BTEX\_AQ SW-846 8260B

MS/MSD Blank :GAIN-FW-22B-04-MS/MSD032112






| Client:<br>Project Nan<br>Project Nun<br>Location: |             | Beazer E<br>1st Quar<br>OM-0450<br>Gainesvi | ter 2012 G<br>)-12-091              | ainesville    | e Sampling            |                | Wo                                         | eather Con                                      | litions       | Sunny 70                   | )                           |                         |                                           | Da         | ian: <u>Ken</u> F     | /2012 0955<br>Robertson   |     |
|----------------------------------------------------|-------------|---------------------------------------------|-------------------------------------|---------------|-----------------------|----------------|--------------------------------------------|-------------------------------------------------|---------------|----------------------------|-----------------------------|-------------------------|-------------------------------------------|------------|-----------------------|---------------------------|-----|
| Sampling<br>Probe-353                              |             | ant                                         |                                     | [             | Dedicated<br>NO       |                | Comments:                                  |                                                 |               |                            |                             | :                       | ampling Sta<br>Sampling Er<br>Ambient Bar | id Time:   | 03/20/20              |                           |     |
| Run #                                              |             | Surfa                                       | ace Functi                          | on Tests      |                       |                | Position<br>Sampler                        |                                                 | be Loca       | ample Colle<br>ated at san | iplin zon                   | e in MP                 |                                           | Phas       | Brogguro              | Volumes<br>Tubes          |     |
|                                                    | Shoe<br>Out | Close<br>Valve                              | Check<br>Vacuum                     | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>in MP1                              | Shoe<br>Out   | Zone<br>Pressure           | Open<br>Valve               | Zone<br>Pressu<br>e (2) | Close<br>r Valve                          | Shoe<br>In | Pressure<br>in MP (2) |                           |     |
| 1                                                  |             |                                             |                                     | Ø             |                       | N              | 321.5                                      | 96.71                                           | ত             | 93.16                      |                             | 93.16                   |                                           | Ø          | 96.71                 | 4                         |     |
| 2                                                  |             |                                             |                                     |               | <u> </u>              | N              | 321.4                                      | 96.70                                           | Ø             | 93.16                      | Ø                           | 93.15                   |                                           |            | 96.70                 |                           | (5) |
| SAMPLE C                                           |             |                                             |                                     | N             |                       |                |                                            |                                                 |               |                            |                             |                         | lormal Sam                                |            |                       | TIFICATION<br>C-01-032012 |     |
| Par<br>BTEX A<br>SVOA A<br>SVOA A                  | NQ          | SW-8                                        | 346 8260B<br>346 8270C<br>346 8270C |               | d                     | Q              | 1 11                                       | Bottle<br>mi glass v<br>ter amber<br>iter amber | ial<br>bottle |                            | vative<br>ICL<br>one<br>one |                         |                                           |            |                       | — —                       |     |

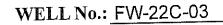


SW-846 8260B

## WESTBAY GROUNDWATER SAMPLE COLLECTION RECORD



| Client:<br>Project Nar<br>Project Nur<br>Location:<br>Sampling<br>Probe-353 | mber:<br>Equipm | 1st Quar<br>OM-045<br>Gainesv | 0-12-091                      |                           | e Sampling<br>Dedicated<br>NO |                | W                                                                             | cather Con                         | ditions | _70 Sunny                                     | <u>.</u>             | Sa     | mpling Sta<br>ampling En<br>mbient Bau | Da<br>Technic<br>art Time:<br>ad Time: | 03/20/20              | 0/2012 0930<br>Robertson<br>012 0930 | ······································ |
|-----------------------------------------------------------------------------|-----------------|-------------------------------|-------------------------------|---------------------------|-------------------------------|----------------|-------------------------------------------------------------------------------|------------------------------------|---------|-----------------------------------------------|----------------------|--------|----------------------------------------|----------------------------------------|-----------------------|--------------------------------------|----------------------------------------|
| Run #                                                                       | Shoe<br>Out     | Surf<br>Close<br>Valve        | ace Functi<br>Check<br>Vacuum | on Tests<br>Open<br>Valve | Evacuate<br>Container         | Close<br>Valve | Comments<br>Position<br>Sampler<br>Locate<br>Port Arm<br>Out<br>Land<br>Probe |                                    |         | ample Coll<br>ated at sam<br>Zone<br>Pressure |                      | hecks  |                                        | Shoe<br>In                             | Pressure<br>in MP (2) | Volumes<br>Tubes                     |                                        |
| 1                                                                           |                 | Ø                             | V                             | V                         | Ø                             | Ø              | 349,4                                                                         | 108.88                             | Ø       | 105.23                                        | Ø                    | 105.22 | Ø                                      |                                        | 108.87                | 4                                    |                                        |
| 2                                                                           | V               |                               |                               | N                         | N                             |                | 349.5                                                                         | 108.85                             | Q       | 105.22                                        | $\square$            | 105.21 | $\square$                              |                                        | 108.85                | 4                                    |                                        |
| SAMPLE CO                                                                   | OLLECT          | ION INFO                      | ORMATIO                       | N                         |                               |                |                                                                               |                                    |         |                                               |                      |        |                                        |                                        |                       | TIFICATION                           |                                        |
| J                                                                           | rameter<br>\Q   | SW-8                          | 346 8270C<br>346 8270C        | Method                    | 1                             | Q              |                                                                               | Bottle<br>iter amber<br>iter amber | bottle  |                                               | vative<br>one<br>one | No     | rmal Sam                               | ple :GA                                | IN-FW-220             | <u>2-02-032012</u>                   |                                        |


HCL

BTEX AQ

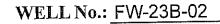
40 ml glass vial

З





| Client:<br>Project Nam<br>Project Num<br>Location: |                  | Beazer E<br>1st Quar<br>OM-0450<br>Gainesvi | ter 2012 G<br>0-12-091              | ainesville    | Sampling              |                |                                            | ather Con                                      | ditions     | Sunny 75                   | )                            |                          |                                       | Da         | ian: <u>Ken F</u> | 2012 1039<br>tobertson    |  |
|----------------------------------------------------|------------------|---------------------------------------------|-------------------------------------|---------------|-----------------------|----------------|--------------------------------------------|------------------------------------------------|-------------|----------------------------|------------------------------|--------------------------|---------------------------------------|------------|-------------------|---------------------------|--|
| Sampling<br>Probe-353                              |                  |                                             |                                     | C             | Dedicated<br>NO       |                |                                            |                                                |             |                            |                              | Sa                       | npling Sta<br>mpling Er<br>nbient Bar | nd Time:   | 03/20/20          |                           |  |
| Run #                                              |                  | Surfa                                       | ace Functi                          | on Tests      |                       |                | Comments:<br>Position<br>Sampler           |                                                |             | imple Colle<br>ited at sam | iplin zor                    | <u>ie in MP ç</u>        | asing)                                |            | Pressure          | Volumes<br>Tubes          |  |
|                                                    | Shoe<br>Out      | Ciose<br>Valve                              | Check<br>Vacuum                     | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1                             | Shoe<br>Out | Zone<br>Pressure           | Open<br>Vaive                | Zone<br>Pressur<br>e (2) | Close<br>Valve                        | Shoe<br>In | in MP (2)         |                           |  |
|                                                    |                  |                                             |                                     | V             | 2                     | N              | 364.6                                      | 115.29                                         | Ø           | 111.69                     | V                            | 111.68                   | ি                                     | Ø          | 115.29            | 4                         |  |
| 1                                                  |                  |                                             | <u> </u>                            |               |                       | M              | 364.0                                      | 115.26                                         |             | 111.68                     | Ø                            | 111.68                   |                                       |            | 115.26            | 4                         |  |
| 2<br>SAMPLE C                                      | OLLECT           | ION INFO                                    |                                     |               |                       |                | 1,                                         | L                                              |             |                            |                              |                          | rmal Sarr                             |            |                   | CIFICATION<br>C-03-032012 |  |
|                                                    | ameter<br>Q<br>Q | SW-8                                        | 346 8270C<br>846 8270C<br>846 8260B | Methoo<br>SIM | 1                     |                | 1 1 1                                      | Bottle<br>ter amber<br>ter amber<br>mi glass v | bottle      | N                          | rvative<br>one<br>one<br>ICL |                          |                                       | 1010 .011  |                   |                           |  |






| Client:               |                   | Beazer                  | East, Inc.  |           |              |              |                    |             |              |            |                   |                  |            | Well      | ID: <u>FW-</u> 2  | 23B-01     |     |
|-----------------------|-------------------|-------------------------|-------------|-----------|--------------|--------------|--------------------|-------------|--------------|------------|-------------------|------------------|------------|-----------|-------------------|------------|-----|
| Project Nar           | ne:               | 1st Qua                 | rter 2012 C | ainesvill | e Sampling   |              |                    |             |              |            |                   |                  |            | D         | ate: <u>03/19</u> | /2012 0937 |     |
| Project Nu            | mber:             | <u>OM-045</u>           | 0-12-091    |           |              |              |                    |             |              |            |                   |                  |            | Techni    | cian: <u>Rory</u> | Hanczar    |     |
| Location;             |                   | Gainesv                 | rille       |           |              |              | W                  | eather Con  | ditions      | _75 degre  | es                |                  |            |           |                   |            |     |
| Pamaling              | Fauinm            | o                       |             |           | Dedicated    |              |                    |             |              |            |                   | Sa               | mpling Sta | urt Time: | 03/19/20          | 12 0940    |     |
| Sampling<br>westbay 3 |                   | eni                     |             |           | NO           |              |                    |             |              |            |                   | s                | ampling E  | nd Time:  | 03/19/20          | )12 1019   |     |
| · · · · · · · · ·     |                   |                         |             |           |              |              |                    |             |              |            |                   |                  | mbient Ba  |           |                   |            |     |
|                       |                   |                         |             |           |              |              | Comments           |             |              |            |                   |                  |            |           |                   |            |     |
| Run #                 |                   | Surf                    | ace Functi  | on Tests  | ;            |              | Position           |             | Sa           | mple Coll  | ection C          | hecks            |            |           |                   | Volumes    |     |
|                       |                   |                         | L           |           |              |              | Sampler            | (Pro        | be Loca      | ted at sam | plin zor          | e in MP          | asing)     | 1         | . <u> </u>        | Tubes      |     |
|                       | Shoe              | Close                   | Check       | Open      | Evacuate     | Close        | Locate<br>Port Arm | Pressure    | Shoe         | Zone       | Open              | Zone             | Close      | Shoe      | Pressure          |            |     |
|                       | Out               | Valve                   | Vacuum      | Valve     | Container    | Valve        | Out                | in MP1      | Out          | Pressure   | Valve             | Pressur<br>e (2) | Valve      | In        | in MP (2)         |            |     |
|                       |                   |                         |             |           |              |              | Land               |             |              |            |                   | C (4/            |            |           |                   |            |     |
|                       |                   |                         |             |           |              |              | Probe              |             |              |            |                   |                  |            | <b> </b>  |                   |            |     |
| 1                     | $\mathbf{\nabla}$ | $\overline{\mathbf{A}}$ |             | $\square$ | $\checkmark$ | $\checkmark$ | 148.5              | 28.46       | $\mathbf{N}$ | 23.25      | $\mathbf{\nabla}$ | 23.25            |            |           | 28.45             | 4          |     |
| 2                     | V                 |                         | V           | Ŋ         | N            | V            | 148.6              | 28.44       | V            | 23.24      | Ŋ                 | 23.24            |            |           | 28.44             | 4          |     |
| SAMPLE CO             | OLLECT            | ION INFO                | ORMATIO     | N         |              |              |                    |             |              |            |                   |                  |            | SAMI      | PLE IDENT         | TFICATION  | (S) |
| Par                   | ameter            |                         |             | Method    |              | Qı           | uantity            | Bottle      | Туре         | Preser     | vative            | No               | rmal Sam   | ple :GA   | IN-FW-23B         | -01-031912 |     |
| SVOA A                | 0                 | SW-8                    | 346 8270C   | SIM       |              |              | 1  1 li            | ter amber l | oottle       | N          | one               |                  |            |           |                   |            |     |

ParameterMethodQuantityBottle TypePreservativeSVOA\_AQSW-846 8270C SIM11 liter amber bottleNoneSVOA\_AQSW-846 8270C11 liter amber bottleNoneBTEX\_AQSW-846 8260B340 ml glass vialHCL





| Client:<br>Project Nan<br>Project Nun<br>Location:<br>Sampling<br>westbay 3 | nc:<br>nber:<br>Equipme | OM-0450<br>Gainesvi | ter 2012 G<br>D-12-091                         |               | Sampling                                                                                    |                | We                                                    | ather Con                                      | litions                        | _sunny 70                       |                             |                                              | npling Sta<br>mpling Er | Da<br>Technic<br>rt Time: | ian: <u>Rory</u><br>03/19/20<br>03/19/20 | /2012 1006<br>Hanczar<br>12 1050 |          |
|-----------------------------------------------------------------------------|-------------------------|---------------------|------------------------------------------------|---------------|---------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------|------------------------------------------------|--------------------------------|---------------------------------|-----------------------------|----------------------------------------------|-------------------------|---------------------------|------------------------------------------|----------------------------------|----------|
| Run #                                                                       |                         | Surf                | ace Functi                                     | on Tests      | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |                | Comments:<br>Position                                 |                                                |                                | ample Colle                     |                             | hecks                                        | abient Bar              | ometric:                  | 14.66                                    | Volumes<br>Tubes                 |          |
|                                                                             | Shoe<br>Out             | Close<br>Valve      | Check<br>Vacuum                                | Орел<br>Valve | Evacuate<br>Container                                                                       | Ciose<br>Valve | Sampler<br>Locate<br>Port Arm<br>Out<br>Land<br>Probe | (Prc<br>Pressure<br>In MP1                     | <u>obe Loca</u><br>Shoe<br>Out | ited at sam<br>Zone<br>Pressure | Open<br>Valve               | <u>e in MP c</u><br>Zone<br>Pressur<br>e (2) | Close<br>Valve          | Shoe<br>In                | Pressure<br>in MP (2)                    | . 10005                          |          |
| 1                                                                           |                         |                     |                                                | Ø             | $\overline{\mathbf{A}}$                                                                     | N              | 167.4                                                 | 37.05                                          | Ø                              | 31.89                           | Ø                           | 31.89                                        | N                       |                           | 37.05<br>37.02                           | 4                                | -        |
| 2                                                                           |                         |                     |                                                |               |                                                                                             |                | 166.9                                                 | 37.02                                          |                                | 31.89                           |                             | 31.89                                        |                         |                           | <u> </u>                                 | L -<br>TIFICATION                | <u> </u> |
| SAMPLE CO<br>Par<br>SVOA A<br>SVOA A<br>BTEX A                              | rameter<br>\Q<br>\Q     | SW-8                | DRMATIO<br>346 8270C<br>346 8270C<br>346 8260B | Methoo<br>SIM | 1                                                                                           | Q              | 1 1 li                                                | Bottle<br>ter amber<br>ter amber<br>ml glass v | bottle<br>bottle               | N                               | vative<br>one<br>one<br>ICL | Nor                                          | mal Sam                 |                           |                                          | 3-02-031912                      |          |



WELL No.: FW-23B-03



| Client:<br>Project Nar<br>Project Nur<br>Location:<br>Sampling<br>westbay 3 | nber:<br>Equipm | 1st Qua<br>OM-045<br>Gainesv                                       | 0-12-091                            |               | e Sampling<br>Dedicated<br>NO |                | W                                          | cather Con                                     | ditions       | _sunny 75                 | 5                          | S                        | mpling Sta<br>ampling Ea<br>nbient Bau | D:<br>Technic<br>art Time:<br>nd Time: | 03/19/20<br>03/19/20  | 0/2012 1126<br>Hanczar<br>012 1120 |  |
|-----------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------|-------------------------------------|---------------|-------------------------------|----------------|--------------------------------------------|------------------------------------------------|---------------|---------------------------|----------------------------|--------------------------|----------------------------------------|----------------------------------------|-----------------------|------------------------------------|--|
| Run #                                                                       |                 | Surf                                                               | ace Functi                          | on Tests      | )                             |                | Comments:<br>Position<br>Sampler           |                                                |               | ampie Coli<br>ated at san |                            | hecks                    |                                        |                                        |                       | Volumes<br>Tubes                   |  |
|                                                                             | Shoe<br>Out     | Close<br>Valve                                                     | Check<br>Vacuum                     | Open<br>Valve | Evacuate<br>Container         | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1                             | Shoe<br>Out   | Zone<br>Pressure          | Open<br>Valve              | Zone<br>Pressur<br>e (2) | Close<br>Valve                         | Shoe<br>In                             | Pressure<br>in MP (2) |                                    |  |
| 1                                                                           | <b>N</b>        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                     | V             | V                             |                | 191.2                                      | 45.69                                          | V             | 40.55                     | Ø                          | 40.55                    |                                        | V                                      | 45.69                 | 4                                  |  |
| 2                                                                           | 2               |                                                                    |                                     |               | V                             |                | 190.6                                      | 45.66                                          | Ø             | 40.54                     | $\Box$                     | 40.54                    | $\square$                              |                                        | 45.65                 | 4                                  |  |
| SAMPLE CO                                                                   | OLLECT          | ION INFO                                                           | ORMATIO                             | N             |                               |                |                                            |                                                |               |                           |                            |                          |                                        |                                        |                       | <b>FIFICATION</b>                  |  |
| Par<br>BTEX_A<br>SVOA_A<br>SVOA_A                                           | .Q              | SW-8                                                               | 346 8260B<br>346 8270C<br>346 8270C |               | 1                             | Q              | 1 1 li                                     | Bottle<br>ml glass v<br>ter amber<br>ter amber | ial<br>bottle | N                         | vative<br>CL<br>one<br>one | No                       | rmal Sam                               | i <u>ple :GA</u>                       | <u>IN-FW-23E</u>      | <u>3-03-031912</u>                 |  |

4

- -





|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |               |                       |                |                   |                          |         |                            |                |                         |            | Well I   | D: <u>FW-2</u> | 3B-04             |     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|---------------|-----------------------|----------------|-------------------|--------------------------|---------|----------------------------|----------------|-------------------------|------------|----------|----------------|-------------------|-----|
| Client:    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Beazer E | East, Inc.        |               |                       |                |                   |                          |         |                            |                |                         |            |          |                | /2012 1201        |     |
| Project Na |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1st Quar | <u>ter 2012 G</u> | ainesville    | Sampling              |                |                   |                          |         |                            |                |                         |            |          | ian: Rory      |                   |     |
| Project Nu |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OM-045   | 0-12-091          |               |                       |                |                   |                          |         | 75                         | 1              |                         |            | Itenne   |                |                   |     |
| Location:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gainesvi | ille              |               |                       |                | We                | eather Conc              | litions | sunny 75                   | degrees        |                         |            |          | 00/40/00       | 40.4000           |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |               |                       |                |                   |                          |         |                            |                | Sar                     | npling Sta | rt Time: |                |                   |     |
| Sampling   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ent      |                   | <u> </u>      | Dedicated<br>NO       |                |                   |                          |         |                            |                | Sa                      | mpling Er  | id Time: | 03/19/20       | 12 1240           |     |
| westbay 3  | 3553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                   |               |                       |                |                   |                          |         |                            |                | An                      | nbient Bar | ometric: | 14.66          |                   |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |               |                       |                |                   |                          |         |                            |                | 1.00                    |            |          |                |                   |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |               |                       |                | Comments          |                          |         |                            |                | <b>I</b>                |            |          |                | Volumes           |     |
| Run #      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Surf     | ace Functi        | on Tests      |                       |                | Position          | (5                       | Sa      | ampie Colle<br>ated at sam | ection C       | necks<br>oin MP c       | asing)     |          |                | Tubes             |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |               |                       |                | Sampler<br>Locate | Pressure                 | Shoe    | Zone                       | Орел           | <u>е плил о</u><br>Zone | Close      | Shoe     | Pressure       |                   |     |
|            | Shoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Close    | Check<br>Vacuum   | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Port Arm          | In MP1                   | Out     | Pressure                   | Valve          | Pressur                 | Valve      | in       | in MP (2)      |                   |     |
|            | Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Valve    | vacuum            | VAIVE         | oontaine.             |                | Out               |                          |         |                            |                | e (2)                   |            |          |                |                   |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                   |               |                       |                | Land<br>Probe     |                          |         |                            |                |                         |            |          |                |                   |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | <u> </u>          |               |                       | <u> </u>       | 210.0             | 54.31                    | Ø       | 49.20                      | Ø              | 49.20                   | V          | M        | 54.11          | 4 tubes           |     |
| 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | <u> </u>          |               |                       | <u> </u>       | 210.0             | 54.07                    |         | 49.21                      |                | 49.21                   | N          |          | 54.07          | 2 tubes           |     |
| 2          | $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                   | $\Box$        | <u> </u>              | <u></u>        |                   | 53.08                    |         | 49,21                      |                | 49.21                   | <u> </u>   | R        | 53.08          | 2 tubes           |     |
| 3          | $\overline{\mathbf{A}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Box$   |                   | $\Box$        |                       | V              | 210.3             | 53.06                    |         | 40.21                      |                |                         |            |          | PLE IDEN       | <b>FIFICATION</b> | (S) |
| SAMPLE     | COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ION INF  | ORMATIO           | N             |                       |                |                   |                          |         |                            |                |                         | mal Sam    |          |                | 3-04-031912       |     |
|            | rameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                   | Metho         | 1                     | Q              | uantity           | Bottle                   |         |                            | rvative<br>one |                         | inal San   |          |                |                   |     |
| SVOA       | and the second se |          | 846 82700         |               |                       |                |                   | iter amber<br>ml glass v |         |                            | ICL            |                         |            |          |                |                   |     |
| BTEX_      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 846 8260B         |               |                       |                |                   | iter amber               |         |                            | one            |                         |            |          |                |                   |     |

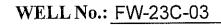
SVOA AQ

SW-846 8270C





| Client:<br>Project Nan<br>Project Nun<br>Location:<br>Sampling<br>Westbay 2 | nber:<br>Equipm  | 1st Quar<br>OM-045<br>Gainesv | 0-12-091                            |                           | e Sampling<br>Dedicated<br>NO |                | W                                                     | eather Con                                     | ditions       | Partly CI                                     | oudy 70                    |                                     | Sampling Sta<br>Sampling E<br>Ambient Ba | D<br>Techni<br>art Time:<br>nd Time: | cian: <u>Greg</u><br>3/21/201<br>3/21/201 | I/2012 1100<br>Bzorek<br>12 1145 |     |
|-----------------------------------------------------------------------------|------------------|-------------------------------|-------------------------------------|---------------------------|-------------------------------|----------------|-------------------------------------------------------|------------------------------------------------|---------------|-----------------------------------------------|----------------------------|-------------------------------------|------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------|-----|
| Run #                                                                       | Shoe<br>Out      | Surf<br>Close<br>Valve        | ace Functi<br>Check<br>Vacuum       | on Tests<br>Open<br>Valve | Evacuate<br>Container         | Close<br>Vaive | Comments<br>Position<br>Sampler<br>Locate<br>Port Arm |                                                |               | ample Coll<br>ated at san<br>Zone<br>Pressure |                            | hecks<br>le in MF<br>Zone<br>Pressi | casing)<br>Close                         | Shoe<br>In                           | Pressure<br>in MP (2)                     | Volumes<br>Tubes                 |     |
| 1                                                                           | unang'           |                               |                                     |                           |                               | <b>F</b> 7     | Out<br>Land<br>Probe<br>312.5                         | 95.64                                          | <u></u>       | 92.82                                         | <u></u>                    | e (2)<br>92.8                       |                                          | ম                                    | 95.65                                     | 4                                |     |
| 2                                                                           | <u>N</u>         | <u> 7</u>                     |                                     | <u>N</u>                  | <u> </u>                      | <u> </u>       | 313.1                                                 | 95.62                                          | M             | 92.82                                         |                            | 92.82                               |                                          |                                      | 95.64                                     | 4                                |     |
| SAMPLE CO                                                                   | ·                |                               |                                     |                           |                               | دينا (         | <u></u>                                               | L                                              |               | 4                                             |                            | [                                   |                                          | SAM                                  | PLE IDENT                                 | <b>TIFICATION</b>                | (S) |
|                                                                             | ameter<br>Q<br>Q | SW-8<br>SW-8                  | 346 8260B<br>346 8270C<br>346 8270C | Method                    | ł                             |                | 1 1 li                                                | Bottle<br>ml glass v<br>ter amber<br>ter amber | ial<br>bottle | N                                             | vative<br>CL<br>one<br>one | <u> </u>                            | ormal Sam                                | iple :GA                             | IN-FW-230                                 | <u>2-01-032112</u>               |     |

