RESULTS OF QUARTERLY GROUNDWATER SAMPLING CONDUCTED MARCH 25-28, 2008, FOR FIRST QUARTER, 2008

EASTERN PORTION OF THE CABOT CARBON/KOPPERS SUPERFUND SITE GAINESVILLE, FLORIDA

Prepared for:

Cabot Corporation Two Seaport Lane, Suite 1300 Boston, Massachusetts 02210

Prepared by:

Weston Solutions, Inc. Suite 100 5430 Metric Place Norcross, Georgia 30092 (770) 325-7900

APRIL 2008

WESTON WORK ORDER NO. 05791.008.001.0001

TABLE OF CONTENTS

Section	<u>Title</u>	Page
1	BACKGROUND	1-1
2	METHODOLOGY	2-1
3	WATER LEVEL MEASUREMENTS	3-1
	3.1 Surficial Aquifer	
4	ANALYTICAL RESULTS	4-1
5	FINDINGS	5-1
	LIST OF FIGURES	
<u>Figure</u>	<u>Title</u>	Page
1-1	Site Map	1-2
3-1	Water Table Elevations in the Surficial Aquifer, March 25, 2008	3-4

TABLE OF CONTENTS (Continued)

LIST OF TABLES

Table	<u>Title</u>	Page
2-1	Monitoring Wells Sampled and Corresponding Analytical Parameters, First Quarter 2008	2-2
3-1	Groundwater Elevation Data Summary, Eastern Portion of Cabot Carbon/Koppers Superfund Site, March 25, 2008	3-3
4-1	Summary of Surficial Aquifer Groundwater Analytical Data Exceeding ROI Cleanup Goals, March 2008	

LIST OF APPENDICES

APPENDIX A -	Well Purge Data
	Wen i uize Data

APPENDIX B – Laboratory Analytical Data Package

APPENDIX C – Summary of Pre-Remedial Action Groundwater Data Eastern Site, Gainesville, Florida

APPENDIX D – Summary of Recent Post-Remedial Action Groundwater Data Eastern Site, Gainesville, Florida

BACKGROUND

The purpose of the first quarter 2008 sampling conducted by Weston Solutions, Inc., (WESTON®) is to evaluate the effectiveness of the groundwater collection system that has been installed along the border of the eastern portion of the Cabot Carbon/Koppers Superfund Site (Eastern Site) (Figure 1-1). The current post-remedial groundwater monitoring program for the Eastern Site includes sampling the following wells on a quarterly basis: ITW-13, ITW-14, WMW-17E, WMW-18E, ESE-002, ESE-004, ESE-007, and up-gradient monitoring wells ITW-1 and ITW-2. This report summarizes the results of the first quarter 2008 groundwater-sampling event.

METHODOLOGY

Groundwater samples were collected from the Eastern Site monitoring wells by Brant McCanless, P.G. of Weston Solutions, Inc. with project management by Ralph McKeen, P.E. of Weston Solutions, Inc. The subject samples were analyzed for the parameters listed in Table 2-1. Physical parameter readings (e.g., specific conductance and temperature) measured during well sampling is provided in Appendix A of this report.

Chromium concentrations that have been periodically detected in samples from a few of the surficial aquifer monitoring wells are likely attributable to sediment in the samples, rather than actual chromium dissolved in the groundwater. For this reason, following the well purge and collection of samples for benzene, ethyl benzene, toluene and xylene (BETX), phenol, pentachlorophenol (PCP), and polynuclear aromatic hydrocarbons (PAHs) analyses, the sediment in the well was allowed time to settle prior to collection of the samples for metals analyses. This settling period did not exceed 24 hours for any well sampled.