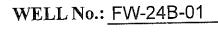

SVOA\_AQ



WELL No.: FW-23C-02

| Client:<br>Project Nan<br>Project Nun<br>Location:<br>Sampling<br>west bay 2 | nc:<br>nber:<br><br>Equipme | OM-045<br>Gainesvi     | <u>ter 2012 G</u><br>0-12-091       |                           | Sampling<br>Dedicated<br>NO |                | Wo                                                                    | eather Cond                                     | litions       | _70 sunny                                      |                             | Sa     |                          | Da<br>Technic<br>rt Time:<br>ad Time: | ian: <u>Grea</u><br>03/21/20<br>03/21/20 | /2012 1102<br>Bzorek<br>112 1225 |  |
|------------------------------------------------------------------------------|-----------------------------|------------------------|-------------------------------------|---------------------------|-----------------------------|----------------|-----------------------------------------------------------------------|-------------------------------------------------|---------------|------------------------------------------------|-----------------------------|--------|--------------------------|---------------------------------------|------------------------------------------|----------------------------------|--|
| Run #                                                                        | Shoe<br>Out                 | Surf<br>Close<br>Valve | ace Functi<br>Check<br>Vacuum       | on Tests<br>Open<br>Valve | Evacuate<br>Container       | Close<br>Valve | Comments:<br>Position<br>Sampler<br>Locate<br>Port Arm<br>Out<br>Land |                                                 |               | ample Colle<br>ated at sam<br>Zone<br>Pressure |                             | hecks  | asing)<br>Close<br>Valve | Shoe<br>In                            | Pressure<br>in MP (2)                    | Volumes<br>Tubes                 |  |
| 1                                                                            |                             | <u></u>                |                                     | V                         |                             | V              | Probe<br>344.7                                                        | 109.49                                          | Ø             | 106.63                                         |                             | 106.63 | V                        | Ø                                     | 109.49                                   | 4                                |  |
| 2                                                                            | <u> 7</u>                   | <u></u>                |                                     |                           | <br>                        |                | 344.8                                                                 | 109.49                                          |               | 106.63                                         | V                           | 106.63 | V                        | Ø                                     | 109.48                                   | 4                                |  |
| L                                                                            |                             |                        |                                     |                           |                             | I              | <u> </u>                                                              | <b>L</b>                                        |               |                                                |                             |        |                          |                                       |                                          | <b>FIFICATION</b>                |  |
| SAMPLE CO<br>Par<br>BTEX_A<br>SVOA_A<br>SVOA_A                               | ameter<br>Q<br>NQ           | SW-8<br>SW-1           | 346 8260B<br>346 8270C<br>346 8270C | Method                    | 1                           |                | 1 11                                                                  | Bottle<br>ml glass v<br>ter amber<br>iter amber | ial<br>bottie | N                                              | vative<br>ICL<br>one<br>one | Nor    | mal Sam                  | ple :GA                               | <u>IN-FW-230</u>                         | <u> 2-02-032112</u>              |  |





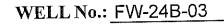

| Client:<br>Project Nan<br>Project Nur<br>Location:                                                                                                              |             |                | ter 2012 G<br>0-12-091 |                         | e Sampling            |                | W                                          | cather Con         | ditions                 | 70 partly        | cloudy            | Sar                      | npling Sta     | Da<br>Technic | eian: <u>Greg</u>     | /2012 0945<br>Bzorek |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|-------------------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------------------|------------------|-------------------|--------------------------|----------------|---------------|-----------------------|----------------------|--------------|
| Sampling<br>westbay 2                                                                                                                                           |             | ent            |                        | 1                       | Dedicated<br>NO       |                |                                            |                    |                         |                  |                   | Sa                       | mpling Er      | nd Time:      | 03/21/20              | 12 1120              |              |
|                                                                                                                                                                 |             |                |                        |                         |                       |                |                                            |                    |                         |                  |                   | An                       | nbient Bar     | rometric:     | 14.69                 |                      |              |
| Run #     Surface Function Tests     Position     Sample Collection Checks     Volumes       Sampler     (Probe Located at samplin zone in MP casing)     Tubes |             |                |                        |                         |                       |                |                                            |                    |                         |                  |                   |                          |                |               | 1                     |                      |              |
| Run #                                                                                                                                                           |             | Surf           | ace Functi             | on Tests                | i                     |                | Position<br>Sampler                        | (Dec               |                         |                  |                   |                          | asing)         |               |                       | Volumes<br>Tubes     |              |
|                                                                                                                                                                 | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum        | Open<br>Valve           | Evacuate<br>Container | Ciose<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>in MP1 | Shoe<br>Out             | Zone<br>Pressure | Open<br>Valve     | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In    | Pressure<br>in MP (2) | Tubes                |              |
| 1                                                                                                                                                               |             |                | Ø                      | $\overline{\mathbf{A}}$ | <b>V</b>              | Ø              | 364.2                                      | 117.36             | V                       | 115.27           | Ø                 | 115.27                   | Ø              | V             | 117.36                | 2                    |              |
| 2                                                                                                                                                               | <br>[]      |                |                        | V                       | V                     | Ø              | 364.2                                      | 117.34             | V                       | 115.27           | ${\bf \boxtimes}$ | 115.27                   | $\square$      | N             | 117.35                | 2                    | -            |
| 3                                                                                                                                                               |             | M              | Ø                      | V                       | V                     | M              | 364.2                                      | 117.29             | $\overline{\mathbf{V}}$ | 115.26           | Ø                 | 115.26                   | Ø              | Ø             | 117.29                | 2                    | T            |
| 4                                                                                                                                                               | Q           | N              | $\mathbf{\nabla}$      | N                       | $\Box$                | Ø              | 364.2                                      | 117.29             | Ø                       | 115.26           | $\Box$            | 115.26                   | Ŋ              |               | 117.28                | 2                    | <u> </u>     |
| SAMPLE CO                                                                                                                                                       | DLLECT      | ION INFO       | ORMATIO                | N                       |                       |                |                                            |                    |                         |                  |                   | _ L                      |                | SAMI          | PLE IDENT             | IFICATION            | . <u>(S)</u> |

| Parameter | Method           | Quantity | Bottle Type          | Preservative |
|-----------|------------------|----------|----------------------|--------------|
| SVOA AQ   | SW-846 8270C SIM | 1        | 1 liter amber bottle | None         |
| SVOA AQ   | SW-846 8270C     | 1        | 1 liter amber bottle | None         |
| BTEX AQ   | SW-846 8260B     | 3        | 40 ml glass vial     | HCL          |

Normal Sample :GAIN-FW-23C-03-032112






|              |                                |          |            |            |            |       |                    |             |             |                    |            |         |            | Well I   | D: <u>FW-2</u>   | <u>4B-01</u>      |        |
|--------------|--------------------------------|----------|------------|------------|------------|-------|--------------------|-------------|-------------|--------------------|------------|---------|------------|----------|------------------|-------------------|--------|
| Client:      | _                              | Beazer E |            |            |            |       |                    |             |             |                    |            |         |            |          |                  | /2012 0851        |        |
| Project Nar  | ne:                            | 1st Quar | ter 2012 G | ainesville | e Sampling |       |                    |             |             |                    |            |         |            |          | ian: Greg        |                   |        |
| 5            |                                | OM-045   |            |            |            |       |                    |             |             |                    |            |         |            | Technic  | lan: <u>oreg</u> | DZOTCK            |        |
| Project Nu   | nder: _                        | Gainesvi |            |            |            |       |                    | eather Con  | ditions     | 70 sunny           |            |         |            |          |                  |                   |        |
| Location:    |                                | OBINOSVI |            |            |            |       |                    |             |             |                    |            | Sa      | mpling Sta | rt Time: | 03/22/20         | 12 0910           |        |
| Sampling     | Equipmo                        | ont      |            |            | Dedicated  |       |                    |             |             |                    |            |         |            |          |                  | 12 0920           |        |
| Westbay 2    |                                |          |            |            | NO         |       |                    |             |             |                    |            | S       | umpling Er | d Time:  | ······           | 12 0020           |        |
| t to a bay a |                                |          |            |            |            |       |                    |             |             |                    |            | A       | nbient Bar | ometric: | 14.70            |                   |        |
|              |                                |          |            |            |            |       | -                  |             |             |                    |            |         |            |          |                  |                   |        |
|              |                                |          |            |            |            |       | Comments:          |             |             |                    | N 0        | haalka  |            |          |                  | Volumes           |        |
| Run #        | [                              | Surf     | ace Functi | ion Tests  | ì          |       | Position           |             | Sa          | mple Coll          | ection C   | DECKS   | aeina)     |          |                  | Tubes             |        |
|              |                                |          |            |            |            |       | Sampler            |             |             | ted at sam<br>Zone | Open       | Zone    | Close      | Shoe     | Pressure         | 10200             |        |
|              | Shoe                           | Close    | Check      | Орел       | Evacuate   | Close | Locate<br>Port Arm | Pressure    | Shoe<br>Out | Zone               | Valve      | Pressur | Valve      | Іл       | in MP (2)        |                   |        |
|              | Out                            | Valve    | Vacuum     | Valve      | Container  | Valve | Out                | in MP1      |             | 1-1622016          | Juire      | e (2)   |            |          |                  |                   |        |
|              |                                | 1        |            |            |            |       | Land               |             |             |                    |            |         |            |          |                  |                   |        |
|              |                                |          |            |            |            |       | Probe              |             |             |                    |            |         |            | <u> </u> |                  |                   | -      |
| 1            |                                |          |            | Ø          | Ø          |       | 164.3              | 26.31       | Ø           | 23.99              | $\square$  | 23.99   |            |          | 26.31            | 5                 | ,<br>, |
|              |                                |          |            |            |            |       | 164.2              | 26.28       |             | 23.99              | Ø          | 23.99   |            | $\Box$   | 26.28            | 5                 |        |
| 2            |                                | V        |            |            |            |       |                    |             |             | <u> </u>           |            |         |            | SAM      | PLE IDEN         | <b>FIFICATION</b> | (S)    |
| SAMPLE C     | OLLECT                         | ION INFO | ORMATIO    | N          |            |       |                    |             |             |                    |            |         | rmal Sam   |          |                  | 3-01-032212       |        |
| Pa           | rameter                        |          |            | Metho      | d          | Q     | uantity            | Bottle      |             | Preser             |            |         | innar Jan  |          |                  |                   |        |
|              | SVOA_AQ SW-846 8270C SIM       |          |            |            |            |       |                    | iter amber  |             |                    | one<br>NO3 |         |            |          |                  |                   |        |
| METALS       | METALS_AQ_TOT SW-846 6020/6010 |          |            |            |            |       | 1 12               | 5 ml plasti | c pome      |                    | 100        |         |            |          |                  |                   |        |
| AL           | AL                             |          |            |            |            |       | 4 4                | iter amber  | bottle      | N                  | one        |         |            |          |                  |                   |        |
|              | SVOA_AQ SW-846 8270C           |          |            |            |            |       |                    | 5 ml plasti |             |                    | NO3        |         |            |          |                  |                   |        |
|              | METALS_AQ_DIS SW-846 6020/6010 |          |            |            |            |       | 1 12               | о на рідов  |             |                    |            |         |            |          |                  |                   |        |
|              | S SW 846 8260B                 |          |            |            |            |       | 3 40               | mi glass v  | /ial        |                    | ICL        | 1       |            |          |                  |                   |        |
| BTEX A       | X AQ SW-846 8260B              |          |            |            |            |       | <u> </u>           |             |             |                    |            | ł       |            |          |                  |                   |        |

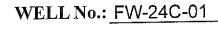




| Client:      | -           | Beazer         | East, Inc.      |               |                       |                |                                            |                    |             |                            |               |                          |                | Well       | ID: <u>FW-2</u>       | 24B-02           |    |
|--------------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|----------------------------|---------------|--------------------------|----------------|------------|-----------------------|------------------|----|
| Project Na   | ne: _       | 1st Qua        | rter 2012 (     | Gainesvill    | e Sampling            |                |                                            |                    |             |                            |               |                          |                | D          | ate: <u>03/22</u>     | 2/2012 0832      |    |
| Project Nu   | mber: _     |                | i0-12-091       |               |                       |                |                                            |                    |             |                            |               |                          |                | Techni     | cian: <u>Greg</u>     | Bzorek           |    |
| Location:    |             | Gainesv        | rille           |               |                       |                | W                                          | eather Con         | ditions     | 70 sunny                   | / cloudy      |                          |                |            |                       |                  |    |
| Sampling     | Equipme     | ont.           |                 |               | Dedicated             |                |                                            |                    |             |                            |               | Sa                       | mpling Sta     | art Time:  | . 03/22/20            | 012 0840         |    |
| Westbay 2    |             | -11(           |                 |               | NO                    |                |                                            |                    |             |                            |               | Sa                       | umpling Er     | nd Time:   | : 03/22/20            | 012 0850         |    |
|              |             |                |                 |               |                       |                |                                            |                    |             |                            |               | Aı                       | nbient Bar     | rometric   | : 14.70               |                  |    |
|              |             |                |                 |               |                       |                | Comments                                   | :                  |             |                            |               |                          |                |            |                       |                  |    |
| Run #        |             | Surf           | ace Funct       | ion Tests     | i                     |                | Position<br>Sampler                        | (Pro               |             | ample Colle<br>Ited at sam |               |                          | asing)         |            |                       | Volumes<br>Tubes |    |
|              | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Ореп<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure           | Ореп<br>Valve | Zопе<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In | Pressure<br>in MP (2) | 10000            |    |
| 1            | N           |                | M               | V             | <b>V</b>              | V              | 184.2                                      | 35.03              |             | 32.62                      | Ø             | 32.62                    | N              |            | 35.03                 | 5                |    |
| 2            | <u> </u>    | V              | Ø               | V             | V                     | Ø              | 184.2                                      | 35.01              | V           | 32.62                      | V             | 32.62                    | Ŋ              |            | 35.01                 | 5                |    |
| SAMPLE CO    | OLLECTI     | ON INFO        | ORMATIO         | N             |                       |                |                                            |                    |             |                            |               |                          |                | SAMI       | PLE IDENT             | TIFICATION(      | S) |
|              | ameter      |                |                 | Method        |                       | Qı             | uantity                                    | Bottle             |             | Preser                     | vative        |                          | mal Sam        | ple :GA    | IN-FW-248             | 3-02-032212      |    |
| BTEX_A       |             |                | 346 8260B       |               |                       |                |                                            | ml glass vi        |             |                            | CL            |                          |                |            |                       |                  |    |
| METALS<br>AL | _AQ_TO      | r  SW-8        | 346 6020/6      | 010           |                       |                | 1 12                                       | 5 ml plastic       | bottle      | НИ                         | 103           |                          |                |            |                       |                  |    |
| SVOA_A       |             |                | 346 8270C       | SIM           |                       |                |                                            | ter amber l        |             |                            | one           |                          |                |            |                       |                  |    |
| SVOA_A       |             |                |                 |               |                       |                |                                            | ter amber l        |             |                            | one           |                          |                |            |                       |                  |    |
| METALS<br>S  | _AQ_DIS     | SW-8           | 346 6020/6      | 010           |                       |                | 1 12                                       | 5 ml plastic       | bottle      | HH                         | 103           |                          |                |            |                       |                  |    |






|             |                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         |          |              |          |            |                  |            |                    | Well I   | d: <u>EW-2</u>   | 4B-03             |                                        |
|-------------|-----------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------|----------|--------------|----------|------------|------------------|------------|--------------------|----------|------------------|-------------------|----------------------------------------|
| Client:     | -                                                               | Beazer E |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         |          |              |          |            |                  |            |                    | Da       | te: 03/21        | /2012 1602        |                                        |
| Project Nan | ne:                                                             | 1st Quar | ter 2012 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ainesville | e Sampling |                         |          |              |          |            |                  |            |                    |          | ian: <u>Greq</u> |                   |                                        |
| ľ           |                                                                 | OM-045   | 0-12-091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |            |                         |          |              |          |            |                  |            |                    | lecanic  | tan: <u>oleq</u> | DZOTOR            |                                        |
| Project Nur | nder: .                                                         | Gainesv  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         |          | eather Con   | litions  | 70 partly  | cloudy           |            |                    |          |                  |                   |                                        |
| Location:   |                                                                 | Gainesv  | INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |            |                         |          |              |          |            |                  | <b>O</b> - |                    | et Timor | 03/21/20         | 12 1620           |                                        |
| <u> </u>    |                                                                 | 4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r          | Dedicated  |                         |          |              |          |            |                  |            | mpling Sta         |          |                  |                   |                                        |
| Sampling    |                                                                 | ent      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L          | NO         |                         |          |              |          |            |                  | S          | ampling Er         | nd Time: | 03/21/20         | 1Z 1025           |                                        |
| west bay 2  | 2499                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         |          |              |          |            |                  | ۵          | mbient Bar         | ometric: | 14.66            |                   |                                        |
|             |                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 1          |                         |          |              |          |            |                  | <i>2</i> K |                    | 011101   |                  |                   |                                        |
|             |                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         | Comments |              | <u> </u> |            |                  |            |                    |          |                  |                   | ······································ |
|             | I                                                               |          | ace Functi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an Toete   |            |                         | Position | 1            |          | ample Coll |                  |            |                    |          |                  | Volumes           |                                        |
| Run #       |                                                                 | Sun      | ace Funcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UII Tests  | 1          |                         | Sampler  | (Pro         | be Loca  | ted at san | <u>iplin zor</u> | e in MP (  | casing)            | 1        | ·                | Tubes             |                                        |
|             | Shoe                                                            | Close    | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Орел       | Evacuate   | Close                   | Locate   | Pressure     | Shoe     | Zone       | Open             | Zопе       | Close              | Shoe     | Pressure         |                   |                                        |
|             | Out                                                             | Valve    | Vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Valve      | Container  | Vaive                   | Port Arm | In MP1       | Out      | Pressure   | Valve            | Pressur    | Valve              | In       | in MP (2)        |                   |                                        |
|             |                                                                 | Valve    | YOCULIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14115      |            |                         | Out      |              |          |            |                  | e (2)      |                    |          |                  |                   |                                        |
|             |                                                                 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1          |                         | Land     |              |          |            |                  |            |                    |          | 1                |                   |                                        |
|             |                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         | Probe    |              | ļ        |            | <u> </u>         |            |                    |          | 43.85            | 5                 |                                        |
| 1           |                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M          | N          | $\overline{\mathbf{A}}$ | 204.2    | 43.85        |          | 41.24      |                  | 41.24      |                    |          | L                |                   | 1                                      |
|             |                                                                 |          | Image: Second se |            |            | Q                       | 204.1    | 43.82        |          | 41.24      | $\square$        | 41.24      |                    |          | 43.82            | 5                 |                                        |
| 2           |                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L          |            |                         | _l       |              | 1        | 1 <u></u>  | 1··              |            | <u>2484 - 288.</u> | SAM      | PLE IDEN         | <b>TIFICATION</b> | (S)                                    |
| SAMPLE C    | OLLECT                                                          | ION INF  | ORMATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N          |            |                         |          |              |          |            |                  |            | rmal Sam           |          |                  | 3-03-032112       |                                        |
| Pai         | rameter                                                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Metho      | d          | Q                       | uantity  | Bottle       |          |            | vative           |            | innai oan          |          |                  | 00 002 12         |                                        |
|             | Parameter         Method           SVOA AQ         SW-846 8270C |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         |          | liter amber  |          |            | опе              |            |                    |          |                  |                   |                                        |
| 1           | SVOA AQ SW-846 8270C SIM                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         |          | liter amber  |          |            | one              |            |                    |          |                  |                   |                                        |
|             | METALS_AQ_DIS SW-846 6020/6010                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         | 1 1:     | 25 ml plasti | c bottle |            | NO3              |            |                    |          |                  |                   |                                        |
| S           |                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         |          |              |          |            |                  |            |                    |          |                  |                   |                                        |
|             | S_AQ_TO                                                         | DT SW-   | 846 6020/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5010       |            | 1                       | 1 1      | 25 ml plasti | c bottie | Н          | NO3              |            |                    |          |                  |                   |                                        |
| AL          |                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |                         |          |              | I        | <u> </u>   | ICL              | 4          |                    |          |                  |                   |                                        |
| BTEX A      | NQ.                                                             | SW-      | 846 8260E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | }          |            |                         | 3 4      | 0 ml glass v | nal      |            |                  |            |                    |          |                  |                   |                                        |



WELL No.: FW-24B-04

| Client:      | _        | Beazer E | East, Inc. |             |            |        |                    |              |                         |            |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | D: <u>FW-2</u>               |                |          |
|--------------|----------|----------|------------|-------------|------------|--------|--------------------|--------------|-------------------------|------------|-----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|----------------|----------|
| Project Nan  | ne: _    | 1st Quar | ter 2012 G | Bainesville | e Sampling |        |                    |              |                         |            |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                              | /2012 1642     | <u> </u> |
| Project Nur  | nber:    | OM-045   | 0-12-091   |             |            |        |                    |              |                         |            |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Technic                 | ian: <u>Greg</u>             | Bzorek         |          |
| Location:    |          | Gainesv  | ille       |             |            |        | W                  | eather Con   | ditions                 | 70 SUNN    | ۱Y<br>۱   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                              |                |          |
|              |          |          |            |             |            |        |                    |              |                         |            |           | ¢.              | ampling Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ert Time-               | 03/21/20                     | 012 1715       |          |
| Sampling     |          | ent      |            | I           | Dedicated  |        |                    |              |                         |            |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 00/04/00                     | )12 1809       |          |
| west bay 2   | 499      |          |            |             | NO         |        |                    |              |                         |            |           | 5               | ampling Er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | id Time:                |                              | 12 1000        |          |
|              |          |          |            |             |            |        |                    |              |                         |            |           | A               | mbient Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ometric:                | 14.66                        |                |          |
|              |          |          |            |             |            |        | Comments           |              |                         |            |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                              |                |          |
| Run #        |          | Surfa    | ace Functi | ion Tests   |            |        | Position           |              | Şa                      | ample Coll | ection C  | hecks           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                              | Volumes        |          |
| ,,           |          |          |            |             |            |        | Sampler            |              |                         | ted at sam |           | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                       |                              | Tubes          |          |
|              | Shoe     | Close    | Check      | Open        | Evacuate   | Close  | Locate<br>Port Arm | Pressure     | Shoe                    | Zone       | Open      | Zone<br>Pressur | Close<br>Valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shoe<br>In              | Pressure<br>in MP (2)        |                |          |
|              | Out      | Valve    | Vacuum     | Valve       | Container  | Valve  | Out                | In MP1       | Out                     | Pressure   | Valve     | e (2)           | Valve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$17                    | 111 IWF (&)                  |                |          |
|              |          |          |            |             |            |        | Land               |              |                         |            |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                              |                |          |
|              |          |          |            |             |            |        | Probe              |              |                         |            |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                              | 1              | -        |
| 1            | V        | Ø        | Ø          | V           | $\square$  | $\Box$ | 224.1              | 52.46        | $\Box$                  | 49.88      | M         | 49.89           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 52,46                        | 5              | 1        |
| 2            | <br>     |          | Ø          | N           | N          |        | 224.3              | 52.45        | $\square$               | 49.88      | $\Box$    | 49.88           | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\overline{\mathbf{V}}$ | 52.45                        | 5              | _        |
| 3            | <u>N</u> |          | Ø          | V           | Q          | Ø      | 224.2              | 52.41        | $\overline{\mathbf{v}}$ | 49.88      | $\square$ | 49.88           | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\square$               | 52.41                        | 5              | -        |
| 4            | <br>7    |          | <u> </u>   | <u> </u>    |            |        | 224.3              | 52.43        | Ø                       | 49.88      | V         | 49.89           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\square$               | 52.43                        | 5              |          |
| SAMPLE CO    |          | L        | · ·····    |             |            |        |                    |              |                         |            |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMI                    | PLE IDENT                    | TIFICATION     | i(S)     |
|              | ameter   |          |            | Method      | 4          | 0      | uantity            | Bottle       | Туре                    | Preser     | vative    | <u>No</u>       | ormal Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pie :GA                 | IN-FW-24E                    | 3-04-032112    | 1        |
| SVOA A       |          | Isw-8    | 46 8270C   |             |            |        |                    | ter amber    |                         |            | one       |                 | and the second sec |                         | ilterBlank-(                 |                |          |
| SVOA_A       |          |          | 46 8270C   |             |            |        | 1 1 ii             | ter amber    | bottle                  |            | опе       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | B-03-0321                    |                |          |
| METALS       | AQ_DIS   | SW-8     | 46 6020/6  | 010         |            |        | 1 12               | 5 ml plastic | : bottle                | H          | VO3       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | <u>AIN-EB-03</u><br>N-FW-99D |                |          |
| S            |          |          |            |             |            |        |                    |              |                         |            | 103       |                 | nu Dupilca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 11-1-1-1-330                 | <u>~002112</u> |          |
| METALS<br>AL | _AQ_TO   | T  SW-8  | 346 6020/6 | 010         |            |        | 1 12               | 5 ml plastic | : Dottle                |            | NO3       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                              |                |          |
| BTEX_A       | Q        | sw-8     | 46 8260B   |             |            |        | 3 40               | mi glass v   | ial                     | Н          | CL        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                              |                |          |
| <u> </u>     |          |          |            |             |            |        |                    |              |                         |            |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                              |                |          |



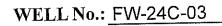


|           |          |          |                   |            |            |       |             |                          |         |                    |               |                  |            | Well I    | D: <u>FW-2</u>        | 4C-01             | ······· |
|-----------|----------|----------|-------------------|------------|------------|-------|-------------|--------------------------|---------|--------------------|---------------|------------------|------------|-----------|-----------------------|-------------------|---------|
| Client:   | -        | Beazer E |                   |            |            |       |             |                          |         |                    |               |                  |            | Da        | te: <u>03/21</u>      | /2012 1452        |         |
| Project N | ame:     | 1st Quar | <u>ter 2012 G</u> | ainesville | e Sampling |       |             |                          |         |                    |               |                  |            |           | ian: <u>Greq</u>      |                   |         |
| Project N | umber:   | OM-045   | 0-12-091          |            |            |       | <u>.</u>    |                          |         |                    |               |                  |            | Ittinit   |                       |                   |         |
| Location: |          | Gainesv  | ille              |            |            |       | Wi          | eather Con               | litions | 70 cloud           | У             |                  |            |           |                       |                   |         |
|           |          |          |                   |            |            |       |             |                          |         |                    |               | Sa               | mpling Sta | rt Time:  | 03/21/20              | 12 1510           | <u></u> |
| Samplin   | g Equipm | ent      |                   | ]          | Dedicated  |       |             |                          |         |                    |               |                  |            |           | 03/21/20              | 12 1515           |         |
| west bay  | 2499     |          |                   |            | NO         |       |             |                          |         |                    |               |                  |            |           |                       |                   |         |
|           |          |          |                   |            |            |       |             |                          |         |                    |               | A                | nbient Bar | ometric:  | 14.00                 |                   |         |
|           |          |          |                   |            |            |       | Comments:   |                          |         |                    |               |                  |            |           |                       |                   |         |
|           | 1        |          | ace Functi        | an Tanta   |            |       | Position    |                          | Sa      | ample Colle        | ection C      | hecks            |            |           |                       | Volumes           |         |
| Run #     |          | Sur      | асе нипси         | on tests   | i          |       | Sampler     | (Pro                     |         | <u>ited at saπ</u> |               |                  | asing)     | T         |                       | Tubes             |         |
|           | Shoe     | Close    | Check             | Open       | Evacuate   | Close | Locate      | Pressure                 | Shoe    | Zone               | Ореп          | Zone             | Close      | Shoe      | Pressure<br>in MP (2) |                   |         |
|           | Out      | Valve    | Vacuum            | Valve      | Container  | Valve | Port Arm    | in MP1                   | Out     | Pressure           | Valve         | Pressur<br>e (2) | Vaive      | ln        |                       |                   |         |
|           |          |          |                   |            |            |       | Out<br>Land |                          |         |                    |               | e (2)            |            |           |                       |                   |         |
|           | 1        |          |                   |            |            |       | Probe       |                          |         |                    |               |                  |            |           | [                     |                   | -       |
|           |          |          |                   | $\square$  | ন          | Ø     | 307.5       | 93.51                    |         | 85.97              |               | 85.98            | $\square$  | $\square$ | 93.51                 | 4                 |         |
|           |          |          |                   |            |            |       | 307.8       | 93.50                    | N       | 85.98              |               | 85.98            | N          | Ø         | 93.49                 | 4                 |         |
| 2         |          |          |                   | <u> </u>   |            |       |             |                          |         | <u> </u>           |               | L                |            | SAM       | PLE IDEN              | <b>FIFICATION</b> | (S)     |
| SAMPLE    | COLLECT  | ION INF  | ORMATIO           | N          |            |       |             |                          |         |                    |               |                  | mal Sam    |           |                       | <u> </u>          | -       |
| P         | arameter |          |                   | Method     | <u>,</u>   | Q     | uantity     | Bottle                   |         |                    | vative<br>ICL |                  |            |           |                       |                   |         |
| BTEX      | AQ       |          | 846 8260B         |            |            |       |             | <u>ml glass v</u>        |         |                    |               |                  |            |           |                       |                   |         |
| SVOA      |          |          | B46 8270C         |            |            |       |             | iter amber<br>iter amber |         |                    | one           |                  |            |           |                       |                   |         |
| SVOA      | AQ       | SW-      | 846 8270C         | SIM        |            |       | <u> </u>    | iter annoer              | 00100   |                    |               | <u> </u>         |            |           |                       |                   |         |



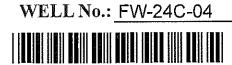


| Client:     |             | Beazer         | East, Inc.      |                   |                       |                |                           |                    |             |                  |                         |                          |                | Well ]       | D: <u>FW-2</u>        | 24C-02     |    |
|-------------|-------------|----------------|-----------------|-------------------|-----------------------|----------------|---------------------------|--------------------|-------------|------------------|-------------------------|--------------------------|----------------|--------------|-----------------------|------------|----|
| Project Nar | nc:         | 1st Quai       | ter 2012 G      | Bainesville       | e Sampling            |                |                           |                    |             |                  |                         |                          |                | D            | nte: <u>03/21</u>     | /2012 1343 |    |
| Project Nu  |             | OM-045         | 0-12-091        |                   |                       |                |                           |                    |             |                  |                         |                          |                | Technie      | ian: <u>Greg</u>      | Bzorek     |    |
| Location:   |             | Gainesv        | ille            |                   |                       |                | W                         | eather Con         | ditions     | _75 sunny        | ı                       |                          |                |              |                       |            |    |
| ·           |             |                |                 |                   |                       |                |                           |                    |             |                  |                         | S,                       | unpling Sta    | urt Time:    | 03/21/20              | 12 1355    |    |
| Sampling    | Equipm      | ent            |                 |                   | Dedicated             |                |                           |                    |             |                  |                         |                          |                |              |                       | 40.4400    |    |
| west bay 2  | 2499        |                |                 |                   | NO                    |                |                           |                    |             |                  |                         | S                        | ampling Er     | nd Time:     | 03/21/20              | /12/1400   |    |
|             |             |                |                 |                   |                       |                |                           |                    |             |                  |                         | А                        | mbient Bar     | ometric:     | 14.65                 |            |    |
|             |             |                |                 |                   |                       |                | Comments:                 |                    |             |                  |                         |                          |                |              |                       |            |    |
| Run #       |             | Surf           | ace Functi      | on Tests          |                       |                | Position                  |                    | Sa          | ample Coll       | ection C                | hecks                    |                |              |                       | Volumes    |    |
|             |             |                |                 |                   |                       |                | Sampler                   | (Pro               | be Loca     | ated at sam      | iplin zon               | e in MP o                | casing)        |              |                       | Tubes      |    |
|             | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve     | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure | Open<br>Valve           | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>Iл   | Pressure<br>in MP (2) |            |    |
|             |             |                |                 |                   |                       |                | Land<br>Probe             |                    |             |                  |                         | - (2)                    |                |              |                       |            | 1  |
| 1           | V           | Ø              | N               | $\mathbf{\nabla}$ | Q                     | Ŋ              | 327.5                     | 102.44             | $\square$   | 94.57            | $\overline{\mathbf{A}}$ | 94.57                    | Ø              | $\mathbf{N}$ | 102.46                | 4          |    |
| 2           |             |                | N               | V                 | Ø                     | V              | 327.3                     | 102.42             | Ø           | 94.57            | Ø                       | 94.57                    | $\square$      | $\checkmark$ | 102.42                | 4          |    |
| SAMPLE CO   | DLLECT      | ION INFO       | ORMATION        | N                 |                       |                |                           |                    |             |                  |                         |                          |                | SAMI         | LE IDENT              | IFICATION( | S) |
|             | ameter      |                |                 | Method            |                       | Qu             | antity                    | Bottle             | Туре        | Preser           | vative                  | No                       | rmal Sam       | ple :GA      | N-FW-24C              | -02-032112 |    |
| SVOA A      |             | ISW-8          | 46 8270C        |                   |                       |                |                           | er amber l         |             |                  | one                     |                          |                |              |                       |            |    |
| SVOA A      |             |                | 46 8270C        |                   |                       |                | 1 1 lit                   | ter amber l        | oottle      | No               | orie                    |                          |                |              |                       |            |    |


HCL

BTEX AQ

SW-846 8260B


40 ml glass vial



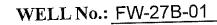


|             |             |                |                        |               |                 |          |                   |                     |                |                            |          |                      |              | Wall T   | D: <u>FW-2</u>    | 4C-03             |                    |
|-------------|-------------|----------------|------------------------|---------------|-----------------|----------|-------------------|---------------------|----------------|----------------------------|----------|----------------------|--------------|----------|-------------------|-------------------|--------------------|
| Client:     |             | Beazer E       | East, Inc.             |               |                 |          |                   |                     |                |                            |          |                      |              |          |                   | /2012 1524        |                    |
| Project Nam |             | 1st Quar       | ter 2012 G             | ainesville    | Sampling        |          |                   |                     |                |                            |          |                      |              |          | ian: <u>Greq</u>  |                   |                    |
| Project Nun |             | OM-0450        | 0-12-091               |               |                 |          | <u></u>           |                     |                |                            |          |                      |              | Icenne   | .tan. <u>0.00</u> |                   |                    |
| Location:   |             | Gainesvi       | lle                    |               |                 |          | Wo                | ather Con           | litions        | 70 partly                  | cloudy   |                      |              |          |                   | 40.4540           |                    |
|             |             |                |                        |               |                 |          |                   |                     |                |                            |          | San                  | pling Sta    | rt Time: | 03/21/20          | 12 1540           |                    |
| Sampling    |             | ent            |                        | <u></u>       | Dedicated<br>NO |          |                   |                     |                |                            |          | Sat                  | npling Er    | nd Time: | 03/21/20          | 12 1545           | • m <sup>222</sup> |
| west bay 2  | 499         |                |                        |               |                 |          |                   |                     |                |                            |          |                      |              |          | 14.65             |                   |                    |
|             |             |                |                        |               |                 |          |                   |                     |                |                            |          |                      |              |          |                   |                   |                    |
|             |             |                |                        |               |                 |          | Comments:         |                     |                |                            |          | h a a ka             |              |          |                   | Volumes           | 1                  |
| Run #       |             | Surf           | ace Functi             | on Tests      | i               |          | Position          | /Drc                | Si<br>aha Loca | ample Colle<br>ated at sam | nlin zor | necks<br>ne in MP ca | asing)       |          |                   | Tubes             |                    |
|             |             |                | <b>a</b>               | 0             | Evacuate        | Close    | Sampler<br>Locate | Pressure            | Shoe           | Zone                       | Open     | Zone                 | Close        | Shoe     | Pressure          |                   |                    |
|             | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum        | Open<br>Valve | Container       | Valve    | Port Arm          | in MP1              | Out            | Pressure                   | Valve    | Pressur              | Valve        | Iл       | in MP (2)         |                   |                    |
|             | Out         |                |                        |               |                 |          | Out<br>Land       |                     |                |                            |          | e (2)                |              |          |                   |                   |                    |
|             |             |                |                        |               |                 |          | Probe             |                     |                |                            |          |                      |              |          |                   |                   | 4                  |
| 1           |             |                |                        |               | R               |          | 347.9             | 110.79              | Ø              | 103.22                     | Ø        | 103.22               |              | Ø        | 110.79            | 4                 | -                  |
| 2           |             | <u>  ™</u>     |                        | <u> </u>      |                 |          | 348.1             | 110.76              |                | 103.22                     | V        | 103.22               | $\mathbf{N}$ |          | 110.76            | 4                 | <u> </u>           |
|             |             |                |                        |               |                 |          |                   | 1                   |                | • ····                     |          |                      |              | SAM      | PLE IDENT         | <b>TIFICATION</b> | ((S)               |
| SAMPLE CO   | DLLECT      | 10N INFO       | ORMATIO                |               |                 |          |                   | Dettio              | Tuno           | Prese                      | vative   | Nor                  | mal Sam      | pie :GA  | IN-FW-240         | 2-03-032112       | <u>.</u>           |
| 1           | ameter      |                |                        | Metho         | 1               | <u> </u> | uantity<br>1 11   | Bottle<br>ter amber |                |                            | one      | ]                    |              |          |                   |                   |                    |
| SVOA A      |             |                | 346 8270C<br>346 8260B |               |                 |          | 3 40              | ml glass v          | ial            |                            | ICL      |                      |              |          |                   |                   |                    |
| BTEX_A      |             |                | 846 8270C              |               |                 |          | 1 11              | iter amber          | bottle         | <u>  N</u>                 | one      |                      |              |          |                   |                   |                    |





| Client:<br>Project Na<br>Project Nu<br>Location: |                         | 1st Qua        | 0-12-091               | ainesvill     | e Sampling            |                |                                            | 'eather Сол                        | ditions     | 70 partly                 | cloudy               |                        | -                                       | D          | ID: <u>FW-2</u><br>ate: <u>03/21</u><br>cian: <u>Greg</u> | /2012 1409       |     |
|--------------------------------------------------|-------------------------|----------------|------------------------|---------------|-----------------------|----------------|--------------------------------------------|------------------------------------|-------------|---------------------------|----------------------|------------------------|-----------------------------------------|------------|-----------------------------------------------------------|------------------|-----|
| Sampling<br>west bay 2                           |                         | ent            |                        |               | Dedicated<br>NO       |                | Comments                                   |                                    |             |                           |                      |                        | Sampling St<br>Sampling E<br>Ambient Ba | End Time   | 03/21/20                                                  |                  |     |
| Run #                                            |                         | Surf           | ace Functi             | ion Tests     | ;                     |                | Position<br>Sampler                        |                                    |             | ample Coll<br>ated at san |                      |                        | <u>casing)</u>                          |            |                                                           | Volumes<br>Tubes |     |
|                                                  | Shoe<br>Out             | Close<br>Valve | Check<br>Vacuum        | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1                 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve        | Zone<br>Press<br>e (2) | ur Valve                                | Shoe<br>In | Pressure<br>in MP (2)                                     |                  |     |
| 1                                                | Ø                       | Ø              |                        | V             |                       | Ø              | 367.2                                      | 119.66                             | N           | 111.84                    | N                    | 111.8                  | 4 🗹                                     | V          | 119.66                                                    | 4                |     |
| 2                                                | $\overline{\mathbf{V}}$ |                | V                      | V             | V                     | Ŋ              | 367.4                                      | 119.49                             | V           | 111.84                    | V                    | 111.8                  | 4 🗹                                     | V          | 119.56                                                    | 4                |     |
| SAMPLE C                                         | OLLECT                  | ION INFO       | ORMATIO                | N             |                       |                |                                            |                                    |             |                           |                      |                        |                                         | SAM        | PLE IDENT                                                 | IFICATION        | (S) |
| Par<br>SVOA_A<br>SVOA_A                          |                         |                | 346 8270C<br>346 8270C |               | j                     | Q1             |                                            | Bottle<br>iter amber<br>iter amber | bottle      |                           | vative<br>one<br>one | <u>!</u>               | lomal San                               | nple :GA   | <u>IN-FW-24C</u>                                          | -04-032112       |     |


HCL

BTEX\_AQ

SW-846 8260B

40 ml glass vial

| ð | East & Toy  | S .        |             | P. C. Sanda Mark |
|---|-------------|------------|-------------|------------------|
|   | Field & Tec | chnical Se | rvices, LLC | ر <b>م</b> .     |



| Client:<br>Project Nan<br>Project Nur<br>Location: | ne:<br>nber:  | OM-0450<br>Gainesvi | er 2012 G<br>)-12-091   |               | Sampling              |                |                                   | eather Conc              | litions                | SUNNY 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u></u>                |                        | ampling Sta | Da<br>Technic | ian: <u>Ken F</u>     | /2012 1039<br>Robertson<br>12 1042 |          |
|----------------------------------------------------|---------------|---------------------|-------------------------|---------------|-----------------------|----------------|-----------------------------------|--------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-------------|---------------|-----------------------|------------------------------------|----------|
| Sampling<br>PROBE-3                                |               |                     |                         |               | NO                    |                | Comments:                         |                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        | Ambient Ba  |               |                       | Volumes                            |          |
| Run #                                              |               | Surfa               | ace Functi              | on Tests      |                       |                | Position<br>Sampler               | (Pro                     | Sa<br>be L <u>o</u> ca | mple Colic<br>ted at sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ection Cl<br>Iplin zon | e in MF                | casing)     | T             |                       | Tubes                              |          |
|                                                    | Shoe<br>Out   | Close<br>Valve      | Check<br>Vacuum         | Open<br>Valve | Evacuate<br>Container | Ciose<br>Valve | Locate<br>Port Arm<br>Out<br>Land | Pressure<br>in MP1       | Shoe<br>Out            | Zone<br>Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Open<br>Valve          | Zone<br>Press<br>e (2) | Close       | Shoe<br>In    | Pressure<br>in MP (2) |                                    |          |
|                                                    | <u> </u>      |                     |                         |               |                       |                | Probe<br>152.4                    | 22.00                    |                        | 19.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ø                      | 19.6                   | · 🗹         | V             | 22.01                 | 4                                  |          |
| 1                                                  |               |                     |                         |               | <u> </u>              |                | 152.4                             | 22.00                    |                        | 19.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ø                      | 19.6                   | 3 🗹         |               | 21.99                 | 4                                  |          |
| 2                                                  | <u> </u>      |                     | <u> </u>                | <u>N</u>      |                       |                | 152.6                             | 21.49                    | Ø                      | 19.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ø                      | 19.6                   |             | $\square$     | 21.49                 | 3                                  | <u> </u> |
| 3<br>SAMPLE C                                      |               |                     |                         |               |                       |                |                                   | 1                        | <b></b>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | _ [                    |             |               |                       | TIFICATION                         |          |
|                                                    | rameter       |                     | JAMATIO                 | Metho         | d                     | Q              | uantity                           | Bottle                   |                        | and the second se | rvative<br>one         |                        | Iormal San  | nple :GA      | AIN-FVV-27            | <u>B-01-032212</u>                 |          |
| SVOA_/                                             | AQ            |                     | 846 82700               |               |                       |                |                                   | iter amber<br>ml glass v |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICL                    |                        |             |               |                       |                                    |          |
| BTEX A                                             |               |                     | 846 8260B               |               |                       |                |                                   | iter amber               |                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lone                   |                        |             |               |                       |                                    |          |
| SVOA_<br>METAL                                     | AQ<br>S_AQ_TC | στ sw-              | 846 82700<br>846 6020/6 | 6010          |                       |                | 1 12                              | 25 ml plasti             | c bottle               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO3                    |                        |             |               |                       |                                    |          |
|                                                    | S_AQ_DI       | s sw-               | 846 6020/               | 6010          |                       |                | 1  12                             | 25 ml plasti             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                        |             |               |                       |                                    |          |