Table 2-1

Monitoring Wells Sampled and Corresponding Analytical Parameters,
First Quarter 2008

	Groundwater		
Aquifer	Wells Sampled	Parameters	Analytical Method
Surficial	ITW-13, ITW-14, WMW-18-E, WMW-17E ESE-002, ESE-004, ESE-007, ITW-1, and ITW-2	Anthracene Phenanthrene Acenaphthylene Acenaphthene Fluorene Pyrene Naphthalene Fluoranthene Benzo(a)pyrene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenzo(a,h)anthracene Indeno(1,2,3-c,d)pyrene Chrysene	8310
		SVOCs (Phenol) Pentachlorophenol (PCP)	8270C
		Arsenic Chromium	6010
		Benzene Ethyl benzene Toluene, & Xylene (BETX)	SW 846 8260B

WATER LEVEL MEASUREMENTS

To assist in evaluating the interceptor trench's effectiveness, water level measurements were collected on March 25, 2008, from 24 Eastern Site monitoring wells, 10 piezometers, and 4 sumps along the interceptor trench. Monitor wells/piezometer ITW-3, ITW-10, ITW-21, and P-1 were abandoned historically. Surficial aquifer monitor wells ITW-15, ITW-16, and piezometer P8 are in the area of car dealership construction activities north of 28th Place. ITW-15 and ITW-16 were cut off and temporarily capped in September 2007 and a 4+ foot stickup was attached to P-8 while earthwork grading activities are performed in the area. Upon completion of construction activities, these wells will be reconstructed as flush mount wells and resurveyed. All other wells installed at the site are in good repair and, with the exception of monitor wells ITW-3, ITW-10, ITW-12, ITW-21, and piezometer P-1 are included in the water level measurements normally taken at the site. These wells are not included in the determination of the potentiometric surface.

Historically, wells ITW-17 and ITW-18 were replaced by WMW-17E and WMW-18E. A new car dealership (Gatorland Toyota) was developed in 2007 east of North Main Street in the vicinity of monitor wells WMW-17E and WMW-18E. The site development activities included raising this once low area to match the roadway elevations of North Main Street. Consequently, WMW-17E and WMW-18E were extended and a new concrete pad, bollards, and protective casing installed in February 2007. The top of casing elevations used for this sampling event were measured from the site development surveyed existing grade elevations. These wells are planned to be re-surveyed at the same time as reconstructed wells ITW-15, ITW-16, and ITF-3. Construction activities along 28th Place should be completed and wells resurveyed before the second quarterly 2008 sampling event.

The surveyed elevation and water level data for each well were utilized to calculate the groundwater elevation at each location. The elevation of each well was established by registered Florida land surveyors. Groundwater elevations collected from the Eastern Site are summarized

in Table 3-1. Figure 3-1 shows the water level elevations and groundwater flow directions in the upper surficial aquifer measured on March 25, 2008.

3.1 SURFICIAL AQUIFER

Based on the groundwater elevations measured in the surficial aquifer, the groundwater flow direction beneath the southern part of the Cabot Carbon/Koppers site is to the northeast toward the groundwater interceptor trench (see Figure 3-1). Based on the March 2008 groundwater elevation data, the average hydraulic gradient in the southern portion of the Eastern Site is calculated to be approximately 5.03×10^{-3} ft/ft. Beneath the northern part of the Eastern Site, the groundwater flow direction is to the north-northeast and the average hydraulic gradient in this area is approximately 8.33×10^{-3} ft/ft. Groundwater elevations indicate that the interceptor trench maintains effective control of the groundwater in the upper surficial aquifer. For example, groundwater in the area of well WMW-18E continues to flow west towards the interceptor trench (see Figure 3-1).

Additionally, the groundwater flow directions shown by the overall potentiometric surface indicate that the groundwater flow direction in the surficial aquifer is generally toward the interceptor trench. These data further substantiate that the Eastern Site interceptor trench is collecting groundwater from the eastern and western sides of the trench.

3.2 <u>INTERMEDIATE AQUIFER</u>

Based on groundwater elevations from the two accessible intermediate aquifer wells, the groundwater flow direction in this aquifer continues to be generally toward the northeast. A downward hydraulic gradient continues to be present between the surficial and intermediate aquifers. On March 25, 2008, a head difference of approximately 33.36 feet was measured between surficial aquifer well ITW-11 and intermediate aquifer well ITF-3 (see Table 3-1). Due to a locked gate/fence, monitor well ITF-2 was inaccessible during March 2008.