WELL No.: FW-27B-02

| Client:     | -           | Beazer         | East, Inc.      |               |                       |                |                   |                    |             |                  |               |                 |                | Well       | ID: <u>FW-</u> 2   | 27B-02            |          |
|-------------|-------------|----------------|-----------------|---------------|-----------------------|----------------|-------------------|--------------------|-------------|------------------|---------------|-----------------|----------------|------------|--------------------|-------------------|----------|
| Project Nat | me:         | 1st Qua        | rter 2012 C     | Sainesvill    | e Sampling            |                |                   |                    |             |                  |               |                 |                |            |                    | 2/2012 1253       |          |
| Project Nu  | mber:       | OM-045         | 0-12-091        |               |                       |                |                   |                    |             |                  |               |                 | •              | Techni     | cian: <u>Ken</u> I | Robertson         |          |
| Location:   | -           | Gainesv        | /ille           |               |                       |                | V                 | Veather Con        | ditions     | SUNNY            | 80            |                 |                |            |                    |                   |          |
| r           |             |                |                 |               |                       |                |                   |                    |             |                  |               | Sa              | mpling St      | art Time   | . 03/22/20         | )12 1257          |          |
| Sampling    |             | ent            |                 |               | Dedicated<br>NO       |                |                   |                    |             |                  |               |                 |                |            | 00/00/00           | )12 1335          |          |
| PROBE-3     | 535         |                |                 |               | <u>NU</u>             |                |                   |                    |             |                  |               |                 | umpling E      |            |                    |                   |          |
|             |             |                |                 |               |                       |                |                   |                    |             |                  |               | A               | nbient Ba      | rometric   | <u>14.72</u>       |                   |          |
|             |             |                |                 |               |                       |                | Comment           | s:                 |             |                  |               |                 |                |            |                    |                   | 7        |
| Run #       |             | Surf           | ace Funct       | ion Tests     | 5                     |                | Position          |                    |             | ample Coll       |               |                 |                |            |                    | Volumes           |          |
|             |             | 1              | T               |               | I                     |                | Sampler<br>Locate | _ <u> </u> ^       |             | ated at san      | Т             | 1               |                | 0          | Pressure           | Tubes             |          |
|             | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Port Arm          | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure | Open<br>Valve | Zone<br>Pressur | Close<br>Valve | Shoe<br>In | in MP (2)          |                   |          |
|             | Jul         |                | - TROUGH        | Turre         | oonginer              | Turre          | Out               |                    |             |                  |               | e (2)           |                |            |                    |                   |          |
|             |             |                |                 |               |                       |                | Land<br>Probe     |                    |             |                  |               |                 |                |            |                    | 1                 |          |
| 1           |             |                |                 |               |                       |                | 177.4             | 32.50              | M           | 30.52            |               | 30.52           | Ø              |            | 32.50              | 4                 |          |
|             |             |                |                 |               |                       |                | 177.4             | 32.48              |             | 30.52            |               | 30.52           |                | <u></u>    | 32.48              | 4                 | -        |
| 2           |             |                | <u> </u>        |               |                       |                |                   |                    |             | ·                |               | 30.52           |                |            | 31.96              | 3                 | -        |
| 3           |             |                |                 |               |                       |                | 177.4             | 31.96              |             | 30.52            |               | 30.52           | $\square$      |            |                    |                   | <u> </u> |
| SAMPLE CO   | OLLECT      | ION INFO       | ORMATIO         | N             |                       |                |                   |                    |             |                  |               |                 |                |            |                    | <b>FIFICATION</b> |          |
| Par         | ameter      |                |                 | Method        | ;                     | Q              | uantity           | Bottle             | Туре        | Preser           |               | <u>Nor</u>      | mal Sam        | ple :GA    | IN-FW-27E          | 3-02-032212       |          |
| METALS      | _AQ_DIS     | S SW-8         | 346 6020/6      | 010           |                       |                | 1 12              | 25 ml plastic      | c bottie    | H                | NO3           |                 |                |            |                    |                   |          |
| S           | <u> </u>    | TOV            | 40.0000/0       | 040           |                       |                |                   |                    | bottle      |                  | NO3           |                 |                |            |                    |                   |          |
| AL          | _AQ_10      | 1   577-8      | 346 6020/6      | 010           |                       |                | 1 14              | 25 ml plastio      | Dome        |                  | 103           |                 |                |            |                    |                   |          |

SVOA\_AQ

BTEX AQ

SVOA\_AQ

SW-846 8270C

SW-846 8260B

SW-846 8270C SIM

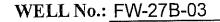
1 liter amber bottle

1 liter amber bottle

40 mi glass vial

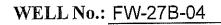
1

3


1

None

HCL


None





| Client:<br>Project Nam<br>Project Num<br>Location:<br>Sampling<br>PROBE-35 | aber:                             | 1st Quai<br>OM-045<br>Gainesv | 0-12-091                                                        |                      | e Sampling<br>Dedicated<br>NO |                | Wo                                                    | eather Con                                                                    | ditions                              | <u>SUNNY 8</u>   | 30                                 | Sa                       | npling Sta<br>mpling Er<br>nbient Bar | Da<br>Technic<br>rt Time:<br>nd Time: | ian: <u>Ken F</u><br>03/22/20<br>03/22/20 | /2012 1335<br>Robertson<br>12 1341 |  |
|----------------------------------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------------------------------------------|----------------------|-------------------------------|----------------|-------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|------------------|------------------------------------|--------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|------------------------------------|--|
| Run #                                                                      |                                   | Surf                          | ace Funct                                                       | ion Tests            |                               |                | Comments:<br>Position                                 | _                                                                             |                                      | ample Colle      |                                    |                          | asing)                                |                                       |                                           | Volumes<br>Tubes                   |  |
|                                                                            | Shoe<br>Out                       | Close<br>Valve                | Check<br>Vacuum                                                 | Open<br>Valve        | Evacuate<br>Container         | Ciose<br>Valve | Sampler<br>Locate<br>Port Arm<br>Out<br>Land<br>Probe | (Pressure<br>In MP1                                                           | Shoe<br>Out                          | Zone<br>Pressure | орел<br>Орел<br>Valve              | Zone<br>Pressur<br>e (2) | Close<br>Valve                        | Shoe<br>In                            | Pressure<br>in MP (2)                     | Tubes                              |  |
| 1                                                                          |                                   |                               |                                                                 | N                    | Ø                             |                | 202.3                                                 | 43.28                                                                         | M                                    | 41.36            | Ø                                  | 41.36                    | V                                     | V                                     | 43.28                                     | 4                                  |  |
| 2                                                                          | <u>v</u>                          |                               |                                                                 |                      | <u> </u>                      |                | 202.2                                                 | 43.24                                                                         |                                      | 41.36            | Ø                                  | 41.36                    | Ø                                     | $\overline{\mathbf{A}}$               | 43.24                                     | 4                                  |  |
| 3                                                                          |                                   |                               |                                                                 |                      |                               |                | 201.5                                                 | 42.70                                                                         | M                                    | 41.35            | Ø                                  | 41.35                    | $\square$                             | $\square$                             | 42.70                                     | 3                                  |  |
| SAMPLE CO                                                                  | 1                                 |                               |                                                                 |                      |                               |                |                                                       | L                                                                             |                                      | <b>L</b>         |                                    |                          |                                       |                                       |                                           | TIFICATION                         |  |
| <b></b>                                                                    | ameter<br>_AQ_DI<br>.Q<br>.Q<br>Q | S SW-<br>SW-<br>SW-<br>SW-    | 346 6020/6<br>846 8270C<br>846 8270C<br>846 8260B<br>846 6020/6 | Methoo<br>010<br>SIM | i                             | Q              | 1 1 li<br>1 1 li<br>3 40                              | Bottle<br>5 ml plastic<br>ter amber<br>ter amber<br>ml glass v<br>5 ml plasti | c bottle<br>bottle<br>bottle<br>rial | N<br>N           | vative<br>NO3<br>one<br>ICL<br>NO3 | No                       | <u>mal Sam</u>                        | ple <u>:GA</u>                        | <u>IN-FW-27E</u>                          | <u>3-03-032212</u>                 |  |



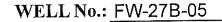


٦

| Client:<br>Project Nat<br>Project Nat<br>Location:<br>Sampling<br>PROBE-3 | mber:              | 1st Quar<br>OM-045<br>Gainesv | 0-12-091                                          |               | e Sampling<br>Dedicated<br>NO |                | W                                          | Veather Con                                                          | ditions                 | SUNNY                     | 80                                  | S                        |                | D:<br>Technic<br>urt Time:<br>nd Time: | 03/22/20<br>03/22/20  | 2/2012 1207<br>Robertson<br>012 1209 |     |
|---------------------------------------------------------------------------|--------------------|-------------------------------|---------------------------------------------------|---------------|-------------------------------|----------------|--------------------------------------------|----------------------------------------------------------------------|-------------------------|---------------------------|-------------------------------------|--------------------------|----------------|----------------------------------------|-----------------------|--------------------------------------|-----|
| Run #                                                                     |                    | Surf                          | ace Functi                                        | on Tests      |                               |                | Comments<br>Position<br>Sampler            | 1                                                                    |                         | ample Coll<br>ated at san |                                     | hecks                    |                |                                        | •                     | Volumes<br>Tubes                     |     |
|                                                                           | Shoe<br>Out        | Close<br>Valve                | Check<br>Vacuum                                   | Open<br>Valve | Evacuate<br>Container         | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure                                                             | Shoe<br>Out             | Zone<br>Pressure          | Open<br>Valve                       | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In                             | Pressure<br>in MP (2) |                                      |     |
| 1                                                                         |                    |                               | Ø                                                 | $\Box$        | Q                             | V              | 226.0                                      | 54.35                                                                |                         | 52.18                     | V                                   | 52.17                    |                |                                        | 54.35                 | 4                                    |     |
| 2                                                                         |                    | M                             | <br>                                              | 2             | V                             |                | 227.0                                      | 54.30                                                                |                         | 52.17                     | V                                   | 52.17                    | ব              | V                                      | 54.31                 | 4                                    |     |
| 3                                                                         |                    | N                             | <u> </u>                                          | V             | Ī                             | <u>_</u>       | 226.7                                      | 53.78                                                                | V                       | 52,16                     | Ŋ                                   | 52.17                    | $\Box$         | $\Box$                                 | 53.79                 | 3                                    |     |
| SAMPLE C                                                                  | <u>,</u>           | " <b>I</b>                    |                                                   |               |                               | •              | •                                          | - <u>.</u>                                                           |                         |                           |                                     |                          |                | SAM                                    | PLE IDEN              | FIFICATION                           | (S) |
| Pal<br>SVOA A<br>BTEX A<br>SVOA A<br>METALS                               | ameter<br>\Q<br>.Q | SW-8<br>SW-8<br>SW-8          | 346 8270C<br>346 8260B<br>346 8270C<br>346 6020/6 | Method<br>SIM | 1                             | Q              | 3 40<br>1 1                                | Bottle<br>liter amber<br>) ml glass v<br>liter amber<br>25 ml plasti | bottle<br>ial<br>bottle | N<br>F<br>N               | rvative<br>one<br>ICL<br>one<br>NO3 | No                       | rmal Sam       | iple :GA                               | <u>IN-FW-278</u>      | <u>3-04-032212</u>                   |     |
| S                                                                         |                    | 1                             |                                                   |               |                               |                |                                            |                                                                      |                         |                           |                                     |                          |                |                                        |                       |                                      |     |

METALS\_AQ\_TOT

AL


SW-846 6020/6010

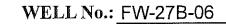
125 ml plastic bottle

1

HNO3






| Client:<br>Project Name<br>Project Numl<br>Location: |                | <u>Beazer E</u><br>1st Quar<br>OM-0450<br>Gainesvi | ter 2012 G<br>0-12-091 | ainesville     | e Sampling                                    |                | W                                          | cather Con                  | ditions     | SUNNY 8                    | 30            |                      |              |                         | Da             | D:FW-2<br>nte:03/22<br>sian: _Ken F                                                                              | /2012 1124                |  |
|------------------------------------------------------|----------------|----------------------------------------------------|------------------------|----------------|-----------------------------------------------|----------------|--------------------------------------------|-----------------------------|-------------|----------------------------|---------------|----------------------|--------------|-------------------------|----------------|------------------------------------------------------------------------------------------------------------------|---------------------------|--|
| Sampling E<br>PROBE-353                              | quipme         |                                                    |                        | [              | Dedicated<br>NO                               |                | Comments                                   |                             |             |                            |               |                      | Samp         | ling En                 |                | 03/22/20<br>03/22/20<br>14.72                                                                                    |                           |  |
| Run #                                                |                | Surfa                                              | ace Functi             | ion Tests      |                                               |                | Position<br>Sampler                        |                             |             | ample Colle<br>ated at sam |               |                      |              | ing)                    |                |                                                                                                                  | Volumes<br>Tubes          |  |
|                                                      | Shoe<br>Out    | Close<br>Valve                                     | Check<br>Vacuum        | Open<br>Valve  | Evacuate<br>Container                         | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>in MP1          | Shoe<br>Out | Zone<br>Pressure           | Орел<br>Valve | Zon<br>Press<br>e (2 | e (<br>sur ) | Close<br>Valve          | Shoe<br>In     | Pressure<br>in MP (2)                                                                                            |                           |  |
| 1                                                    |                | <u>_</u>                                           |                        | Ø              | V                                             | V              | 252.0                                      | 65.39                       |             | 62.99                      | V             | 62.9                 |              | $\checkmark$            |                | 65.34                                                                                                            | 4                         |  |
| 2                                                    | <u> </u>       | Ø                                                  |                        | <u></u>        | <u> </u>                                      |                | 251.7                                      | 65.29                       | V           | 62.98                      | V             | 62.9                 | 99           | $\overline{\mathbf{V}}$ | M              | 65.28                                                                                                            | 4                         |  |
| 3                                                    | <br>           |                                                    |                        |                |                                               | $\Box$         | 251.5                                      | 64.25                       | N           | 62.97                      | V             | 62.9                 | 8            | $\overline{\mathbf{A}}$ |                | 64.29                                                                                                            | 2                         |  |
| SAMPLE CO                                            |                |                                                    |                        | 1,             | <u>,                                     </u> |                |                                            |                             |             |                            |               |                      |              |                         |                | and the second | FIFICATION<br>3-05-032212 |  |
| Para<br>METALS_,<br>AL                               | meter<br>AQ_TO | T SW-8                                             | 346 6020/6             | Method<br>6010 | <u>i</u> i                                    | Q              | uantity<br>1 12                            | Bottle<br>5 ml plastic      |             | Preser<br>Hi               | NO3           |                      | INOFILI      |                         | <u>pie .0A</u> | <u></u>                                                                                                          | <u></u>                   |  |
| SVOA_AC                                              |                |                                                    | 346 8270C<br>346 8260B |                |                                               |                | 3 40                                       | liter amber<br>) mi glass v | rial        | ŀ                          | one<br>ICL    |                      |              |                         |                |                                                                                                                  |                           |  |
| SVOA AC                                              | 2              | SW-8                                               | 346 8270C              |                |                                               |                |                                            | liter amber<br>25 ml plasti |             |                            | one<br>NO3    |                      |              |                         |                |                                                                                                                  |                           |  |

METALS\_AQ\_DIS

S

SW-846 6020/6010





| Client:    |             | Beazer  | East, Inc.  |            |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |             |               |                 |                |            | ID: <u>FW-</u> 2      |             |     |
|------------|-------------|---------|-------------|------------|-----------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|-------------|---------------|-----------------|----------------|------------|-----------------------|-------------|-----|
| Project Na | me:         | 1st Qua | rter 2012 G | Bainesvill | e Sampling      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |             |               |                 |                |            |                       | 2/2012 0953 |     |
| Project Nu |             | OM-045  | 0-12-091    |            |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |             |               |                 |                | Techni     | cian: <u>Ken l</u>    | Robertson   |     |
| Location:  |             | Gainesv | ille        |            |                 |       | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eather Con         | ditions           | SUNNY       | 75            |                 |                |            |                       |             |     |
| I          |             |         |             |            |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |             |               | Sa              | mpling Sta     | rt Time:   | 03/22/20              | 012 1002    |     |
| Sampling   |             | ent     |             |            | Dedicated<br>NO |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |             |               |                 |                |            | 03/22/20              | 012 1039    |     |
| PROBE-3    | 535         |         |             |            |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |             |               |                 |                |            |                       |             |     |
|            |             |         |             |            |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |             |               | A               | nbient Ba      | rometric   | : 14.72               |             |     |
|            |             |         |             |            |                 |       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :                  |                   |             |               |                 |                |            |                       |             |     |
| Run #      |             | Surf    | ace Functi  | ion Tests  | ;               |       | Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                   | ample Coll  |               |                 |                |            |                       | Volumes     |     |
|            |             | r       |             |            |                 | 1     | Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | t                 | ated at sam |               | E               |                | <b>.</b>   | 1_                    | Tubes       |     |
|            | Shoe        | Close   | Check       | Open       | Evacuate        | Close | Locate<br>Port Arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pressure<br>In MP1 | Shoe<br>Out       | Zone        | Орел<br>Valve | Zone<br>Pressur | Close<br>Valve | Shoe<br>In | Pressure<br>in MP (2) |             |     |
|            | Out         | Valve   | Vacuum      | Valve      | Container       | Valve | Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 100 12 1        | Out               | Flessure    | Valve         | e (2)           | Valve          |            | sar in ( <b>-</b> )   |             |     |
|            |             |         |             |            |                 |       | Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |             |               | - (-7           |                |            |                       |             |     |
|            |             |         |             |            |                 |       | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                   |             |               |                 |                |            |                       |             | -   |
| 1          | N           | $\Box$  | $\Box$      | $\Box$     | $\square$       |       | 277.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76.47              | $\mathbf{N}$      | 73.79       | $\square$     | 73.79           |                | Ø          | 76.47                 | 4           | -   |
| 2          |             | V       | Ø           | N          | Ø               |       | 277.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76.40              | $\mathbf{\nabla}$ | 73.78       | $\square$     | 73.78           | $\square$      | $\square$  | 76.40                 | 4           |     |
| 3          |             |         | M           | M          | M               | V     | 277.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75.87              | V                 | 73.78       | $\Box$        | 73.78           | $\square$      | $\square$  | 73.79                 | 3           |     |
| SAMPLE C   |             | J       |             | N          | ·               | 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |             |               |                 |                | SAM        | PLE IDENT             | FIFICATION  | (S) |
|            | •           |         |             | Method     | 4               |       | uantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bottle             | Туре              | Preser      | vative        |                 | mal Sam        | ple :GA    | IN-FW-27E             | 3-06-032212 |     |
| BTEX A     | ameter<br>O | ISW-8   | 346 8260B   | methor     |                 |       | and the second se | ml glass v         |                   |             | CL            |                 |                |            |                       |             |     |
| METALS     |             |         | 346 6020/6  | 010        |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 ml plasti        |                   | TH I        | 103           |                 |                |            |                       |             |     |
| AL         |             |         |             |            |                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |             |               |                 |                |            |                       |             |     |
| METALS     | AQ DIS      | S SW-8  | 346 6020/6  | 010        |                 |       | 1 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 ml plasti        | c bottle          | H1          | VO3           |                 |                |            |                       |             |     |

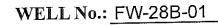
S SVOA\_AQ

SVOA\_AQ

SW-846 8270C SIM

SW-846 8270C

1 liter amber bottle


1 liter amber bottle

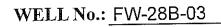
None

None

1

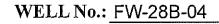





| Client:<br>Project Nan<br>Project Nur<br>Location:<br>Sampling<br>PROBE-33 | ne:<br>nber:<br>Equipme        | OM-045(<br>Gainesvi            | ter 2012 G<br>)-12-091                                          |                       | e Sampling<br>Dedicated<br>NO |                | Wi                                         | eather Conc                                                                     | litions                             | <u>SUNNY 8</u>             | 35                                        | S                        | umpling Sta<br>ampling Er<br>mbient Bar | Da<br>Technic<br>rt Time:<br>nd Time: | ian: <u>Ken F</u><br>03/20/20<br>03/20/20 | /2012 1600<br>Robertson<br>12 1616           |         |
|----------------------------------------------------------------------------|--------------------------------|--------------------------------|-----------------------------------------------------------------|-----------------------|-------------------------------|----------------|--------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------|----------------------------|-------------------------------------------|--------------------------|-----------------------------------------|---------------------------------------|-------------------------------------------|----------------------------------------------|---------|
| Run #                                                                      |                                | Surfa                          | ace Functi                                                      | ion Tests             |                               |                | Comments:<br>Position<br>Sampler           |                                                                                 | Sa<br>be Loca                       | ample Colle<br>ated at sam | plin zon                                  | hecks<br>e in MP         | casing)                                 |                                       |                                           | Volumes<br>Tubes                             | <u></u> |
|                                                                            | Shoe<br>Out                    | Ciose<br>Vaive                 | Check<br>Vacuum                                                 | Ореп<br>Valve         | Evacuate<br>Container         | Close<br>Vaive | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>·In MP1                                                             | Shoe<br>Out                         | Zone<br>Pressure           | Open<br>Valve                             | Zone<br>Pressur<br>e (2) | Close<br>Valve                          | Shoe<br>In                            | Pressure<br>in MP (2)                     |                                              |         |
| 1                                                                          | <u></u>                        | 2                              |                                                                 | M                     |                               |                | 171.2                                      | 32.78                                                                           | $\overline{\mathcal{A}}$            | 29.33                      | $\square$                                 | 29.33                    |                                         | অ                                     | 32.78                                     | 5                                            |         |
| 2                                                                          |                                |                                |                                                                 |                       |                               |                | 171.4                                      | 32.75                                                                           | V                                   | 29.33                      | $\square$                                 | 29.33                    |                                         |                                       | 32.75                                     | 5                                            |         |
| SAMPLE C                                                                   |                                | L                              |                                                                 | L                     | I <sup></sup> ,,,             | •              |                                            |                                                                                 |                                     |                            |                                           | _ L                      |                                         |                                       |                                           | TIFICATION                                   |         |
| Par<br>SVOA A<br>METALS<br>AL<br>BTEX A<br>SVOA A                          | rameter<br>AQ<br>6_AQ_TO<br>AQ | SW-8<br>T SW-8<br>SW-1<br>SW-1 | 346 8270C<br>346 6020/6<br>846 8260B<br>846 8270C<br>846 6020/6 | Method<br>SIM<br>6010 | 1                             |                | 1 12<br><u>3 40</u><br>1 11                | Bottle<br>ter amber<br>5 ml plastic<br>ml glass v<br>iter amber<br>5 ml plastic | bottle<br>c bottle<br>ial<br>bottle | Hi<br>Hi                   | vative<br>one<br>NO3<br>ICL<br>one<br>NO3 | Fi                       | eid Blank :                             | GAIN-E                                | IN-FW-286<br>B-0203201<br>AIN-EB-02       | 3 <u>-01-032012</u><br>1 <u>2</u><br>1032012 |         |