Table 3-1

Groundwater Depths and Elevations

March 2008 Sampling Event¹

Eastern Portion of Cabot Carbon/Koppers Superfund Site Gainesville, Alachua County, Florida

		amesvine, Machua Count		
		December 18, 2007		
Monitoring	Top of Casing/Sump	Field Measured Water Depth	Groundwater Elevation	Depth of Screened
Well ID	Elevation Feet (MSL) ³	Below Top of Casing (Feet) ²	Feet (MSL)	Interval (MSL) ⁴
ITW-1	188.47	9.42	179.05	15.50 - 25.50
ITW-2	187.48	8.39	179.09	5.50 - 15.50
ITW-3	Does not currently exist.	Does not currently exist.	Does not currently exist.	Does not currently exist.
ITW-4	187.82	11.66	176.16	5.00 - 15.00
ITW-5	185.34	9.47	175.87	19.00 - 24.00
ITW-6	183.10	10.26	172.84	18.50 - 28.50
ITW-7 ⁵	182.97	10.19	172.78	8.50 - 18.50
ITW-8	180.81	8.17	172.64	18.50 - 28.50
ITW-9	180.30	8.17	172.13	8.00 - 18.00
ITW-10	Does not currently exist.	Does not currently exist.	Does not currently exist.	Does not currently exist.
ITW-11	180.91	8.12	172.79	6.00 - 16.00
ITW-12	Does not currently exist.	Does not currently exist.	Does not currently exist.	Does not currently exist.
ITW-13	174.14	8.07	166.07	23.00 - 33.00
ITW-14 ⁶	174.80	Approx. 0.2 foot product	Not Measured	5.00 - 15.00
ITW-15 ⁷	179.30	Construction. No access.	No access	20.00 - 30.00
ITW-16 ⁷	178.86	Construction. No access.	No access	12.50 - 22.50
ITW-10	169.74	8.85	160.89	11.00 - 31.00
ITW-20	169.77	9.90	159.87	11.00 - 31.00
ITW-21 ⁵				
	Does not currently exist.	Does not currently exist.	Does not currently exist.	Does not currently exist.
ITW-22 ⁵	178.61	9.26	169.35	3.00 - 13.00
ESE-001	162.05	8.10	153.95	6.50 - 21.20
ESE-002	169.08	6.65	162.43	8.00 - 23.00
ESE-003	171.86	5.37	166.49	9.00 - 29.00
ESE-004 ⁵	166.69	8.17	158.52	6.50 - 21.50
ESE-005	178.23	9.69	168.54	9.50 - 29.50
ESE-006	180.39	7.93	172.46	7.50 - 27.50
ESE-007	168.42	2.22	166.20	7.50 - 22.50
WMW-17E ⁵	175.50	8.83	166.67	9.00 - 29.00
WMW-18E	172.69	6.24	166.45	9.00 - 29.00
ITF-1	186.63	21.82	164.81	69.00 - 79.00
ITF-2	168.95	No access. Gate locked	No access. Gate locked.	71.00 - 81.00
ITF-3 ⁷	176.89	37.46	139.43	69.50 - 79.50
P-1	Does not currently exist.	Does not currently exist.	Does not currently exist.	Does not currently exist.
P-2	169.77	5.36	164.41	5.18 - 10.18
P-3	171.05	5.57	165.48	5.00 - 10.00
P-4	172.26	6.50	165.76	5.00 - 10.00
P-5	173.20	6.22	166.98	6.65 - 11.65
P-6 P-7	177.07	9.80	167.27 169.02	7.50 - 12.50
P-7 P-8	179.24 168.44	10.22 Construction. No access.	No access	7.50 - 12.50 5.00 - 10.00
P-8 P-9	181.35	9.83	No access 171.52	5.00 - 10.00 10.00 - 15.00
P-9 P-10	180.23	10.09	171.52	10.00 - 15.00
P-10 P-11	173.35	6.53	166.82	10.00 - 15.00
Sump No. 1	168.95	6.74	162.21	Sump
Sump No. 2	169.80	6.25	163.55	Sump
Sump No. 3	170.94	6.60	164.34	Sump
Sump No. 4	173.27	7.55	165.72	Sump
Батр 110. т	1.3.27	7.00	100.72	Samp

Notes: 1. Depths to water measured on March 25, 2008.

- 2. All depths measured in feet below top of casing. Elevations are in feet above mean sea level (MSL).
- 3. Top of casing elevations measured by registered Florida Land Surveyors.
- 4. Screened intervals measured from ground surface elevation.
- 5. Wells ITW-7, ITW-21, ITW-22, ESE-004, and WMW-17E were repaired and resurveyed in July 2000.
- 6. Depth to water in ITW-14 was not measured due to tar in the well. Estimated thickness of product determined by placing bailer at bottom of well and then measuring thickness of product.
- 7. Wells ITW-15, ITW-16, and ITF-3 were cut off to grade in September 2007 and covered for protection during construction activities. When construction activities are complete, these wells will be reconstructed as flush mount wells and resurveyed.

Land around wells WMW-17E and WMW-18E was raised in late 2006. Wells were raised approximately 3 feet All elevations associated with WMW-17E and WMW-18E are approximate until wells are resurveyed in late 2007 Wells sampled in March 2008 are bolded

ANALYTICAL RESULTS

The laboratory analytical data package for the monitor well samples collected at the Eastern Site on March 27, 2008 is provided in Appendix B, and a summary of these data exceeding Record of Decision (ROD) cleanup goals is contained in Table 4-1. A historical summary of the monitor well data collected prior to the installation of the remedial system is provided in Appendix C. A summary of the recent post-remedial construction monitor well data is provided in Appendix D. Discussion of the first quarter 2008 sampling results is provided below.

Arsenic was detected during the March 2008 sampling event in ITW-13 at 12 ug/L.Historically, highly variable concentrations of arsenic and chromium have been reported for various wells for preceding quarters. These concentrations can ostensibly be attributed to turbidity in the wells.

Benzene concentrations exceeded the ROD cleanup goals of 1 ug/L in groundwater samples collected from ITW-13 (100 ug/L), ITW-14 (46 ug/L), and ESE-007 (9.3 μ g/L). Acenaphthylene concentrations exceeded the ROD cleanup goal of 130 μ g/L in ITW-14 (380 μ g/L). Naphthalene concentrations exceeded the ROD cleanup goal of 18 μ g/L in ITW-13 (53 ug/L) and ITW-14 (200 ug/L). Phenol concentrations exceeded the ROD cleanup goal of 2,630 μ g/L in ITW-13 (5,900 μ g/L).

Potentially carcinogenic PAH's were below the laboratory reporting limit of 1.9 ug/L in all wells this quarter except ITW-14. The ROD cleanup goal is 0.003 µg/L for the combination of all potentially carcinogenic PAH's. Well ITW-14 had combined PAHs of 20 µg/L. Approximately 0.2 foot of free product was observed in monitoring well ITW-14 during the March 2008 sampling event. Wells ITW-13 and ITW-14 are located within the former Northeast Lagoon. Groundwater in the area of these wells migrates toward the interceptor trench.

Table 4-1
Summary of Surficial Aquifer Groundwater Analytical Data Exceeding ROD Cleanup Goals
Eastern Portion of Cabot Carbon/Koppers Superfund Site
March 27, 2008

Well Designation/ Screened Interval (feet)	Parameter	Results (µg/L)	RL (μg/L)	ROD Cleanup Goal (µg/L)
ITW-13 / 23-33	Benzene	100	4	1.0
	Naphthalene	53	0.95	18
	Phenol	5,900	970	2,630
ITW-14 / 5-15	Benzene	46	10	1
	Acenaphthylene	380	9.3	130
	Naphthalene	200	9.3	18
	*Total Potentially Carcinogenic PAHs	20	1.9	0.003
ESE-007 / 7.5-22.5	Benzene	9.3	1	1

 $(\mu g/L) = micrograms per liter$

RL = Report Limit

ROD = Record of Decision

^{*} Total Potentially Carcinogenic PAHs include: Benzo (a) anthracene, Benzo (a) pyrene, Benzo (b) flouranthene, Benzo (k) flouranthene, Chrysene, Dibenzo (a,h) anthracene, & Indeno (1,2,3-cd)pyrene.