WELL No.: FW-28B-02


| Client:      |           | Beazer    | East, Inc.  |            |            |       |                    |                     |                         |             |          |                   |              |          | ID: <u>FW-</u>     |             |     |
|--------------|-----------|-----------|-------------|------------|------------|-------|--------------------|---------------------|-------------------------|-------------|----------|-------------------|--------------|----------|--------------------|-------------|-----|
| Project Na   | ne: .     | 1st Qua   | rter 2012 ( | Sainesvill | e Sampling |       |                    |                     |                         |             |          |                   |              | D        | ate: <u>03/20</u>  | 0/2012 1442 |     |
| Project Nu   | mber:     | OM-045    | 0-12-091    |            |            |       |                    |                     |                         |             |          |                   |              | Techni   | cian: <u>Ken</u> l | Robertson   |     |
| Location:    |           | Gainesv   | ille        |            |            |       |                    | eather Con          | ditions                 | SUNNY       | 80       |                   |              |          |                    |             |     |
|              |           |           |             |            |            |       |                    | • • • • • • • • • • |                         |             |          |                   |              | ·        | 03/20/20           | 012 1452    |     |
| Sampling     |           | ent       | ·           |            | Dedicated  |       | •                  |                     |                         |             |          |                   | mpling Sta   |          |                    |             |     |
| PROBE-3      | 535       |           |             |            | NO         |       |                    |                     |                         |             |          | Sa                | Impling Ei   | nd Time: | 03/20/20           | 012 1519    |     |
|              |           |           |             |            |            |       |                    |                     |                         |             |          | Aı                | nbient Bai   | rometric | 14.72              |             |     |
| ļ,           |           |           |             |            |            |       | Comments           | s:                  |                         |             |          |                   |              |          |                    |             |     |
| Run #        |           | Surf      | ace Funct   | ion Tests  | ;          |       | Position           | -                   | S                       | ample Coll  | ection C | hecks             |              |          |                    | Volumes     |     |
|              |           |           | 1           |            |            |       | Sampler            |                     | i –                     | ated at sam |          | <u>ne in MP c</u> |              | 1        | 1                  | Tubes       |     |
|              | Shoe      | Close     | Check       | Open       | Evacuate   | Close | Locate<br>Port Arm | Pressure            | Shoe                    | Zone        | Open     | Zone              | Close        | Shoe     | Pressure           |             |     |
|              | Out       | Valve     | Vacuum      | Valve      | Container  | Valve | Out                | In MP1              | Out                     | Pressure    | Valve    | Pressur           | Valve        | In       | in MP (2)          |             |     |
|              |           |           |             |            |            |       | Land               |                     |                         |             |          | e (2)             |              |          |                    |             |     |
|              |           |           |             |            |            |       | Probe              |                     |                         |             |          |                   |              |          |                    |             | ł   |
| 1            | $\square$ | Ø         | Ø           | Ø          | N          | V     | 190.9              | 41.62               | $\overline{\checkmark}$ | 38.00       | V        | 38.00             | V            |          | 41.62              | 5           |     |
| 2            | Ŋ         | $\square$ | $\square$   | Ø          | N          | V     | 190.8              | 41.59               | V                       | 38.00       | Ø        | 38.00             | $\checkmark$ |          | 41.59              | 5           |     |
| SAMPLE CO    | DLLECT    | ON INFO   | ORMATIO     | N          |            |       |                    |                     |                         |             |          |                   |              | SAMI     | LE IDENT           | TFICATION   | (S) |
| Para         | ameter    |           |             | Method     | ,          | Qu    | antity             | Bottle              | Туре                    | Preser      | vative   | Nor               | mal Sam      | ple :GA  | IN-FW-288          | 3-02-032012 |     |
| BTEX_A       | 2         | SW-8      | 46 8260B    |            |            |       | 3 40               | ml glass vi         | al                      | H           | CL       |                   |              |          |                    |             |     |
| SVOA_A       |           |           | 46 8270C    |            |            |       |                    | iter amber l        |                         |             | one      |                   |              |          |                    |             |     |
| METALS       | _AQ_DIS   | SW-8      | 46 6020/6   | 010        |            |       | 1  12              | 5 ml plastic        | : bottle                | HN          | 103      |                   |              |          |                    |             |     |
| SVOA_A       | Q         | SW-8      | 46 8270C    | SIM        |            |       | 1 11               | iter amber l        | bottle                  | No          | one      |                   |              |          |                    |             |     |
| METALS<br>AL | _AQ_TO    | T SW-8    | 46 6020/6   | 010        |            |       | 1 12               | 5 ml plastic        | ; bottle                | HN          | 103      |                   |              |          |                    |             |     |
|              |           | 1         |             |            |            |       |                    |                     |                         | I           |          |                   |              |          |                    |             |     |





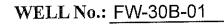
| Client:       Beazer East, Inc.         Project Name:       1st Quarter 2012 Gainesville Sampling         Project Number:       OM-0450-12-091         Location:       Gainesville         Sampling Equipment       Dedicated         PROBE-3535       NO                                                                                                                                                 |             |                        |                 |               |                         |                                                                                                                                                  | W                                          | eather Cond        | litions     | SUNNY 8                                                                          | 35            | Sa                       | mpling Sta<br>umpling En<br>nbient Bar | Da<br>Technic<br>rt Time:<br>ad Time: | ian: <u>Ken F</u><br>03/20/20<br>03/20/20 | /2012 1521<br>Robertson<br>12 1535 |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|-----------------|---------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|-------------|----------------------------------------------------------------------------------|---------------|--------------------------|----------------------------------------|---------------------------------------|-------------------------------------------|------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                           |             |                        |                 |               |                         |                                                                                                                                                  | Comments:<br>Position                      |                    | S;          | ample Colle                                                                      | ection C      |                          |                                        |                                       |                                           | Volumes                            |     |
| Run#                                                                                                                                                                                                                                                                                                                                                                                                      |             | Surface Function Tests |                 |               |                         |                                                                                                                                                  | Sampler                                    | (Pro               |             | ted at sam                                                                       |               |                          | asing)                                 |                                       |                                           | Tubes                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                           | Shoe<br>Out | Close<br>Vaive         | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container   | Ciose<br>Valve                                                                                                                                   | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>in MP1 | Shoe<br>Out | Zone<br>Pressure                                                                 | Ореп<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve                         | Shoe<br>In                            | Pressure<br>in MP (2)                     |                                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                           |             |                        |                 | 2             | $\overline{\mathbf{A}}$ |                                                                                                                                                  | 210.8                                      | 50.25              | য           | 46.65                                                                            | Ø             | 46.65                    | Ø                                      |                                       | 50.25                                     | 5                                  |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                         |             |                        | <u> </u>        |               |                         |                                                                                                                                                  | 210.9                                      | 50.20              |             | 46.65                                                                            | Ø             | 46.65                    | V                                      | V                                     | 50.20                                     | 5                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                           |             |                        |                 |               |                         |                                                                                                                                                  | <u>.</u>                                   | L                  |             |                                                                                  | ·             |                          |                                        | SAM                                   | PLE IDEN                                  | <b>FIFICATION</b>                  | (S) |
| SAMPLE COLLECTION INFORMATION           Parameter         Method           SVOA_AQ         SW-846 8270C SIM           BTEX_AQ         SW-846 8260B           METALS_AQ_DIS         SW-846 6020/6010           S         SVOA_AQ           SVOA_AQ         SW-846 8270C           METALS_AQ_DIS         SW-846 6020/6010           S         SW-846 8270C           METALS_AQ_TOT         SW-846 6020/6010 |             |                        |                 |               |                         | QuantityBottle Type11 liter amber bottle340 ml glass vial1125 ml plastic bottle11 liter amber bottle1125 ml plastic bottle1125 ml plastic bottle |                                            |                    | N H         | Preservative     Normal Sample : GAIN-FW       None     HNO3       None     HNO3 |               |                          |                                        |                                       | 3 <u>-03-032012</u>                       |                                    |     |





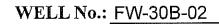
| Project Name: <u>15</u><br>Project Number: <u>O</u><br>Location: <u>G</u><br>Sampling Equipment                                                                                          |                              | 1st Qua<br>OM-045<br>Gainesv | 0-12-091        | e Sampling<br>Dedicated<br>NO | W                                                                                                                                   | Well ID:         EW-28B-04           Date:         _03/20/2012 1300           Technician:         Ken Robertson           Weather Conditions         Sunny 80           Sampling Start Time:         _03/20/2012 1318           Sampling End Time:         _03/20/2012 1430 |                                                                                           |                    |                              |                                       |               |                         |              |                         |                       |            |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------|------------------------------|---------------------------------------|---------------|-------------------------|--------------|-------------------------|-----------------------|------------|-----|
| Probe-3535 NO                                                                                                                                                                            |                              |                              |                 |                               |                                                                                                                                     | Ambient Barometric: 14.72                                                                                                                                                                                                                                                   |                                                                                           |                    |                              |                                       |               |                         |              |                         |                       |            |     |
| Run #                                                                                                                                                                                    | Run # Surface Function Tests |                              |                 |                               |                                                                                                                                     |                                                                                                                                                                                                                                                                             | Position Sample Collection Checks<br>Sampler (Probe Located at samplin zone in MP casing) |                    |                              |                                       |               |                         |              |                         | Volumes<br>Tubes      |            |     |
|                                                                                                                                                                                          | Shoe<br>Out                  | Close<br>Valve               | Check<br>Vacuum | Open<br>Valve                 | Evacuate<br>Container                                                                                                               | Ciose<br>Valve                                                                                                                                                                                                                                                              | Locate<br>Port Arm<br>Out<br>Land<br>Probe                                                | Pressure<br>In MP1 | Shoe<br>Out                  | Zone<br>Pressure                      | Орел<br>Valve | Zone<br>Pressu<br>e (2) | Close        | Shoe<br>In              | Pressure<br>in MP (2) |            |     |
| 1                                                                                                                                                                                        | $\Box$                       | $\square$                    | $\square$       | N                             | Ø                                                                                                                                   | Ø                                                                                                                                                                                                                                                                           | 231.2                                                                                     | 59.21              | $\overline{\mathbf{A}}$      | 55.31                                 | $\Box$        | 55.31                   | $\checkmark$ | $\overline{\mathbf{V}}$ | 59.21                 | 4          |     |
| 2                                                                                                                                                                                        | V                            |                              | V               | N                             | V                                                                                                                                   |                                                                                                                                                                                                                                                                             | 231.0                                                                                     | 59.17              | $\checkmark$                 | 55.30                                 | $\square$     | 55.30                   | $\square$    | $\overline{\mathbf{V}}$ | 59.17                 | 5          |     |
| 3                                                                                                                                                                                        | Ø                            | V                            | Q               | N                             | N                                                                                                                                   | Ø                                                                                                                                                                                                                                                                           | 231.0                                                                                     | 59.10              | Ŋ                            | 55.30                                 | $\square$     | 55.30                   | $\square$    | $\square$               | 59.10                 | 5          |     |
| 4                                                                                                                                                                                        | ন                            | V                            | Ø               | V                             | V                                                                                                                                   | Ø                                                                                                                                                                                                                                                                           | 230.9                                                                                     | 59.08              | N                            | 55.30                                 |               | 55.30                   | V            | $\mathbf{\nabla}$       | 59.08                 | 5          |     |
| 5                                                                                                                                                                                        |                              | V                            | Ø               | V                             | V                                                                                                                                   |                                                                                                                                                                                                                                                                             | 230.9                                                                                     | 58.56              | $\mathbf{\nabla}$            | 55.31                                 | V             | 55.31                   | M            | $\square$               | 58.56                 | 4          |     |
| SAMPLE CO                                                                                                                                                                                | OLLECT                       | ION INFO                     | ORMATIO         | N                             |                                                                                                                                     |                                                                                                                                                                                                                                                                             |                                                                                           |                    |                              |                                       |               |                         |              | SAM                     | PLE IDENI             | FIFICATION | (S) |
| Parameter         Method           METALS_AQ_TOT         SW-846 6020/6010           AL         SVOA_AQ           SVOA_AQ         SW-846 8270C SIM           BTEX_AQ         SW-846 8260B |                              |                              |                 | Q                             | Bottle Type           1         125 ml plastic bottle           1         1 liter amber bottle           3         40 ml glass vial |                                                                                                                                                                                                                                                                             |                                                                                           | HI                 | nvative<br>NO3<br>one<br>ICL | D3 Blind Duplicate :GAIN-FW-99B032012 |               |                         |              |                         |                       |            |     |
| SVOA A                                                                                                                                                                                   |                              |                              | 346 8270C       |                               |                                                                                                                                     |                                                                                                                                                                                                                                                                             | 1 1 liter amber bottle                                                                    |                    |                              | N                                     | None          |                         |              |                         |                       |            |     |

METALS\_AQ\_DIS


S

SW-846 6020/6010

125 ml plastic bottle


HNO3





| Client:<br>Project Nan<br>Project Nur |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         | ainesville    | e Sampling            |                |                                            |                             |             |                            |               |    |                         |                                       | Da         | D: <u>FW-3</u><br>ite: <u>03/21</u><br>ian: <u>Ken F</u> | /2012 1000         |     |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|---------------|-----------------------|----------------|--------------------------------------------|-----------------------------|-------------|----------------------------|---------------|----|-------------------------|---------------------------------------|------------|----------------------------------------------------------|--------------------|-----|
| Location:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gainesv        | ille                    |               |                       |                | <u> </u>                                   | Veather Con                 | ditions     | SUNNY                      | /5            |    |                         |                                       |            |                                                          |                    |     |
| Sampling<br>PROBE-3                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ent            |                         | ]             | Dedicated<br>NO       |                |                                            |                             |             |                            |               |    | Sa                      | npling Sta<br>mpling En<br>nbient Bar | nd Time:   | 03/21/20                                                 |                    |     |
| Run #                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Surf           | ace Functi              | ion Tests     |                       |                | Comment<br>Position<br>Sampler             |                             |             | ample Colle<br>ated at sam |               |    |                         |                                       |            |                                                          | Volumes<br>Tubes   |     |
|                                       | Shoe<br>Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Close<br>Valve | Check<br>Vacuum         | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1          | Shoe<br>Out | Zone<br>Pressure           | Open<br>Vaive | Pr | lone<br>ressur<br>e (2) | Close<br>Valve                        | Shoe<br>In | Pressure<br>in MP (2)                                    |                    |     |
| 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         | V             | Ø                     |                | 159.3                                      | 27.31                       |             | 23.08                      |               | 2  | 23.08                   | $\square$                             | $\square$  | 27.31                                                    | 5                  |     |
| 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         |               | <u> </u>              |                | 159.4                                      | 27.28                       | R           | 23.08                      |               | 2  | 3.08                    | $\mathbf{\nabla}$                     | $\square$  | 27.08                                                    | 5                  |     |
|                                       | ,1, <u>, 1</u> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | ·                       | L             |                       |                | _L                                         |                             | 1           | · · · · ·                  | A             |    |                         |                                       | SAMI       | PLE IDENT                                                | IFICATION          | (S) |
| SAMPLE CO<br>Par<br>METALS<br>AL      | ameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 846 6020/6              | Method        | 1                     | Q              |                                            | Bottle<br>25 ml plastic     | c bottle    |                            | VO3           |    | <u>Nor</u>              | mal Sam                               | ple :GA    | IN-FW-30E                                                | <u>3-01-032112</u> |     |
| SVOA_A                                | NQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SW-            | 846 8270C               | SIM           |                       |                |                                            | liter amber                 |             |                            | one           |    |                         |                                       |            |                                                          |                    |     |
| SVOA_A                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 846 8270C               |               |                       |                | · · · · · ·                                | liter amber<br>0 ml glass v |             |                            | one<br>ICL    |    |                         |                                       |            |                                                          |                    |     |
| BTEX_A<br>METALS<br>S                 | and the second se |                | 846 8260B<br>846 6020/6 |               |                       |                |                                            | 25 ml plasti                |             |                            | NO3           |    |                         |                                       |            |                                                          |                    |     |



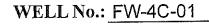


| Client:<br>Project Nar<br>Project Nui<br>Location: | nie: _      | 1st Qua        | 0-12-091        | Sainesvill    | e Sampling            |                | ₩                                          | 'eather Con        | ditions     | SUNNY                     | 75                      |    |                       |                | Da<br>Technic | zian: <u>Ken F</u>    | /2012 1051<br>Robertson |          |
|----------------------------------------------------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|---------------------------|-------------------------|----|-----------------------|----------------|---------------|-----------------------|-------------------------|----------|
| Sampling<br>PROBE-3                                |             | ent            |                 |               | Dedicated<br>NO       |                |                                            |                    |             |                           |                         |    |                       |                |               | 03/21/20<br>03/21/20  |                         |          |
|                                                    |             |                |                 |               |                       |                | Comments                                   |                    |             |                           |                         |    | An                    | nbient Bar     | ometric:      | 14.72                 |                         |          |
| Run #                                              |             | Surf           | ace Funct       | ion Tests     | 1                     |                | Position<br>Sampler                        |                    |             | ample Coll<br>ated at sam |                         |    |                       | asing)         |               |                       | Volumes<br>Tubes        |          |
|                                                    | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve           | Pr | one<br>essur<br>⇒ (2) | Close<br>Valve | Shoe<br>In    | Pressure<br>in MP (2) |                         |          |
| 1                                                  | M           | Ø              | V               | Ø             | V                     | Ø              | 179.2                                      | 35.95              | V           | 32.50                     | V                       | 3  | 2.50                  | Ø              | $\square$     | 35.95                 | 5                       |          |
| 2                                                  | V           |                | Ø               |               | V                     | V              | 179.3                                      | 35.92              | V           | 32.51                     | $\overline{\mathbf{M}}$ | 3  | 2.51                  | $\square$      | $\square$     | 35.92                 | 5                       | <u> </u> |
| SAMPLE CO                                          | OLLECT      | ION INFO       | ORMATIO         | N             |                       |                |                                            |                    |             |                           |                         |    |                       |                | SAMI          | LE IDENT              | IFICATION               | (S)      |
| Par                                                | ameter      |                |                 | Method        | 1                     | Q              | uantity                                    | Bottle             | Туре        | Preser                    |                         |    | Nor                   | mal Sam        | ple :GA       | N-FW-30B              | -02-032112              |          |
| BTEX_A                                             |             |                | 346 8260B       |               |                       |                |                                            | ml glass vi        |             |                           | CL                      |    |                       |                |               |                       |                         |          |
| SVOA_A                                             |             |                | 346 8270C       |               |                       |                |                                            | iter amber l       |             |                           |                         |    |                       |                |               |                       |                         |          |
| METALS<br>AL                                       | _AQ_10      | 1   SVV-8      | 346 6020/6      | 010           |                       |                | 1 12                                       | 5 ml plastic       | Dottle      | ru                        | 103                     |    |                       |                |               |                       |                         |          |
| METALS                                             | _AQ_DIS     | 5 SW-8         | 346 6020/6      | 010           |                       |                | 1 12                                       | 5 ml plastic       | bottle      | H                         | NO3                     |    |                       |                |               |                       |                         |          |
| SVOA_A                                             | NQ          | SW-8           | 346 8270C       |               |                       |                | 1 11                                       | iter amber         | oottle      | N                         | one                     |    |                       |                |               |                       |                         |          |








| [           |                  |                |                   |            |            |       |          |              |            |            |           |            |            | Well I   | D: <u>EW-3</u>   | 0B-03              |   |
|-------------|------------------|----------------|-------------------|------------|------------|-------|----------|--------------|------------|------------|-----------|------------|------------|----------|------------------|--------------------|---|
| Client:     | -                |                | <u>East, Inc.</u> |            |            |       |          |              |            |            |           |            |            | Da       | te: 03/21        | /2012 0923         |   |
| Project Nai | ne: .            | 1st Qua        | ter 2012 G        | ainesville | e Sampling |       |          |              |            |            |           |            |            |          | ian: Ken F       |                    |   |
| Project Nu  |                  | OM-045         | 0-12-091          |            |            |       |          |              |            |            |           |            |            | 1 ccmm   | .14///           |                    |   |
| Location:   |                  | Gainesv        | ille              |            |            |       | W        | eather Con   | ditions    | SUNNY      | 70        |            |            |          |                  |                    |   |
| 10000000    |                  |                |                   |            |            |       |          |              |            |            |           | Sa         | mpling Sta | rt Time: | 03/21/20         | 12 0935            |   |
| Sampling    | Equipm           | ent            |                   | I          | Dedicated  |       |          |              |            |            |           | 5.         | <br>Ing Fr | d Time:  | 03/21/20         | 12 0959            |   |
| PROBE-3     |                  |                |                   |            | NO         |       |          |              |            |            |           |            |            |          |                  |                    |   |
|             |                  |                |                   |            |            |       |          |              |            |            |           | Aı         | nbient Ba  | ometric: | 14.72            |                    |   |
|             |                  |                |                   |            |            |       | Comments |              |            |            | _         |            |            |          |                  |                    | - |
|             |                  |                |                   |            |            |       | Position | ·            | <b>C</b> . | ample Coll | ection C  | hecks      |            |          |                  | Volumes            |   |
| Run #       | Į                | Surf           | ace Functi        | ion Tests  | i          |       | Sampler  | (Pro         | obe Loca   | ted at san | nolin zor | ne in MP c | asing)     |          |                  | Tubes              |   |
|             | <u> </u>         |                | Charle 1          | Ореп       | Evacuate   | Close | Locate   | Pressure     | Shoe       | Zone       | Ореп      | Zone       | Close      | Shoe     | Pressure         |                    |   |
|             | Shoe<br>Out      | Close<br>Valve | Check<br>Vacuum   | Valve      | Container  | Valve | Port Arm | In MP1       | Out        | Pressure   | Valve     | Pressur    | Valve      | In       | in MP (2)        |                    |   |
|             |                  | Valve          | *acuum            | Fullo      |            |       | Out      |              |            |            |           | e (2)      |            |          |                  |                    |   |
|             |                  |                |                   |            |            | 1     | Land     |              |            |            |           |            |            |          |                  |                    |   |
|             |                  |                |                   |            |            | ļ     | Probe    | 1.00         |            | 41.17      |           | 41.17      | Ø          | M        | 44.81            | 5                  |   |
| 1           |                  |                | $\square$         |            |            |       | 199.3    | 44.82        |            |            |           |            |            |          | 44.75            | 5                  | 1 |
| 2           |                  |                |                   | ব          | $\square$  |       | 199.3    | 44.75        |            | 41.17      |           | 41.16      |            |          |                  |                    |   |
|             |                  |                |                   | N          | L          |       |          |              |            |            |           |            |            |          |                  | <b>FIFICATION</b>  |   |
| SAMPLE C    |                  | ION INF        | ORMAIIO           |            |            |       | Quantity | Bottie       | Tyne       | Prese      | rvative   | No         | rmal Sarr  | ple :GA  | <u>IN-FW-30E</u> | <u>3-03-032112</u> |   |
|             | rameter          |                | 846 8270C         | Metho      | 1          |       |          | iter amber   |            |            | опе       |            |            |          |                  |                    |   |
| SVOA_/      |                  |                | 846 6020/6        |            |            |       | 1 12     | 5 ml plasti  | c bottie   | Н          | NO3       |            |            |          |                  |                    |   |
| S           | S_AQ_DI          | 3 300-         | 040 002010        | .0.0       |            |       |          | •            |            |            |           |            |            |          |                  |                    |   |
|             | S_AQ_TO          | T SW-          | 846 6020/6        | 5010       | ······     |       | 1 12     | 5 mi plasti  | c bottle   | н          | NO3       |            |            |          |                  |                    |   |
| AL          | - <u>-</u> / ``` |                |                   |            |            |       |          |              |            |            |           | 4          |            |          |                  |                    |   |
| SVOA        | AQ               | SW-            | 846 82700         | ;          |            |       |          | liter amber  |            |            |           | 4          |            |          |                  |                    |   |
| BTEX        | AQ               | SW-            | 846 82608         | }          |            |       | 3 40     | ) ml glass v | /1a)       |            | HCL       |            |            |          |                  |                    |   |