FINDINGS

Based on the groundwater analytical data collected at the Eastern Site during the first quarter 2008 sampling event, WESTON offers the following findings:

- The groundwater interceptor trench continues to maintain effective hydraulic control of the upper surficial aquifer.
- The groundwater interceptor trench continues to effectively capture constituents from the Northeast Lagoon area in the surficial aquifer.
- The overall distribution of constituents appears to be similar to that reported from previous quarterly sampling events for the majority of the site, with the exceptions noted previously in Section 4.

The next quarterly groundwater-sampling event for the Eastern Site will occur about the third week of June 2008. The wells to be sampled in the second quarter 2008 are ITW-1, ITW-2, ITW-13, ITW-14, WMW-17E, WMW-18E, ESE-002, ESE-004, and ESE-007.

APPENDIX A WELL PURGE DATA

Appendix A

Well Purge Data Eastern Portion of Cabot Carbon/Koppers Superfund Site Purge - March 26, 2008 Sample - March 27, 2008

WELL ID	Purge/Sample Dates	Time	VOLUME (GAL)	TEMPERATUR E (°C)	рН	SPECIFIC CONDUCTANCE (µS/cm)	DISSOLVED OXYGEN (mg/L)	TURBIDITY (NTU)	ODOR YES/NO	PURGE DRY YES/NO
ITW-1	Purge; 3/26/08	0922	2	18.45	5.40	142	2.96	4.92		
ITW-1	Purge; 3/26/08	0926	4	19.05	5.29	137	2.79	0.58		
ITW-1	Purge; 3/26/08	0933	6	20.22	5.27	133	2.36	0.86		
ITW-1	Purge; 3/26/08	0937	8	20.18	5.27	132	2.41	0.70	Yes/Slight Sulfur	NO
ITW-1	Sample; 3/27/08	0900	NA	17.79	5.24	137	2.29	0.13		
ITW-2	Purge; 3/26/08	0944	0.5	18.95	5.36	188	2.21	3.61		
ITW-2	Purge; 3/26/08	0947	1.0	19.53	5.35	190	2.27	22.9		
ITW-2	Purge; 3/26/08	0951	1.5	19.95	5.39	191	2.25	34.5		
ITW-2	Purge; 3/26/08	0955	2.0	19.52	5.39	191	2.28	61.2	NO	NO
ITW-2	Sample; 3/27/08	0920	NA	18.47	5.26	171	1.47	14.2		
ESE-002	Purge; 3/26/08	1014	2	21.93	5.76	88	2.37	2.06	Greenish color to	water.
ESE-002	Purge; 3/26/08	1020	4	22.16	5.69	84	1.13	26.7		
ESE-002	Purge; 3/26/08	1024	6	22.14	5.68	83	1.2	44.2		
ESE-002	Purge; 3/26/08	1028	8	22.36	5.70	87	1.43	58.3		
ESE-002	Purge; 3/26/08	1032	10	22.49	5.73	87	1.69	71.7	NO	NO
ESE-002	Sample; 3/27/08	0945	NA	20.46	5.65	86	1.29	0.5		
ESE-004	Purge; 3/26/08	1050	2	23.03	5.84	375	2.14	0.46		
ESE-004	Purge; 3/26/08	1055	4	22.93	5.86	376	1.96	1.31		
ESE-004	Purge; 3/26/08	1100	6	22.88	5.82	379	1.10	1.18		
ESE-004	Purge; 3/26/08	1105	8	22.92	5.82	375	1.08	1.47		
ESE-004	Purge; 3/26/08	1109	10	22.99	5.81	370	1.12	1.69	Yes/Sulfur	NO
ESE-004	Sample; 3/27/08	1010	NA	21.02	5.85	390	1.16	0.62		
ESE-007	Purge; 3/26/08	1126	2	19.72	5.82	457	1.16	110		
ESE-007	Purge; 3/26/08	1130	4	19.50	5.78	460	1.06	700		
ESE-007	Purge; 3/26/08	1134	6	19.59	5.80	463	0.75	1000+		
ESE-007	Purge; 3/26/08	1138	8	19.61	5.80	459	0.60	1000+	Yes/Sulfur &	
ESE-007	Purge; 3/26/08	1142	10	19.71	5.80	456	0.74	1000+	possible tar	
ESE-007	Purge; 3/26/08	1148	12	19.71	5.82	454	0.72	1000+	Water is foamy	NO
ESE-007	Sample; 3/27/08	1030	NA	19.60	5.80	471	0.74	49		
ITW-13	Purge; 3/26/08	1224	2	24.82	5.23	190	1.36	0.15		
ITW-13	Purge; 3/26/08	1229	4	24.09	5.08	192	0.81	3.97		
ITW-13	Purge; 3/26/08	1234	6	24.26	4.96	197	0.68	2.45		
ITW-13	Purge; 3/26/08	1238	8	24.07	4.91	196	0.49	0.77		
ITW-13	Purge; 3/26/08	1244	10	24.21	4.88	184	0.63	3.42	Yes/Sulfur &	
ITW-13	Purge; 3/26/08	1249	12	24.25	4.87	189	0.55	4.32	possible slight tar	NO
ITW-13	Sample; 3/27/08	1100	NA	23.36	4.96	196	0.75	2.07		
ITW-14	Purge; 3/26/08	1300	3	Purge parameters	s not c	ollected due to histo	orical product ir	n the well.	YES/Tar	YES
ITW-14	Sample; 3/27/08	1130	NA	March 26&27, 20	08, ap	proximately 0.2 foot	product in bail	er.		
WMW-17E	Purge; 3/26/08	1431	2	23.36	5.73	386	1.51	0.37		
WMW-17E	Purge; 3/26/08	1435	4	22.92	5.78	381	1.13	18.7		
WMW-17E	Purge; 3/26/08	1440	6	23.08	5.77	372	1.14	39.8		
WMW-17E	Purge; 3/26/08	1445	8	23.23	5.73	369	0.95	7.91		
	Purge; 3/26/08	1449	10	23.11	5.71	375	0.90	16.3		
WMW-17E	Purge; 3/26/08	1453	12	23.21	5.70	366	0.92	17.1	Yes/Slight Sulfur	NO
WMW-17E	Sample; 3/27/08	1200	NA	24.54	5.68	323	1	0.75	Duplicate collecte	ed here.
WMW-18E	Purge; 3/26/08	1508	2	23.38	5.51	303	1.87	0.12	Greenish color to	water.
WMW-18E	Purge; 3/26/08	1512	4	23.13	5.47	306	1.27	37.5		
WMW-18E	Purge; 3/26/08	1516	6	22.84	5.52	304	1.75	45.1		
WMW-18E	Purge; 3/26/08	1520	8	22.77	5.55	302	1.89	96.7		
	Purge; 3/26/08	1525	10	22.91	5.57	306	1.74	298		
WMW-18E	Purge; 3/26/08	1530	12	22.81	5.57	310	1.85	1101	Yes/Slight Sulfur	NO
WMW-18E	Sample; 3/27/08	1230	NA	23.56	5.41	288	1.48	15.6		

Notes:

°C = degrees Celsius; µS/cm = microSeimens per centimeter; mg/L = milligrams per liter, parts per million;
NTU = Nephlometric Turbidity Units

APPENDIX B LABORATORY ANALYTICAL DATA PACKAGE

ANALYTICAL REPORT

Job Number: 680-35434-1 Job Description: Cabot

For:
Weston Solutions, Inc.
5430 Metric Place
Suite 100
Norcross, GA 30092

Attention: Mr. Ralph McKeen

Abbie Page Project Manager I abbie.page@testamericainc.com 04/11/2008

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project Manager who signed this test report.