WELL No.: FW-30B-04

| Client:             | -           | Beazer I       | East, Inc.      |               |                       |                |                                            |                                         |             |                                         |               |          |                     |                |              | D: <u>FW-3</u>        |                  |     |
|---------------------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|-----------------------------------------|-------------|-----------------------------------------|---------------|----------|---------------------|----------------|--------------|-----------------------|------------------|-----|
| Project Nai         | ne: _       | 1st Quar       | ter 2012 C      | ainesvill     | e Sampling            |                |                                            |                                         |             |                                         |               |          |                     |                |              |                       | /2012 0830       |     |
| Project Nu          | mber: .     | OM-045         | 0-12-091        |               |                       |                |                                            |                                         |             |                                         |               |          |                     |                | Technic      | rian: <u>Ken F</u>    | Robertson        |     |
| Location:           |             | Gainesv        | ille            |               |                       |                | W                                          | eather Con                              | ditions     | SUNNY                                   | 70            |          |                     |                |              |                       |                  |     |
| Sampling<br>PROBE-3 |             | ent            |                 |               | Dedicated<br>NO       |                |                                            |                                         |             |                                         |               |          | Sa                  |                | nd Time:     | 03/21/20              |                  |     |
|                     |             |                |                 |               |                       |                | Comments                                   | :                                       |             |                                         |               |          | An                  | nbient Bar     | ometric:     | 14.72                 |                  |     |
| Run #               |             | Surf           | ace Funct       | ion Tests     | ;                     |                | Position<br>Sampler                        | (Pro                                    |             | ample Coll<br>ated at san               |               |          |                     | asing)         |              |                       | Voiumes<br>Tubes |     |
|                     | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Ореп<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1                      | Shoe<br>Out | Zone<br>Pressure                        | Open<br>Vaive | Z<br>Pre | one<br>essur<br>(2) | Close<br>Valve | Shoe<br>In   | Pressure<br>in MP (2) |                  |     |
| 1                   | 7           |                | Ø               | V             | Ø                     | Ø              | 219.3                                      | 53.71                                   | Ø           | 49.82                                   | V             | 4        | 9.82                | $\square$      |              | 53.70                 | 5                |     |
| 2                   | ম           |                |                 |               |                       | Ø              | 219.3                                      | 53.61                                   | V           | 49.82                                   | $\Box$        | 4        | 9.82                | $\mathbf{N}$   | $\checkmark$ | 53.61                 | 5                |     |
| SAMPLE CO           |             | <b>.</b>       | L               | •             |                       |                |                                            | • • • • • • • • • • • • • • • • • • • • |             | • • • • • • • • • • • • • • • • • • • • |               |          |                     |                | SAMI         | LE IDENT              | TFICATION        | (S) |
| E                   | ameter      |                | 346 6020/6      | Method        | l                     | Q              | uantity                                    | Bottle<br>5 ml plastic                  |             | Preser                                  | vative<br>NO3 |          | <u>Nor</u>          | mal Sam        | ple :GA      | IN-FW-30B             | -04-032112       |     |
| S                   |             |                | 40 0020/0       | 010           |                       |                | 1 12                                       | o na pidode                             | bollio      |                                         |               |          |                     |                |              |                       |                  |     |
| SVOA_A              |             |                | 346 8270C       |               |                       |                |                                            | ter amber l                             |             |                                         | one           |          |                     |                |              |                       |                  |     |
| METALS<br>AL        | _AQ_TO      | T SW-8         | 346 6020/6      | 010           |                       |                | 1 12                                       | 5 ml plastic                            | ; bottle    | H                                       | NO3           |          |                     |                |              |                       |                  |     |
| BTEX_A              |             |                | 46 8260B        |               |                       |                |                                            | ml glass vi<br>ter amber                |             |                                         | CL<br>one     |          |                     |                |              |                       |                  |     |
| SVOA_A              | lu l        | 1200-6         | 346 8270C       | SIN           |                       | 1              |                                            |                                         | Jollie      |                                         | UIG           |          |                     |                |              |                       |                  |     |





| Client:<br>Project Nan<br>Project Nun<br>Location: |             | 1st Quar       | 0-12-091               |               | e Sampling            |                | Wa                                         | eather Con              | ditions               | _sunny cle                 | ear 80 de     |                          | umpling Sta              | D:<br>Technic | D: <u>FW-4</u><br>nte: <u>03/19</u><br>cian: <u>Rory</u><br>03/19/20 | /2012 1400<br>Hanczar |     |
|----------------------------------------------------|-------------|----------------|------------------------|---------------|-----------------------|----------------|--------------------------------------------|-------------------------|-----------------------|----------------------------|---------------|--------------------------|--------------------------|---------------|----------------------------------------------------------------------|-----------------------|-----|
| Sampling<br>westbay 3                              |             | ent            |                        |               | Dedicated<br>NO       |                | Comments:                                  |                         |                       |                            |               | 5                        | ampling Ei<br>mbient Bai | nd Time:      | 03/19/20                                                             | 12 1424               |     |
| Run #                                              |             | Surf           | ace Functi             | on Tests      |                       |                | Position<br>Sampler                        |                         |                       | ample Colle<br>Ited at sam |               |                          | casing)                  | 1             |                                                                      | Volumes<br>Tubes      |     |
|                                                    | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum        | Орел<br>Vaive | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1      | Shoe<br>Out           | Zone<br>Pressure           | Open<br>Valve | Zone<br>Pressui<br>e (2) | Close                    | Shoe<br>In    | Pressure<br>in MP (2)                                                |                       |     |
| 1                                                  | -<br>       |                |                        | Ŋ             |                       |                | 317.1                                      | 96.79                   | M                     | 94.08                      |               | 94.08                    |                          | M             | 96.77                                                                | 4 tubes               |     |
| 2                                                  | <u>_</u>    |                | V                      | V             | Ø                     | V              | 315.0                                      | 96.65                   | I<br>I<br>I<br>I<br>I | 94.08                      |               | 94.07                    |                          |               | 96.76                                                                | 4 tubes               |     |
| SAMPLE CO<br>Par<br>SVOA A                         | ameter      |                | ORMATIO                | Method        | 1                     | Q              | uantity<br>1  1  i                         | Bottle<br>ter amber     |                       | Preser<br>N                | vative<br>one |                          | ormal Sam                |               |                                                                      | 01-031912             | 151 |
| SVOA_A<br>SVOA_A<br>BTEX_A                         | NQ          | SW-8           | 346 8270C<br>346 8260B |               |                       |                |                                            | ter amber<br>mi glass v |                       |                            | one<br>ICL    |                          |                          |               |                                                                      |                       |     |





| Client:<br>Project Nar<br>Project Nur<br>Location: |             | 1st Qua        | 0-12-091        | Gainesvill    | e Sampling            |                | <br>                                       | eather Con                        | ditions      | sunny cl                  | ear 80 de           | egrees                  |                                                 | D          | ID: <u>FW-4</u><br>ate: <u>03/19</u><br>cian: <u>Rory</u> | )/2012 1424          |          |
|----------------------------------------------------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|-----------------------------------|--------------|---------------------------|---------------------|-------------------------|-------------------------------------------------|------------|-----------------------------------------------------------|----------------------|----------|
| Sampling<br>westbay 3                              |             |                |                 |               | Dedicated<br>NO       |                | Comments                                   |                                   |              |                           |                     | S                       | ampling Stanpling E<br>Sampling E<br>Ambient Ba | nd Time:   | 03/19/20                                                  | 012 1440<br>012 1503 |          |
| Run #                                              |             | Surf           | ace Functi      | ion Tests     | 5                     |                | Position<br>Sampler                        | (Pro                              |              | ample Coll<br>ated at san |                     |                         | casing)                                         |            |                                                           | Volumes<br>Tubes     |          |
|                                                    | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1                | Shoe<br>Out  | Zone<br>Pressure          | Open<br>Valve       | Zone<br>Pressu<br>e (2) | Close<br>r Valve                                | Shoe<br>In | Pressure<br>in MP (2)                                     |                      |          |
| 1                                                  | V           | V              | Ø               | Ŋ             | M                     | V              | 342.7                                      | 109.16                            | M            | 106.58                    | Ø                   | 106.58                  |                                                 | Ø          | 109.14                                                    | 4 tubes              |          |
| 2                                                  | V           | V              | V               | V             | Ŋ                     | N              | 342.2                                      | 109.10                            | $\mathbf{V}$ | 106.57                    | $\square$           | 106.57                  | ' <u> </u>                                      |            | 109.09                                                    | 4 tubes              | <u> </u> |
| SAMPLE CO                                          | DLLECT      | ION INFO       | ORMATIO         | N             |                       |                |                                            |                                   |              |                           |                     |                         |                                                 | SAM        | PLE IDENT                                                 | IFICATION            | (S)      |
| Par<br>SVOA_A<br>BTEX_A                            |             |                | 46 8270C        | Method        | 3                     |                |                                            | Bottle<br>ter amber<br>ml glass v | bottle       |                           | vative<br>one<br>CL | <u> </u>                | eld Blank :                                     | GAIN-F     | IN-FW-4C-<br>B-0103191<br>AIN-EB-01                       |                      |          |

SVOA\_AQ

SW-846 8270C SIM

1 liter amber bottle

1

None



WELL No.: FW-4C-03

| Client:<br>Project Nan<br>Project Nun<br>Location: | nber: _          | 1st Quar<br>OM-045<br>Gainesv | 0-12-091                                       |               | e Sampling            |                | Wa                                         | eather Con                                     | litions          | sunny cle                  | ear 80 de                   | San                      | npling Sta     | Da<br>Technic<br>rt Time: | ian: <u>Rory</u><br>03/19/20 | /2012 1504<br>Hanczar<br>12 1515 |     |
|----------------------------------------------------|------------------|-------------------------------|------------------------------------------------|---------------|-----------------------|----------------|--------------------------------------------|------------------------------------------------|------------------|----------------------------|-----------------------------|--------------------------|----------------|---------------------------|------------------------------|----------------------------------|-----|
| Sampling<br>westbay 3                              |                  |                               |                                                |               | NO                    |                | Comments:                                  |                                                |                  |                            |                             |                          |                |                           | 03/19/20<br>14.66            | /12 1555                         |     |
| Run #                                              |                  | Surf                          | ace Functi                                     | on Tests      | <u> </u>              |                | Position<br>Sampler                        |                                                |                  | ample Colle<br>ated at sam | <u>ıplin zor</u>            | <u>e in MP c</u>         |                |                           |                              | Volumes<br>Tubes                 |     |
|                                                    | Shoe<br>Out      | Close<br>Valve                | Check<br>Vacuum                                | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1                             | Shoe<br>Out      | Zone<br>Pressure           | Open<br>Valve               | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In                | Pressure<br>in MP (2)        |                                  |     |
| 1                                                  |                  |                               | Ø                                              | Ø             | Ø                     | V              | 364.3                                      | 117.73                                         | Ø                | 115.20                     |                             | 115.20                   | <u></u>        |                           | 117.69                       | 4 tubes                          |     |
| 2                                                  | V                | V                             |                                                | V             |                       | $\checkmark$   | 365.2                                      | 117.68                                         |                  | 115.21                     | V                           | 115.19                   |                |                           | 117.63                       | 4 tubes                          | (S) |
| SAMPLE CO<br>Par<br>SVOA_A<br>SVOA_A<br>BTEX_A     | ameter<br>Q<br>Q | SW-8<br>SW-8                  | DRMATIO<br>346 8270C<br>346 8270C<br>346 8260B | Methoo<br>SIM | 3                     | Q              | 1 1 li                                     | Bottle<br>ter amber<br>ter amber<br>ml glass v | bottle<br>bottle | N                          | vative<br>one<br>one<br>ICL | Nor                      | mal Sam        |                           |                              | - <u>03-031912</u>               |     |





### 

| Client:         | Beazer East, Inc.               |                    |          | Well ID: <u>FW-12B-01</u>          |
|-----------------|---------------------------------|--------------------|----------|------------------------------------|
| Project Name:   | 2nd Quarter 2012 Sampling Event |                    |          | Date: 06/19/2012 1256              |
| Project Number: | OM-0450-12-091                  |                    |          | Technician: Rory Hanczar           |
| Location:       | Gainesville                     | Weather Conditions | sunny 90 |                                    |
|                 |                                 |                    | Sam      | mpling Start Time: 06/19/2012 1305 |
| Sampling Equipr | nent Dedicated NO               |                    |          | ampling End Time: 06/19/2012 1338  |
|                 |                                 |                    |          | mbient Barometric: 14.71           |

#### Comments:

| Run # |             | Surf           | ace Functi      | ion Tests     | 5                     |                | Position<br>Sampler                        | (Pro               |             | ample Coll<br>ated at sam |               |                          | asing)         |              |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|---------------------------|---------------|--------------------------|----------------|--------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In   | Pressure<br>in MP (2) |                  |
| 1     | Q           | Ø              | Ø               | Ø             | Ŋ                     | V              | 155.3                                      | 21.18              | Ŋ           | 19.44                     | Q             | 19.42                    | V              | Ø            | 21.18                 | 5                |
| 2     | N           | Ø              | Ø               | N             | N                     | Ø              | 155.0                                      | 21.14              | Ŋ           | 19.50                     | $\square$     | 19.42                    | V              | $\checkmark$ | 21.14                 | 5                |

#### SAMPLE COLLECTION INFORMATION

BTEX\_AQ

6020/6010

SW-846 8260B

3

з

#### Bottle Bottle QTY QTY Preservative Program BottleType Parameter Method Required Collected SVOA\_AQ 1 liter amber bottle Floridan GW None SW-846 8270C 1 1 Sampling\_001 SVOA\_AQ Floridan GW SW-846 8270C 1 1 1 liter amber bottle None Sampling\_001 SIM METALS\_AQ\_DISS IRM GW SW-846 125 mi plastic bottle HNO3 1 1 Sampling\_001 6020/6010 METALS\_AQ\_TOTAL IRM GW 125 ml plastic bottle HNO3 SW-846 1 1

SAMPLE IDENTIFICATION(S)

Normal Sample : GAIN-FW-12B-01-061912

Sampling\_001

Floridan GW

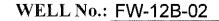
Sampling\_001

HCL

Lab

Columbia

Columbia


Columbia

Columbia

Columbia

40 ml glass vial





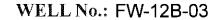
Ambient Barometric: 14.71

| Client:         | Beazer East, Inc.                      |           |                        |                   | Well 1               | D: _FW-12B-02              |
|-----------------|----------------------------------------|-----------|------------------------|-------------------|----------------------|----------------------------|
| Project Name:   | 2nd Quarter 2012 Sampling              | Event     |                        |                   | Da                   | te: <u>06/19/2012 1106</u> |
| Project Number: | OM-0450-12-091                         |           |                        |                   | Technici             | ian: <u>Rory Hanczar</u>   |
| Location:       | Gainesville                            |           | <br>Weather Conditions | SUNNY ne wind, 90 |                      |                            |
|                 | ······································ |           |                        |                   | Sampling Start Time: | 06/19/2012 1212            |
| Sampling Equipr | nent C                                 | Dedicated |                        |                   |                      |                            |
| westbay beazer  |                                        | NO        |                        |                   | Sampling End Time:   | 00/18/2012 1200            |

| Sampling Equipment | Dedicated |
|--------------------|-----------|
| westbay beazer     | NO        |
|                    |           |
|                    |           |
|                    |           |

#### Comments:

| Run # |             | Surf           | ace Functi      | ion Tests     | 3                     |                | Position<br>Sampler                        | (Pro     |             | ample Coll<br>ated at san |               |                          | asing)         |            |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|----------|-------------|---------------------------|---------------|--------------------------|----------------|------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In | Pressure<br>in MP (2) |                  |
| 1     | V           | Ø              | Ŋ               | V             | V                     | Ø              | 175.2                                      | 29.95    | Ø           | 28.11                     | Ø             | 28.11                    | Ø              | V          | 29.94                 | 5                |
| 2     | N           | Ø              | M               |               | V                     | N              | 175.1                                      | 29.90    | N           | 28.11                     | V             | 28.11                    |                |            | 29.90                 | 5                |


#### SAMPLE COLLECTION INFORMATION

### SAMPLE IDENTIFICATION(S)

#### Normal Sample :GAIN-FW-12B-02-061912

| Lab      | Parameter       | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType            | Preservative | Program                     |
|----------|-----------------|---------------------|---------------------------|----------------------------|-----------------------|--------------|-----------------------------|
| Columbia | SVOA_AQ         | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | BTEX_AQ         | SW-846 8260B        | з                         | 3                          | 40 mi glass vial      | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ         | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_DISS  | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | IRM GW<br>Sampling_001      |
| Columbia | METALS_AQ_TOTAL | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | IRM GW<br>Sampling_001      |

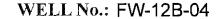




| Client:                           | Beazer East, Inc.               |            |                    |                     | Well II              | D: <u>FW-12B-03</u> |
|-----------------------------------|---------------------------------|------------|--------------------|---------------------|----------------------|---------------------|
| Project Name:                     | 2nd Quarter 2012 Sampling Event |            |                    |                     |                      | e: 06/19/2012 1418  |
| Project Number:                   | OM-0450-12-091                  |            |                    |                     | Technici             | an: Rory Hanczar    |
| Location:                         | Gainesville                     |            | Weather Conditions | Sunny NE windv10-15 |                      |                     |
|                                   |                                 | <b>1</b> · |                    |                     | Sampling Start Time: | 06/19/2012 1421     |
| Sampling Equipn<br>westbay beazer | nent Dedicated NO               |            |                    |                     | -                    | 00//0/00/00/00/00   |
|                                   |                                 | -          |                    |                     | Ambient Barometric:  |                     |

#### Comments: probe 3535

| Run # |             | Surf           | ace Funct       | ion Tests     | S                     |                | Position<br>Sampler                        | (Pro               |             | ample Coll<br>ated at san |               |                          | asing)         |            |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|---------------------------|---------------|--------------------------|----------------|------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In | Pressure<br>in MP (2) |                  |
| 1     | Ø           | Ø              |                 | Q             | Ø                     | Ø              | 194.9                                      | 38.18              | N           | 36.76                     | V             | 36.77                    | Ŋ              | Ø          | 38,17                 | 5                |
| 2     | M           | V              | Q               | M             | Q                     | Ø              | 194.8                                      | 38.14              | N           | 36.76                     | $\square$     | 36.76                    | N              |            | 38.14                 | 5                |


#### SAMPLE COLLECTION INFORMATION

| Lab      | Parameter       | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType            | Preservative | Program                     |
|----------|-----------------|---------------------|---------------------------|----------------------------|-----------------------|--------------|-----------------------------|
| Columbia | SVOA_AQ         | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ         | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_DISS  | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | IRM GW<br>Sampling_001      |
| Columbia | BTEX_AQ         | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial      | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_TOTAL | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | IRM GW<br>Sampling_001      |

SAMPLE IDENTIFICATION(S)

Normai Sample :GAIN-FW-12B-03-061912





# 

| Client:         | Beazer East, Inc.               |                    |                  |                      | D: <u>FW-12B-04</u>        |
|-----------------|---------------------------------|--------------------|------------------|----------------------|----------------------------|
| Project Name:   | 2nd Quarter 2012 Sampling Event |                    |                  |                      | te: <u>06/19/2012 1339</u> |
| Project Number: | OM-0450-12-091                  |                    |                  | Technic              | ian: Rory Hanczar          |
| Location:       | _Gainesville                    | Weather Conditions | partly cloudy 90 |                      |                            |
|                 |                                 |                    |                  | Sampling Start Time: | 06/19/2012 1342            |
| Sampling Equipn | nent Dedicated NO               |                    |                  | Sampling End Time:   |                            |
|                 |                                 |                    |                  | Ambient Barometric:  | 14.71                      |
|                 |                                 |                    |                  |                      |                            |

#### Comments:

| Run # |             | Surf                                   | ace Functi | ion Tests | 3         |        | Position<br>Sampler                        | (Pro               |             | ample Coll<br>ated at sam |                   |                          | asing)         |              |                       | Volumes<br>Tubes |
|-------|-------------|----------------------------------------|------------|-----------|-----------|--------|--------------------------------------------|--------------------|-------------|---------------------------|-------------------|--------------------------|----------------|--------------|-----------------------|------------------|
|       | Shoe<br>Out | Out Valve Vacuum Valve Container Valve |            |           |           |        | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve     | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In   | Pressure<br>in MP (2) |                  |
| 1     | M           | Ø                                      | Ø          | N         | Ø         | $\Box$ | 215.2                                      | 47.13              | N           | 45.41                     | V                 | 45.41                    | V              | 2            | 47.08                 | 5                |
| 2     | M           | V                                      | Ø          | N         | $\square$ | N      | 215.0                                      | 47.00              |             | 45.41                     | $\mathbf{\nabla}$ | 45.41                    | $\square$      | $\checkmark$ | 46.96                 | 5                |

#### SAMPLE COLLECTION INFORMATION

#### Bottle Bottle QTY QTY BottleType Preservative Program Method Required Parameter Collected Lab SVOA\_AQ 1 liter amber bottle None Floridan GW SW-846 8270C 1 Columbia 1 Sampling\_001 SIM BTEX\_AQ Floridan GW SW-846 8260B 3 3 40 ml glass vial HCL Columbia Sampling\_001 METALS\_AO\_TOTAL IRM GW 125 ml plastic bottle HNO3 SW-846 1 1 Columbia Sampling\_001 6020/6010 SVOA\_AQ Floridan GW 1 liter amber bottle SW-846 8270C 1 1 None Columbia Sampling\_001 METALS\_AQ\_DISS 125 ml plastic bottle HNO3 IRM GW SW-846 1 1 Columbia Sampling\_001 6020/6010

SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-12B-04-061912 Field Blank :GAIN-FB-02-061912



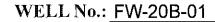


## 

SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-16B-01-061912 Trip Blank :GAIN-TRIPBLANK-061912 Equipment Blank :GAIN-EB-02-061912 Blind Duplicate :GAIN-FW-99A-061912

| Client:         | Beazer East, Inc.               |                    |          | Well I               | D: _FW-16B-01              |
|-----------------|---------------------------------|--------------------|----------|----------------------|----------------------------|
| Project Name:   | 2nd Quarter 2012 Sampling Event |                    |          |                      | te: <u>06/19/2012 0944</u> |
| Project Number: | OM-0450-12-091                  |                    |          | Technic              | ian: <u>Rory Hanczar</u>   |
| Location:       | Gainesville                     | Weather Conditions | sunny 90 | ·····                |                            |
|                 |                                 |                    |          | Sampling Start Time: | 06/19/2012 0951            |
| Sampling Equipn | nent Dedicated NO               |                    |          | Sampling End Time:   |                            |
| Housey beazer   |                                 |                    |          | Ambient Barometric:  |                            |
|                 |                                 |                    |          |                      |                            |


#### Comments:

| Run # |             | Surf           | ace Funct       | ion Tests     | 5                     |                | Position<br>Sampler                        |                    |             |                  |               |                          |                |                   |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|------------------|---------------|--------------------------|----------------|-------------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Vaive | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In        | Pressure<br>in MP (2) |                  |
| 1     | Ø           | Ø              | Ø               | N             | M                     | Ø              | 164.4                                      | 30.79              | V           | 24.55            | Ø             | 24.55                    | Ŋ              | Ŋ                 | 30.79                 | 5                |
| 2     | Ø           | Ø              | Ø               | V             | M                     | Ø              | 163.9                                      | 30.76              | V           | 24.55            | N             | 24.55                    | V              | V                 | 32.76                 | 5                |
| 3     | Ø           | M              | Ø               | Ø             | N                     | Ø              | 164.2                                      | 30.74              | Ŋ           | 24.55            | Ŋ             | 24.55                    | Ŋ              | $\mathbf{\nabla}$ | 30.74                 | 5                |

#### SAMPLE COLLECTION INFORMATION

| Lab      | Parameter       | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType            | Preservative | Program                     |
|----------|-----------------|---------------------|---------------------------|----------------------------|-----------------------|--------------|-----------------------------|
| Columbia | BTEX_AQ         | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial      | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_TOTAL | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | IRM GW<br>Sampling_001      |
| Columbia | METALS_AQ_DISS  | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | IRM GW<br>Sampling_001      |
| Columbia | SVOA_AQ         | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ         | SW-845 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |





## 

| Client:<br>Project Name:<br>Project Number: | Beazer East, Inc.<br>2nd Quarter 2012 Sampling Event<br>OM-0450-12-091 |                             | Well ID: <u>FW-20B-01</u><br>Date: <u>06/20/2012 0800</u><br>Technician: <u>Rory Hanczar</u> |
|---------------------------------------------|------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------|
| Location:                                   | Gainesville                                                            | Weather Conditions sunny 75 |                                                                                              |
| Sampling Equipn<br>westbay beazer           | nent Dedicated NO                                                      |                             | Sampling Start Time:06/20/2012 0805Sampling End Time:06/20/2012 0834Ambient Barometric:14.69 |

#### Comments: probe 3535

| Run # |             | Surf | ace Functi | ion Tests | 1 |   | Position<br>Sampler                        | (Pro               |             | ample Collected at sam |                   |                          | asing)         |              |                       | Volumes<br>Tubes |
|-------|-------------|------|------------|-----------|---|---|--------------------------------------------|--------------------|-------------|------------------------|-------------------|--------------------------|----------------|--------------|-----------------------|------------------|
|       | Shoe<br>Out |      |            |           |   |   | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure       | Open<br>Valve     | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In   | Pressure<br>in MP (2) |                  |
| 1     | N           | Ø    | N          | V         | Ŋ | N | 156.7                                      | 23.18              | Ø           | 20.29                  | V                 | 20.28                    | Ŋ              | V            | 23.17                 | 5                |
| 2     | M           | Ø    | Ø          | Ŋ         | Q | N | 156.5                                      | 23.14              |             | 20.29                  | $\mathbf{\nabla}$ | 20.29                    | $\mathbf{V}$   | $\checkmark$ | 23.15                 | 5                |

#### SAMPLE COLLECTION INFORMATION

| Lab      | Parameter       | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType            | Preservative | Program                     |
|----------|-----------------|---------------------|---------------------------|----------------------------|-----------------------|--------------|-----------------------------|
| Columbia | SVOA_AQ         | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_DISS  | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | ниоз         | IRM GW<br>Sampling_001      |
| Columbia | METALS_AQ_TOTAL | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | IRM GW<br>Sampling_001      |
| Columbia | SVOA_AQ         | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | BTEX_AQ         | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial      | HCL          | Floridan GW<br>Sampling_001 |

#### SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-20B-01-062012 Field Blank :GAIN-FB-03-062012 Equipment Blank :GAIN-EB-03-062012





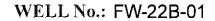
## 

| Client:         | Beazer East, Inc.         |               |                                       |                 | Well I               | D: _FW-20B-02              |
|-----------------|---------------------------|---------------|---------------------------------------|-----------------|----------------------|----------------------------|
| Project Name:   | 2nd Quarter 2012 Sampling | <u> Event</u> |                                       |                 | Da                   | te: <u>06/19/2012 1648</u> |
| Project Number: | OM-0450-12-091            |               | · · · · · · · · · · · · · · · · · · · |                 | Technic              | ian: Rory Hanczar          |
| Location:       | Gainesville               |               | Weather Conditions                    | artly cloudy 90 |                      |                            |
|                 |                           |               |                                       |                 | Sampling Start Time: | 06/19/2012 1652            |
| Sampling Equipr | nent                      | Dedicated     |                                       |                 |                      | 00/10/00/10 17/5           |
| westbay beazer  |                           | NO            |                                       |                 | Sampling End Time:   |                            |

Ambient Barometric: 14.69

#### Comments: probe 3535

| Run # |             | Surf | ace Functi | on Tests | i |                | Position<br>Sampler                        | (Pro               |             | ample Coll<br>ited at san |               |                          | asing)         |              |                       | Volumes<br>Tubes |
|-------|-------------|------|------------|----------|---|----------------|--------------------------------------------|--------------------|-------------|---------------------------|---------------|--------------------------|----------------|--------------|-----------------------|------------------|
|       | Shoe<br>Out |      |            |          |   | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In   | Pressure<br>in MP (2) |                  |
| 1     | Ø           | Ø    | Ø          | Ø        | V | Ø              | 176.5                                      | 31,87              | Ø           | 28.93                     | M             | 28.93                    | M              | V            | 31.87                 | 5                |
| 2     |             |      | M          | J        | N |                | 176.4                                      | 31.84              |             | 28.93                     | $\square$     | 28.93                    | $\square$      | $\checkmark$ | 31.84                 | 5                |


SAMPLE COLLECTION INFORMATION

#### Bottle Bottle QTY QTY BottleType Preservative Program Method Parameter Required Lab Collected METALS\_AQ\_TOTAL 125 ml plastic bottle HNO3 IRM GW SW-846 1 Columbia 1 Sampling\_001 6020/6010 SVOA\_AQ Floridan GW SW-846 8270C 1 1 1 liter amber bottle None Columbia Sampling\_001 SVOA\_AQ Floridan GW SW-846 8270C 1 1 liter amber bottle None Columbia 1 Sampling\_001 SIM METALS\_AQ\_DISS HNO3 IRM GW 125 ml plastic bottle Columbia SW-846 1 1 Sampling\_001 6020/6010 BTEX\_AQ 40 ml glass vial HCL Floridan GW SW-846 8260B 3 3 Columbia Sampling\_001

SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-20B-02-061912





## 

| Client:                          | Beazer East, Inc.               |    |                   |           | Well II              | D: <u>FW-22B-01</u>        |
|----------------------------------|---------------------------------|----|-------------------|-----------|----------------------|----------------------------|
| Project Name:                    | 2nd Quarter 2012 Sampling Event |    |                   |           | Da                   | te: <u>06/18/2012 1249</u> |
| Project Number:                  | OM-0450-12-091                  |    |                   |           | Technici             | an: <u>Rory Hanczar</u>    |
| Location:                        | Gainesville                     | Wo | eather Conditions | _sunny/90 |                      |                            |
|                                  |                                 |    |                   | ·         | Sampling Start Time: | 06/18/2012 1300            |
| Sampling Equip<br>westbay beazer | ment Dedicated NO               |    |                   |           | Sampling End Time:   |                            |
|                                  |                                 |    |                   |           | Ambient Barometric:  | 14.70                      |

#### Comments:

| Run:# |             | Surfa          | ace Functi      | ion Tests     | 3                     |                | Position<br>Sampler                        | (Pro               |             | ample Coll<br>ted at sam |               |                          | asing)         |            |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|--------------------------|---------------|--------------------------|----------------|------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure         | Open<br>Valve | Zone<br>Pressur<br>e (2) | Ciose<br>Vaive | Shoe<br>In | Pressure<br>in MP (2) |                  |
| 1     | Ø           | Ø              |                 |               | N                     | Ø              | 154.5                                      | 27.22              | V           | 20.33                    | Ŋ             | 20.34                    | V              | M          | 27.22                 | 5                |
| 2     | N           | Q              | Ŋ               | Ŋ             | N                     | M              | 154.1                                      | 27.19              | V           | 20.33                    | Ø             | 20.33                    | Ø              | Q          | 27.33                 | 5                |

#### SAMPLE COLLECTION INFORMATION

### SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-22B-01-061812

| Lab      | Parameter | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType           | Preservative | Program                     |
|----------|-----------|---------------------|---------------------------|----------------------------|----------------------|--------------|-----------------------------|
| Columbia | SVOA_AQ   | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ   | SW-845 8270C        | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | BTEX_AQ   | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial     | HCL          | Floridan GW<br>Sampling_001 |





| = |
|---|

#### Comments:

| Run # |             | Surf           | ace Functi      | ion Tests     | 3                     |                | Position<br>Sampler                        | (Pro               |             | ample Coll<br>Ited at sam |               |                          | asing)         |                   |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|---------------------------|---------------|--------------------------|----------------|-------------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In        | Pressure<br>in MP (2) |                  |
| 1     | M           | Ø              | Ŋ               | N             | N                     |                | 173.1                                      | 35.35              | V           | 28.98                     | Ŋ             | 28.98                    | M              | V                 | 35.30                 | 5                |
| 2     |             |                | Ø               | J             | Ŋ                     |                | 172.8                                      | 34.75              |             | 28.98                     | Ø             | 28.97                    | V              | $\mathbf{\nabla}$ | 34.72                 | 5                |

#### SAMPLE COLLECTION INFORMATION

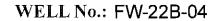
### SAMPLE IDENTIFICATION(S)

#### Normal Sample :GAIN-FW-22B-02-061812

| Lab      | Parameter | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType           | Preservative | Program                     |
|----------|-----------|---------------------|---------------------------|----------------------------|----------------------|--------------|-----------------------------|
| Columbia | BTEX_AQ   | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial     | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ   | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ   | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |






# 

|             |        |           |            |           |                   | CO        |                     |            |           |                           |       |         |                         |           |                   |                  |   |
|-------------|--------|-----------|------------|-----------|-------------------|-----------|---------------------|------------|-----------|---------------------------|-------|---------|-------------------------|-----------|-------------------|------------------|---|
| lient:      |        | Beazer    | East, Inc. |           |                   |           |                     |            |           |                           |       |         |                         |           | ID: <u>FW-</u> 2  |                  |   |
| Project Nan | ne: _  | 2nd Qua   | rter 2012  | Sampling  | Event             |           |                     |            |           |                           |       |         |                         | D         | ate: <u>06/18</u> | /2012 1408       |   |
| Project Nun |        | OM-045    | 0-12-091   |           |                   |           |                     |            |           |                           |       |         |                         | Technie   | cian: <u>Rory</u> | Hanczar          |   |
| Location:   | -      | Gainesv   | ille       |           |                   |           | W                   | eather Con | ditions   | sunny 90                  | )     |         |                         |           |                   |                  |   |
|             |        |           |            |           |                   |           |                     | · · · ·    |           |                           |       | Sa      | mpling Sta              | art Time: | . 06/18/20        | 112 1412         |   |
| Sampling    |        | ent       |            |           | Dedicated         |           |                     |            |           |                           |       |         |                         |           |                   | 12 1454          |   |
| westbay be  | eazer  |           |            |           | NO                |           |                     |            |           |                           |       | Sa      | impling E               | na rime:  |                   |                  |   |
|             |        |           |            |           |                   |           |                     |            |           |                           |       | Ar      | nbient Ba               | rometric  | 14.70             |                  |   |
|             |        |           |            |           |                   |           |                     |            |           |                           |       |         |                         |           |                   |                  |   |
|             |        |           |            |           |                   |           | Comments:           | probe35:   | 35        |                           |       |         |                         |           |                   |                  |   |
|             |        |           |            |           |                   |           |                     |            |           |                           |       |         |                         |           |                   |                  | 1 |
| Run #       |        | Surf      | ace Functi | ion Tests | 5                 |           | Position<br>Sampler | (D         |           | ample Coll<br>ated at san |       |         | asina)                  |           |                   | Volumes<br>Tubes |   |
| ŀ           | Shoe   | Close     | Check      | Open      | Evacuate          | Close     | Locate              | Pressure   | Shoe      | Zone                      | Open  | Zone    | Close                   | Shoe      | Pressure          | , rubes          |   |
|             | Out    | Valve     | Vacuum     | Valve     | Container         | Valve     | Port Arm            | in MP1     | Out       | Pressure                  | Valve | Pressur | Valve                   | In        | in MP (2)         |                  |   |
|             |        |           |            |           |                   |           | Out                 |            |           |                           |       | e (2)   |                         |           |                   |                  |   |
|             |        |           |            |           |                   |           | Land<br>Probe       |            |           |                           |       |         |                         |           |                   |                  |   |
|             |        | <u> </u>  |            |           |                   |           |                     | 44 42      |           | 37.64                     |       | 37.64   | k=1                     |           | 44.43             | 5                | 1 |
|             |        |           |            |           | M                 | Ø         | 193.6               | 44.43      | Ø         |                           |       |         |                         |           | ÷                 |                  | 4 |
| 2           | _      | $\square$ |            |           | $\mathbf{\nabla}$ | $\square$ | 193.1               | 44.19      | $\square$ | 37.64                     |       | 37.64   | $\overline{\mathbf{A}}$ |           | 44.10             | 5                | I |
| <u> </u>    | $\Box$ |           |            |           | <u>v</u>          |           |                     |            |           | 1                         |       |         |                         | لستنا     | 1                 | -                |   |

#### Normal Sample : GAIN-FW-22B-03-061812

| Lab      | Parameter | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType           | Preservative | Program                     |
|----------|-----------|---------------------|---------------------------|----------------------------|----------------------|--------------|-----------------------------|
| Columbia | SVOA_AQ   | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | BTEX_AQ   | SW-846 8260B        | 3                         | 3                          | 40 mi glass vial     | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ   | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |





## 

| Client:                           | Beazer East, Inc.     |                 |                    |               | Well ID: <u>FW-22B-04</u> |
|-----------------------------------|-----------------------|-----------------|--------------------|---------------|---------------------------|
| Project Name:                     | 2nd Quarter 2012 Samp | ling Event      |                    |               | Date: 06/18/2012 1209     |
| Project Number:                   | OM-0450-12-091        |                 |                    | 7             | Fechnician: Rory Hanczar  |
| Location:                         | Gainesville           |                 | Weather Conditions | sunny 85      |                           |
|                                   | ×                     |                 |                    | Sampling Star | Time: 06/18/2012 1212     |
| Sampling Equipr<br>westbay beazer | ment                  | Dedicated<br>NO |                    | Sampling End  |                           |
|                                   |                       |                 |                    | Ambient Baro  | metric: 14.68             |

Comments: removed xdcr and closed zone 1 pumping port prior to sample collection

| Run # |             | Surf           | ace Funct       | ion Tests     | }                     |                | Position<br>Sampler                        | (Pro               |             | ample Coll<br>ated at sam |               |                          | asing)         |            |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|---------------------------|---------------|--------------------------|----------------|------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In | Pressure<br>in MP (2) |                  |
| 1     |             | Ø              | Ø               | N             | Ŋ                     | $\square$      | 209.1                                      | 50.80              | V           | 44.12                     | Ø             | 44.12                    | Ø              | V          | 50.72                 | 4                |
| 2     |             |                |                 |               | N                     | Ø              | 209.0                                      | 50.72              | N           | 44.12                     | Ŋ             | 44.12                    | V              | V          | 50.70                 | 4                |

SAMPLE COLLECTION INFORMATION

### SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-22B-04-061812

| Lab      | Parameter | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType           | Preservative | Program                     |
|----------|-----------|---------------------|---------------------------|----------------------------|----------------------|--------------|-----------------------------|
| Columbia | SVOA_AQ   | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ   | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | BTEX_AQ   | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial     | HCL          | Floridan GW<br>Sampling_001 |



magi-2536

## WESTBAY GROUNDWATER SAMPLE COLLECTION RECORD



# 

| Client:         | Beazer East, Inc.         |                 | 1 |                    |            | Well I               | D: _FW-23B-01             |
|-----------------|---------------------------|-----------------|---|--------------------|------------|----------------------|---------------------------|
| Project Name:   | 2nd Quarter 2012 Sampling | Event           |   |                    |            | Da                   | te: 06/18/2012 1117       |
| Project Number: | OM-0450-12-091            |                 |   |                    |            | Technic              | ian: <u>Jesse Marczak</u> |
| Location:       | Gainesville               |                 |   | Weather Conditions | Sunny 80 F |                      |                           |
|                 |                           |                 |   |                    | ·          | Sampling Start Time: | 06/18/2012 1200           |
| Sampling Equipr |                           | Dedicated<br>NO |   |                    |            | Sampling End Time:   | 06/18/2012 1235           |

| FB                  |       |
|---------------------|-------|
| Ambient Barometric: | 14.58 |

#### Comments:

NO

| Run # | Surface Function Tests |                |                 |               | Position<br>Sampler   |                |                                            |                    |             |                  |               |                          |                | Volumes<br>Tubes |                       |   |
|-------|------------------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|------------------|---------------|--------------------------|----------------|------------------|-----------------------|---|
|       | Shoe<br>Out            | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In       | Pressure<br>in MP (2) |   |
| 1     | Ø                      |                | V               | N             |                       |                | 152.1                                      | 27.73              | M           | 22.81            | Ŋ             | 22.80                    | Ŋ              | V                | 27.73                 | 4 |
| 2     | N                      | Ø              | $\Box$          | N             | N                     | Ø              | 152.0                                      | 27.74              | N           | 22.77            | Q             | 22.79                    | $\square$      |                  | 27.74                 | 4 |

#### SAMPLE COLLECTION INFORMATION

## SAMPLE IDENTIFICATION(S) Normal Sample :GAIN-FW-23B-01-061812

| Lab      | Parameter | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType           | Preservative | Program                     |
|----------|-----------|---------------------|---------------------------|----------------------------|----------------------|--------------|-----------------------------|
| Columbia | SVOA_AQ   | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | BTEX_AQ   | SW-846 8260B        | З                         | 3                          | 40 ml glass vial     | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ   | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |







| Client:                 | Beazer East, Inc.    |                 |                    |            | Well I               | D: <u>FW-23B-02</u>       |
|-------------------------|----------------------|-----------------|--------------------|------------|----------------------|---------------------------|
| Project Name:           | 2nd Quarter 2012 Sam | oling Event     |                    |            | Da                   | te: 06/18/2012 1250       |
| Project Number:         | OM-0450-12-091       |                 |                    |            | Technic              | ian: <u>Jesse Marczak</u> |
| Location:               | Gainesville          |                 | Weather Conditions | Sunny 80 F |                      |                           |
| [                       |                      | }               |                    |            | Sampling Start Time: | 06/18/2012 1255           |
| Sampling Equipr         | nent                 | Dedicated<br>NO |                    |            | Sampling End Time:   |                           |
| Magi-2536<br>Probe-4071 |                      | NO              |                    |            |                      |                           |
|                         | •••                  |                 |                    |            | Ambient Barometric:  | 14.58                     |

#### Comments:

| Run # | Surface Function Tests |                |                 |               | Position<br>Sampler   |                |                                            |                    |                   |                  |               |                          |                | Volumes<br>Tubes |                       |   |
|-------|------------------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------------|------------------|---------------|--------------------------|----------------|------------------|-----------------------|---|
|       | Shoe<br>Out            | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out       | Zone<br>Pressure | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In       | Pressure<br>in MP (2) |   |
| 1     | Ø                      | Ø              | Ø               | V             | V                     | Ø              | 171.9                                      | 36.42              | V                 | 31.45            | Ø             | 31.45                    | Ŋ              |                  | 36.41                 | 4 |
| 2.    | M                      | M              | Ø               | N             | ম                     | Ø              | 171.6                                      | 36.39              | $\mathbf{\nabla}$ | 31.46            | N             | 31.46                    | V              | $\checkmark$     | 36.39                 | 4 |

#### SAMPLE COLLECTION INFORMATION

| Lab      | Parameter | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType           | Preservative | Program                     |
|----------|-----------|---------------------|---------------------------|----------------------------|----------------------|--------------|-----------------------------|
| Columbia | BTEX_AQ   | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial     | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ   | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | SVQA_AQ   | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |

SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-23B-02-061812





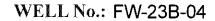
# 

| Client:         | Beazer East, Inc.         |           | <u> </u>           |            | Well I               | D: <u>FW-23B-03</u>       |
|-----------------|---------------------------|-----------|--------------------|------------|----------------------|---------------------------|
| Project Name:   | 2nd Quarter 2012 Sampling | Event     |                    |            | Da                   | te: 06/18/2012 1321       |
| Project Number: | OM-0450-12-091            |           |                    |            | Technic              | ian: <u>Jesse Marczak</u> |
| Location:       | Gainesville               |           | Weather Conditions | sunny 85 F |                      |                           |
|                 |                           |           |                    |            | Sampling Start Time: | 06/18/2012 1338           |
| Sampling Equipr | nent [                    | Dedicated |                    |            |                      |                           |
| Magi-2536       |                           | NO        |                    |            | Sampling End Time:   | 06/18/2012 1444           |
| Probe-4071      |                           | NO        |                    |            |                      | 14 60                     |

Ambient Barometric: 14.60

#### Comments:

| Run # |             | Surface Function Tests |                 |               |                       |                | Position<br>Sampler                        |                    |                   |                  |               |                          |                |                   |                       |         |
|-------|-------------|------------------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------------|------------------|---------------|--------------------------|----------------|-------------------|-----------------------|---------|
|       | Shoe<br>Out | Close<br>Valve         | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>in MP1 | Shoe<br>Out       | Zone<br>Pressure | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In        | Pressure<br>in MP (2) | . Tubes |
| 1     |             | M                      | Ø               | N             | N                     | N              | 191.2                                      | 44.88              | Ŋ                 | 40.10            | Ŋ             | 40.12                    | V              | N                 | 44.90                 | 4       |
| 2     | Ø           | N                      | Ø               | M             | N                     | Ø              | 191.1                                      | 44.87              | $\mathbf{\nabla}$ | 40.10            |               | 40.11                    | $\square$      | $\mathbf{\nabla}$ | 44.87                 | 4       |


#### SAMPLE COLLECTION INFORMATION

### SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-23B-03-061812

| Lab      | Parameter | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType           | Preservative | Program                     |
|----------|-----------|---------------------|---------------------------|----------------------------|----------------------|--------------|-----------------------------|
| Columbia | SVOA_AQ   | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ   | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle | None         | Floridan GW<br>Sampling_001 |
| Columbia | BTEX_AQ   | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial     | HCL          | Floridan GW<br>Sampling_001 |





# 

| Client:                 | Beazer East, Inc.                            |           |  |                    |            | Well II              | D: _FW-23B-04              |
|-------------------------|----------------------------------------------|-----------|--|--------------------|------------|----------------------|----------------------------|
| Project Name:           | roject Name: 2nd Quarter 2012 Sampling Event |           |  |                    |            | Dat                  | te: <u>06/18/2012 1444</u> |
| Project Number:         | OM-0450-12-091                               |           |  |                    |            | Technici             | an: Jesse Marczak          |
| Location:               | Gainesville                                  |           |  | Weather Conditions | sunny 85 F |                      |                            |
|                         |                                              |           |  |                    |            | Sampling Start Time: | 06/18/2012 1458            |
| Sampling Equipr         | nent                                         | Dedicated |  |                    |            |                      |                            |
| Magi-2536<br>Probe-4071 |                                              | NO<br>NO  |  |                    |            | Sampling End Time:   | 00/10/2012 1020            |
|                         |                                              |           |  |                    |            | Ambient Barometric:  | 14.60                      |

#### Comments:

| Run # |             | Surf           | ace Funct       | ion Tests     | i                     |                | Position<br>Sampler                        | (Pro               |             | ample Coll<br>ated at sam |               |                          | asing)         |            |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|---------------------------|---------------|--------------------------|----------------|------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Vaive | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In | Pressure<br>in MP (2) |                  |
| 1     | N           |                | V               |               | N                     | Ø              | 210.7                                      | 53.53              | N           | 48.73                     | V             | 48.75                    | $\Box$         | V          | 53.53                 | 4                |
| 2     |             |                |                 |               | V                     |                | 210.8                                      | 53.48              | V           | 48.75                     | Ø             | 48.76                    | N              | V          | 53.47                 | 4                |

#### SAMPLE COLLECTION INFORMATION

SW-846 8270C

SIM

1

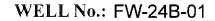
#### Bottle Bottle QTY QTY Preservative Program Method BottleType Lab Parameter Required Collected BTEX\_AQ SW-846 8260B 3 40 ml glass vial HCL Floridan GW Columbia 3 Sampling\_001 SVOA\_AQ SW-846 8270C 1 liter amber bottle None Floridan GW Columbia 1 1 Sampling\_001 SVOA\_AQ