Job Narrative 680-J35434-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The Equipment blank associated with these samples contained a detect for the following analyte: Toluene.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270C: Due to the level of dilution required for the following sample(s), surrogate recoveries are not reported: ESE-007 (680-35434-7), ITW-13 (680-35434-3), ITW-14 (680-35434-4).

Method(s) 8270C: The following sample(s) was diluted due to the nature of the sample matrix: ITW-13 (680-35434-3), ITW-14 (680-35434-4). Elevated reporting limits (RLs) are provided.

Method(s) 8270C: The following sample(s) was diluted due to the abundance of target analytes: ESE-007 (680-35434-7). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

HPLC

Surrogate recovery for the following sample(s) was outside control limits: ITW-14. Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

METHOD SUMMARY

Client: Weston Solutions, Inc.

Job Number: 680-35434-1

Description	Lab Location	Method	Preparation Method
Matrix Water			
Volatile Organic Compounds by GC/MS	TAL SAV	SW846 8260B	
Purge-and-Trap	TAL SAV		SW846 5030B
Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	TAL SAV	SW846 8270C	
Continuous Liquid-Liquid Extraction	TAL SAV		SW846 3520C
Polynuclear Aromatic Hydrocarbons	TAL PEN	SW846 8310	
Continuous Liquid-Liquid Extraction	TAL PEN		SW846 3520C
Inductively Coupled Plasma - Atomic Emission Spectrometry	TAL SAV	SW846 6010B	
Acid Digestion of Waters for Total Recoverable or	TAL SAV		SW846 3005A

Lab References:

TAL PEN = TestAmerica Pensacola

TAL SAV = TestAmerica Savannah

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Weston Solutions, Inc. Job Number: 680-35434-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
680-35434-1	ITW-1	Water	03/27/2008 0900	03/28/2008 0900
680-35434-2	ITW-2	Water	03/27/2008 0920	03/28/2008 0900
680-35434-3	ITW-13	Water	03/27/2008 1100	03/28/2008 0900
680-35434-4	ITW-14	Water	03/27/2008 1130	03/28/2008 0900
680-35434-5	ESE-002	Water	03/27/2008 0945	03/28/2008 0900
680-35434-6	ESE-004	Water	03/27/2008 1010	03/28/2008 0900
680-35434-7	ESE-007	Water	03/27/2008 1030	03/28/2008 0900
680-35434-8	WMW-17E	Water	03/27/2008 1200	03/28/2008 0900
680-35434-9	WMW-18E	Water	03/27/2008 1230	03/28/2008 0900
680-35434-10FD	DUP01	Water	03/27/2008 0000	03/28/2008 0900
680-35434-11EB	EQBLK	Water	03/27/2008 1120	03/28/2008 0900
680-35434-12TB	TB-01	Water	03/27/2008 0000	03/28/2008 0900

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-1

 Lab Sample ID:
 680-35434-1
 Date Sampled:
 03/27/2008 0900

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0135.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1326 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	<2.0		2.0
Toluene	<1.0		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	<1.0		1.0
Benzene	<1.0		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	99		75 - 120
Dibromofluoromethane	98		75 - 121
Toluene-d8 (Surr)	100		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-2

 Lab Sample ID:
 680-35434-2
 Date Sampled:
 03/27/2008 0920

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0137.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1354 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	<2.0		2.0
Toluene	<1.0		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	<1.0		1.0
Benzene	<1.0		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	95		75 - 120
Dibromofluoromethane	95		75 - 121
Toluene-d8 (Surr)	101		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-13

 Lab Sample ID:
 680-35434-3
 Date Sampled:
 03/27/2008 1100

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0151.d

Dilution: 4.0 Initial Weight/Volume: 5 mL
Date Analyzed: 04/02/2008 1712 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	210		8.0
Toluene	420		4.0
Methyl tert-butyl ether	<40		40
Ethylbenzene	350		4.0
Benzene	100		4.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	104		75 - 120
Dibromofluoromethane	88		75 - 121
Toluene-d8 (Surr)	103		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-14