1

SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-23B-04-061812

Columbia


1 liter amber bottle

Floridan GW

Sampling\_001

None





# 

| Client:         | Beazer East, Inc.      |           |                        |               | Well I               | D: _FW-24B-01              |
|-----------------|------------------------|-----------|------------------------|---------------|----------------------|----------------------------|
| Project Name:   | 2nd Quarter 2012 Sampl | ing Event |                        |               | Da                   | te: <u>06/20/2012 0901</u> |
| Project Number: | OM-0450-12-091         |           |                        |               | Technic              | ian: Jesse Marczak         |
| Location:       | Gainesville            |           | <br>Weather Conditions | overcast 75 F |                      |                            |
| <b>F</b>        |                        |           |                        |               | Sampling Start Time: | 06/20/2012 0910            |
| Sampling Equipr | nent                   | Dedicated |                        |               |                      |                            |
| Probe-4071      |                        | NO        |                        |               | Sampling End Time:   |                            |
| Magi-2536       |                        | NO        |                        |               | Ambient Barometric:  | 14.52                      |

#### Comments:

| Run # |             | Surf           | ace Funct       | ion Tests     | 5                     |                | Position<br>Sampler                        | (Pro               |             | ample Coll<br>ated at san |               |                          | asing)         |                   |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------|---------------------------|---------------|--------------------------|----------------|-------------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure          | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In        | Pressure<br>in MP (2) |                  |
| 1     | Ø           | Ø              | Ø               |               | Ø                     | Ø              | 164.5                                      | 25.23              | Ø           | 23.59                     | Ŋ             | 23.59                    | Ŋ              | $\mathbf{\nabla}$ | 25.23                 | 4                |
| 2     | V           | $\square$      |                 | V             | V                     |                | 164.5                                      | 25.20              | Ŋ           | 23.62                     | Ø             | 23.62                    | Ŋ              | N                 | 25.21                 | 4                |
| 3     | Ø           | Ø              | Ø               | N             | M                     |                | 164.4                                      | 25.19              | V           | 23.60                     | V             | 23.61                    |                | V                 | 25.19                 | 4                |

SAMPLE COLLECTION INFORMATION

| Lab      | Parameter       | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType            | Preservative | Program                     |
|----------|-----------------|---------------------|---------------------------|----------------------------|-----------------------|--------------|-----------------------------|
| Columbia | METALS_AQ_DISS  | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | Floridan GW<br>Sampling_001 |
| Columbia | SVQA_AQ         | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_TOTAL | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | Floridan GW<br>Sampling_001 |
| Columbia | BTEX_AQ         | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial      | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ         | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |

SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-24B-01-062012 Trip Blank :GAIN-TRIPBLANK-062012

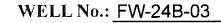




## 

| Client:                       | Beazer East, Inc.         |                 |                    |            | Well ID: <u>FW-24B-02</u>            |          |
|-------------------------------|---------------------------|-----------------|--------------------|------------|--------------------------------------|----------|
| Project Name:                 | 2nd Quarter 2012 Sampling | Event           |                    |            | Date: 06/20/2012 074                 | 45       |
| Project Number:               | OM-0450-12-091            |                 |                    |            | Technician: <u>Jesse Marczak</u>     | <u>(</u> |
| Location:                     | Gainesville               |                 | Weather Conditions | sunny 75 F |                                      |          |
|                               |                           |                 |                    |            | Sampling Start Time: 06/20/2012 0750 |          |
| Sampling Equipr<br>Probe-4071 | nent l                    | Dedicated<br>NO |                    |            | Sampling End Time: 06/20/2012 0901   |          |
| Magi-2536                     |                           | NO              |                    |            | Ambient Barometric: 14.52            |          |

#### Comments:


| Run # |             | Surf           | ace Functi        | ion Tests     | ì                     |                | Position<br>Sampler                        | (Pro               | Sample Collection Checks (Probe Located at samplin zone in MP casing) |                  |               |                          |                |            |                       |   |
|-------|-------------|----------------|-------------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-----------------------------------------------------------------------|------------------|---------------|--------------------------|----------------|------------|-----------------------|---|
|       | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum   | Open<br>Valve | Evacuate<br>Container | Ciose<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out                                                           | Zone<br>Pressure | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In | Pressure<br>in MP (2) |   |
| 1     | Ø           | Ø              | Ŋ                 | N             | V                     | Ø              | 184.3                                      | 34.06              | N                                                                     | 32.27            | V             | 32.25                    | $\mathbf{V}$   | Ŋ          | 34.03                 | 4 |
| 2     | N           | Ŋ              | Ø                 | N             | N                     | Ø              | 184.3                                      | 34.02              | V                                                                     | 32.27            | Ø             | 32.24                    | Ŋ              | V          | 33.99                 | 4 |
| 3     | V           | Ŋ              | $\mathbf{\nabla}$ | V             | Ŋ                     | N              | 184.3                                      | 33.99              |                                                                       | 32.27            | V             | 32.24                    | Q              | V          | 33.97                 | 4 |
| 4     | Ŋ           | Ŋ              | Ŋ                 | N             | Ŋ                     | M              | 184.3                                      | 33.96              | Q                                                                     | 32.26            | Ŋ             | 32.27                    | $\square$      | V          | 33.96                 | 4 |
| 5     | V           | N              | Ø                 | ত             | Ŋ                     | Ø              | 184.2                                      | 33.94              | N                                                                     | 32.26            | Ŋ             | 32.26                    | V              | N          | 33.94                 | 4 |

SAMPLE COLLECTION INFORMATION

SAMPLE IDENTIFICATION(S)

| Lab      | Parameter       | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType            | Preservative | Program                     |
|----------|-----------------|---------------------|---------------------------|----------------------------|-----------------------|--------------|-----------------------------|
| Columbia | BTEX_AQ         | SW-846 8260B        | 3                         | 3                          | 40 mi glass vial      | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_DISS  | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ         | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle  | None         | Fioridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ         | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_TOTAL | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | Floridan GW<br>Sampling_001 |





## 

| Client:                       | Beazer East, Inc.               |   | _                    |            | Well I               | D: <u>FW-24B-03</u>       |
|-------------------------------|---------------------------------|---|----------------------|------------|----------------------|---------------------------|
| Project Name:                 | 2nd Quarter 2012 Sampling Event |   | -                    |            |                      | te: 06/19/2012 1420       |
| Project Number:               | OM-0450-12-091                  |   | _                    |            | Technic              | ian: <u>Jesse Marczak</u> |
| Location:                     | Gainesville                     |   | _ Weather Conditions | sunny 85 F |                      |                           |
|                               | nant Dedice                     |   |                      |            | Sampling Start Time: | 06/19/2012 1430           |
| Sampling Equipr<br>Probe-4071 | nent Dedica                     |   |                      |            | Sampling End Time:   |                           |
| Magi-2536                     | N                               | - |                      |            | Ambient Barometric:  |                           |

#### Comments:

| Run # |             | Surf           | ace Functi      | on Tests      | 1                     |                | Position<br>Sampler                        |                    |                   |                  |                   |                          |                   |                   |                       | Volumes<br>Tubes |
|-------|-------------|----------------|-----------------|---------------|-----------------------|----------------|--------------------------------------------|--------------------|-------------------|------------------|-------------------|--------------------------|-------------------|-------------------|-----------------------|------------------|
|       | Shoe<br>Out | Close<br>Valve | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe | Pressure<br>In MP1 | Shoe<br>Out       | Zone<br>Pressure | Open<br>Valve     | Zone<br>Pressur<br>e (2) | Close<br>Valve    | Shoe<br>In        | Pressure<br>in MP (2) |                  |
| 1     | M           | Ø              | $\Box$          | Ŋ             | Ŋ                     | N              | 204.3                                      | 43.07              | $\mathbf{\nabla}$ | 40.90            | N                 | 40.91                    | Ø                 | $\square$         | 43.07                 | 4                |
| 2     | M           | Ø              | Ø               | V             | Q                     | Ø              | 204.1                                      | 43.02              | V                 | 40.91            | $\mathbf{\nabla}$ | 40.88                    | $\mathbf{\nabla}$ | $\checkmark$      | 43.01                 | 4                |
| 3     | M           | Ø              | Ø               | N             | Ø                     | Ø              | 204.1                                      | 43.00              | V                 | 40.92            | N                 | 40.89                    | $\mathbf{\nabla}$ | V                 | 42.96                 | 4                |
| 4     | N           | M              | Ø               | M             | V                     | Ø              | 204.0                                      | 42.96              | ত                 | 40.89            | Ŋ                 | 40.90                    | $\mathbf{\nabla}$ | Ŋ                 | 42.92                 | 4                |
| 5     | <br>        |                | Ø               | V             | 2                     | Ø              | 204.0                                      | 42.91              | M                 | 40.91            | V                 | 40.88                    | $\square$         |                   | 42.90                 | 4                |
| 6     | M           |                | Ø               | V             | Ŋ                     | Ø              | 203.9                                      | 42.89              | V                 | 40.92            | Ø                 | 40.89                    | $\mathbf{\nabla}$ | $\mathbf{\nabla}$ | 42.84                 | 4                |
| 7     |             |                | M               | N             | V                     | Ø              | 203.9                                      | 42,85              | V                 | 40.90            | Ø                 | 40.92                    | Ø                 | V                 | 42.86                 | 4                |

SAMPLE COLLECTION INFORMATION

SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-24B-03-061912 MS/MSD Blank :GAIN-FW-24B-03MS/MSD-061912

| Lab      | Parameter       | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType            | Preservative | Program                    |
|----------|-----------------|---------------------|---------------------------|----------------------------|-----------------------|--------------|----------------------------|
| Columbia | METALS_AQ_TOTAL | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | Floridan GW<br>Sampling_00 |
| Columbia | METALS_AQ_DISS  | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | НИОЗ         | Floridan GW<br>Sampling_00 |
| Columbia | SVQA_AQ         | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_00 |
| Columbia | SVOA_AQ         | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_00 |
| Columbia | BTEX_AQ         | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial      | HCL          | Floridan GW<br>Sampling 00 |



Probe-4071

## WESTBAY GROUNDWATER SAMPLE COLLECTION RECORD



## 

| Client:         | Beazer East, Inc.               |                    |            | Well ID: <u>FW-24B-04</u>            |
|-----------------|---------------------------------|--------------------|------------|--------------------------------------|
| Project Name:   | 2nd Quarter 2012 Sampling Event |                    |            | Date: 06/19/2012 1558                |
| Project Number: | OM-0450-12-091                  |                    |            | Technician: Jesse Marczak            |
| Location:       | Gainesville                     | Weather Conditions | SUNNY 85 f |                                      |
| Sampling Equipr | nent Dedicated                  |                    |            | Sampling Start Time: 06/19/2012 1604 |
| Magi-2536       | NO                              |                    |            | Sampling End Time: 06/19/2012 1639   |

| Ambient Barometric: | 14.59 |
|---------------------|-------|

#### Comments:

NO

| Run # |             | Surface Function Tests |                 |               |                       |                | Position Sample Collection Checks Sampler (Probe Located at samplin zone in MP casing) |                    |             |                  |               |                          |                | Volumes<br>Tubes |                       |   |
|-------|-------------|------------------------|-----------------|---------------|-----------------------|----------------|----------------------------------------------------------------------------------------|--------------------|-------------|------------------|---------------|--------------------------|----------------|------------------|-----------------------|---|
|       | Shoe<br>Out | Ciose<br>Vaive         | Check<br>Vacuum | Open<br>Valve | Evacuate<br>Container | Close<br>Valve | Locate<br>Port Arm<br>Out<br>Land<br>Probe                                             | Pressure<br>In MP1 | Shoe<br>Out | Zone<br>Pressure | Open<br>Valve | Zone<br>Pressur<br>e (2) | Close<br>Valve | Shoe<br>In       | Pressure<br>in MP (2) |   |
| 1     | M           | Ø                      | Ø               | V             | V                     |                | 224.4                                                                                  | 51.50              | V           | 49,53            | Ŋ             | 49.52                    | Ŋ              | V                | 51.47                 | 4 |
| 2     | N           | Q                      | Ø               | V             | V                     | Ø              | 224.6                                                                                  | 51.48              | V           | 49.56            | V             | 49.56                    | N              | V                | 51.47                 | 4 |
| 3     | Ø           | N                      | Ø               | M             |                       | Ø              | 224.5                                                                                  | 50.94              | V           | 49.55            | V             | 49,53                    | N              | V                | 50.90                 | 3 |

SAMPLE COLLECTION INFORMATION

| Lab      | Parameter       | Method              | Bottle<br>QTY<br>Required | Bottle<br>QTY<br>Collected | BottleType            | Preservative | Program                     |
|----------|-----------------|---------------------|---------------------------|----------------------------|-----------------------|--------------|-----------------------------|
| Columbia | SVOA_AQ         | SW-846 8270C        | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | SVOA_AQ         | SW-846 8270C<br>SIM | 1                         | 1                          | 1 liter amber bottle  | None         | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_DISS  | SW-646<br>6020/6010 | 1                         | 1                          | 125 ml plastic bottle | HNO3         | Floridan GW<br>Sampling_001 |
| Columbia | BTEX_AQ         | SW-846 8260B        | 3                         | 3                          | 40 ml glass vial      | HCL          | Floridan GW<br>Sampling_001 |
| Columbia | METALS_AQ_TOTAL | SW-846<br>6020/6010 | 1                         | 1                          | 125 ml plastic botlle | HNO3         | Floridan GW<br>Sampling_001 |

SAMPLE IDENTIFICATION(S)

Normal Sample :GAIN-FW-24B-04-061912 Filter Blank :GAIN-FB-061912

## **APPENDIX B**

## ANALYTICAL LABORATORY REPORTS



### Appendix B

#### Quality Control Sample Summary 2012 First Semiannual Comprehensive Groundwater Monitoring Report Cabot Carbon/Koppers Superfund Site Gainesville, Florida

| SDG      | Collection<br>Date | QC ID                        | Parameters<br>Detected                                           | Qualifier | Associated<br>Samples                                                                                                                                                                                                                  |  |  |
|----------|--------------------|------------------------------|------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| J1201322 |                    | Surrogate Recovery           | 2,4-Dimethylphenol<br>2-Methylphenol<br>4-Methylphenol<br>Phenol | R         | FW-21B                                                                                                                                                                                                                                 |  |  |
|          | 3/19/2012          | Surrogate Recovery           | 2,4-Dimethylphenol<br>2-Methylphenol<br>4-Methylphenol<br>Phenol | UJ        | FW-4C-01, FW-4C-02, FW-4C-3, FW-<br>23B-01, FW-23B-02, FW-23B-03, FW-<br>23B-04, FW-99A                                                                                                                                                |  |  |
|          |                    | MS/MSD                       | Phenol<br>2-Methylnaphthalene                                    | IJ        | FW-6                                                                                                                                                                                                                                   |  |  |
|          |                    | Laboratory Control Sample    | Phenol                                                           | UJ/J      | FW-4C-01, FW-4C-02, FW-4C-3, FW-<br>23B-01, FW-23B-02, FW-23B-03, FW-<br>23B-04, FW-6, FW-21B, FW-99A                                                                                                                                  |  |  |
|          |                    | Duplicate Percent Difference | Naphthalene                                                      | J         | FW-21B, FW-99A                                                                                                                                                                                                                         |  |  |
|          |                    |                              | 2,4-Dimethylphenol                                               |           |                                                                                                                                                                                                                                        |  |  |
|          | 3/20/2012          | Surrogate Recovery           | 2-Methylphenol                                                   | UJ        | FW-22C-2, FW-4                                                                                                                                                                                                                         |  |  |
|          |                    |                              | 4-Methylphenol                                                   | 03        |                                                                                                                                                                                                                                        |  |  |
| J1201349 |                    |                              | Phenol                                                           |           |                                                                                                                                                                                                                                        |  |  |
|          |                    | Laboratory Control Sample    | Phenol                                                           | UJ        | FW-22C-01, FW-22C-2, FW-22C-3, FW-<br>28B-1, FW-28B-2, FW-28B-3, FW-28B-4,<br>FW-4, FW-99B                                                                                                                                             |  |  |
|          |                    | Surrogate Recovery           | 2,4-Dimethylphenol                                               | UJ        | FW-23C-1, FW-23C-2, FW-24C-4, FW-<br>24C-1, FW-24C-3, FW-24C-2, FW-24B-<br>3, FW-24B-4, FW-30B-04, FW-30B-03,<br>FW-30B-02, FW-30B-01, FW-22B-03,<br>FW-22B-02, FW-22B-01, FW-29B, FW-<br>99, FW-29C                                   |  |  |
|          |                    |                              | 2-Methylphenol                                                   |           |                                                                                                                                                                                                                                        |  |  |
|          |                    |                              | 4-Methylphenol                                                   |           |                                                                                                                                                                                                                                        |  |  |
|          |                    |                              | Phenol                                                           |           |                                                                                                                                                                                                                                        |  |  |
|          |                    | MS/MSD                       | Phenol                                                           | UJ        | FW-29C                                                                                                                                                                                                                                 |  |  |
|          | 3/21/2012          |                              | 2-Methylphenol                                                   |           | FW-29C                                                                                                                                                                                                                                 |  |  |
| J1201388 |                    | Laboratory Control Sample    | 4-Methylphenol                                                   | IJJ       | FW-23C-1, FW-23C-2, FW-24C-4, FW-<br>24C-1, FW-24C-3, FW-24C-2, FW-24B-<br>3, FW-24B-4, FW-99D, FW-30B-04, FW-<br>30B-03, FW-30B-02, FW-30B-01, FW-<br>22B-03, FW-22B-02, FW-22B-01, FW-<br>29B, FW-99, FW-29C                         |  |  |
|          |                    |                              | Phenol                                                           |           | FW-23C-3, FW-23C-1, FW-23C-2, FW-<br>24C-4, FW-24C-1, FW-24C-3, FW-24C-<br>2, FW-24B-3, FW-24B-4, FW-99D, FW-<br>30B-04, FW-30B-03, FW-30B-02, FW-<br>30B-01, FW-22B-04, FW-22B-03, FW-<br>22B-02, FW-22B-01, FW-29B, FW-99,<br>FW-29C |  |  |

### Appendix B

#### Quality Control Sample Summary 2012 First Semiannual Comprehensive Groundwater Monitoring Report Cabot Carbon/Koppers Superfund Site Gainesville, Florida

| SDG       | Collection |                                 | Parameters                                                                                   | Qualifier | Associated                                                                                                                                                                        |  |  |
|-----------|------------|---------------------------------|----------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SDG       | Date       | QC ID                           | Detected                                                                                     | Qualifier | Samples                                                                                                                                                                           |  |  |
|           |            |                                 | 2,4-Dimethylphenol                                                                           |           |                                                                                                                                                                                   |  |  |
|           |            | Surrogate Recovery              | 2-Methylphenol                                                                               | UJ        | FW-24B-2, FW-99E                                                                                                                                                                  |  |  |
|           |            |                                 | 4-Methylphenol<br>Phenol                                                                     |           |                                                                                                                                                                                   |  |  |
| J1201391  | 3/22/2012  | Laboratory Control Sample       | Phenol                                                                                       | UJ        | FW-24B-2, FW-24B-1, FW-12B-2, FW-<br>12B-1, FW-12B-4, FW-12B-3, FW-20B-1,<br>FW-20B-2, FW-16B-1, FW-27B-06, FW-<br>27B-01, FW-27B-05, FW-27B-04, FW-<br>27B-02, FW-27B-03, FW-99E |  |  |
|           |            |                                 | 2-Methylphenol                                                                               |           |                                                                                                                                                                                   |  |  |
|           |            |                                 | 4-Methylphenol                                                                               |           | FW-24B-2                                                                                                                                                                          |  |  |
|           |            |                                 | 4 Wearyphener                                                                                |           | <u> </u>                                                                                                                                                                          |  |  |
|           |            | Surrogate Recovery              | 2,4-Dimethylphenol                                                                           |           | FW-99B                                                                                                                                                                            |  |  |
|           |            |                                 | 2-Methylphenol                                                                               |           |                                                                                                                                                                                   |  |  |
| 14.000000 | 6/20/2012  |                                 | 4-Methylphenol                                                                               | UJ        |                                                                                                                                                                                   |  |  |
| J1202963  |            |                                 | Phenol                                                                                       |           |                                                                                                                                                                                   |  |  |
|           |            | Laboratory Control Sample       | Phenol                                                                                       | UJ        | FW-20B-01, FW-99B, FW-24B-02, FW-<br>24B-01                                                                                                                                       |  |  |
|           |            |                                 | 2,4-Dimethylphenol                                                                           |           |                                                                                                                                                                                   |  |  |
|           | 6/18/2012  | Surrogate Recovery              | 2-Methylphenol                                                                               | UJ        |                                                                                                                                                                                   |  |  |
|           |            |                                 | 4-Methylphenol                                                                               |           | FW-23B-04                                                                                                                                                                         |  |  |
|           |            |                                 | Phenol                                                                                       |           |                                                                                                                                                                                   |  |  |
| J1202920  |            | Continuing Calibration Standard | Phenol                                                                                       | UJ        | FW-23B-02, FW-23B-04                                                                                                                                                              |  |  |
|           |            | MS/MSD                          | Phenol                                                                                       | UJ        | FW-22B-02                                                                                                                                                                         |  |  |
|           |            | Laboratory Control Sample       | Phenol                                                                                       | UJ        | FW-22B-02, FW-22B-03, FW-22B-01,<br>FW-22B-04, FW-23B-03, FW-23B-01,<br>FW-23B-02, FW-23B-04                                                                                      |  |  |
|           |            |                                 | Acenaphthene                                                                                 | U         |                                                                                                                                                                                   |  |  |
|           |            | Field Blank Contamination       | Dibenzofuran                                                                                 |           | FW-12B-03, FW-12B-04                                                                                                                                                              |  |  |
|           |            |                                 | Fluorene                                                                                     |           |                                                                                                                                                                                   |  |  |
|           |            | Surrogate Recovery              | 2,4-Dimethylphenol                                                                           |           | FW-12B-01, FW-12B-02, FW-12B-03,                                                                                                                                                  |  |  |
|           | 6/19/2012  |                                 | 2-Methylphenol                                                                               | UJ        | FW-12B-01, FW-12B-02, FW-12B-03, FW-16B-01, FW-20B-02, FW-24B-03,                                                                                                                 |  |  |
|           |            |                                 | 4-Methylphenol                                                                               |           | FW-24B-04                                                                                                                                                                         |  |  |
|           |            |                                 | Phenol<br>2-Methylnaphthalene<br>2-Methylphenol                                              |           |                                                                                                                                                                                   |  |  |
|           |            | Laboratory Control Sample       | 4-Methylphenol                                                                               | UJ/J      | FW-12B-02, FW-12B-03, FW-16B-01,                                                                                                                                                  |  |  |
|           |            |                                 | Naphthalene                                                                                  | 00,0      | FW-24B-03                                                                                                                                                                         |  |  |
| J1202946  |            |                                 | Phenol                                                                                       |           |                                                                                                                                                                                   |  |  |
|           |            |                                 | Phenol                                                                                       | UJ        | FW-12B-04, FW-99A, FW-12B-01, FW-<br>20B-02, FW-24B-04                                                                                                                            |  |  |
|           |            | Duplicate Percent Difference    | 2,4-Dimethylphenol<br>Naphthalene                                                            | J         | FW-16B-01, FW-99A                                                                                                                                                                 |  |  |
|           |            | MS/MSD                          | 2,4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene | UJ        | FW-24B-03                                                                                                                                                                         |  |  |
|           |            |                                 | Phenol                                                                                       |           |                                                                                                                                                                                   |  |  |
|           | 1          |                                 | i nonoi                                                                                      |           | L                                                                                                                                                                                 |  |  |

## **APPENDIX C**

## **ELECTRONIC DATA SUBMITTALS**

(Provided to U.S. Environmental Protection Agency, Region IV)