 Lab Sample ID:
 680-35434-4
 Date Sampled:
 03/27/2008 1130

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0153.d

Dilution: 10 Initial Weight/Volume: 5 mL
Date Analyzed: 04/02/2008 1740 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	480		20
Toluene	700		10
Methyl tert-butyl ether	<100		100
Ethylbenzene	160		10
Benzene	46		10
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	102		75 - 120
Dibromofluoromethane	89		75 - 121
Toluene-d8 (Surr)	106		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-002

 Lab Sample ID:
 680-35434-5
 Date Sampled:
 03/27/2008 0945

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0139.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1422 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	<2.0		2.0
Toluene	<1.0		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	<1.0		1.0
Benzene	<1.0		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	95		75 - 120
Dibromofluoromethane	98		75 - 121
Toluene-d8 (Surr)	101		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-004

 Lab Sample ID:
 680-35434-6
 Date Sampled:
 03/27/2008 1010

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0141.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1450 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	<2.0		2.0
Toluene	<1.0		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	<1.0		1.0
Benzene	<1.0		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	96		75 - 120
Dibromofluoromethane	97		75 - 121
Toluene-d8 (Surr)	100		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-007

 Lab Sample ID:
 680-35434-7
 Date Sampled:
 03/27/2008 1030

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0143.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1519 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	34		2.0
Toluene	120		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	31		1.0
Benzene	9.3		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	98		75 - 120
Dibromofluoromethane	97		75 - 121
Toluene-d8 (Surr)	100		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: WMW-17E

 Lab Sample ID:
 680-35434-8
 Date Sampled:
 03/27/2008 1200

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0145.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1547 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	3.4		2.0
Toluene	<1.0		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	1.1		1.0
Benzene	<1.0		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	95		75 - 120
Dibromofluoromethane	98		75 - 121
Toluene-d8 (Surr)	100		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: WMW-18E

 Lab Sample ID:
 680-35434-9
 Date Sampled:
 03/27/2008 1230

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0147.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1615 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	<2.0		2.0
Toluene	<1.0		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	<1.0		1.0
Benzene	<1.0		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	94		75 - 120
Dibromofluoromethane	96		75 - 121
Toluene-d8 (Surr)	99		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: DUP01

 Lab Sample ID:
 680-35434-10FD
 Date Sampled:
 03/27/2008 0000

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0149.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1644 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	2.3		2.0
Toluene	<1.0		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	<1.0		1.0
Benzene	<1.0		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	98		75 - 120
Dibromofluoromethane	97		75 - 121
Toluene-d8 (Surr)	100		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: EQBLK

 Lab Sample ID:
 680-35434-11EB
 Date Sampled:
 03/27/2008 1120

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0155.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1808 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	<2.0		2.0
Toluene	6.4		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	<1.0		1.0
Benzene	<1.0		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	95		75 - 120
Dibromofluoromethane	96		75 - 121
Toluene-d8 (Surr)	101		75 - 120

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: TB-01

 Lab Sample ID:
 680-35434-12TB
 Date Sampled:
 03/27/2008 0000

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Preparation: 5030B Lab File ID: a0131.d

Dilution: 1.0 Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1230 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
Xylenes, Total	<2.0		2.0
Toluene	<1.0		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	<1.0		1.0
Benzene	<1.0		1.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	97		75 - 120
Dibromofluoromethane	99		75 - 121
Toluene-d8 (Surr)	101		75 - 120

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: ITW-1

Lab Sample ID: Date Sampled: 03/27/2008 0900 680-35434-1 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102694 Instrument ID: GC/MS SemiVolatiles - N

Preparation: 3520C Prep Batch: 680-101852 n9405.d Lab File ID:

Dilution: Initial Weight/Volume: 1060 mL 1.0 04/04/2008 1835 Date Analyzed: Final Weight/Volume: 1 mL

Date Prepared: 04/01/2008 1332 Injection Volume: 1.0 uL

Analyte	Result (ug/L)	Qualifier	RL
Phenol	<9.4		9.4
2,4-Dimethylphenol	<9.4		9.4
Pentachlorophenol	<47		47
Surrogate	%Rec		Acceptance Limits
Phenol-d5	101		38 - 116
2-Fluorophenol	96		36 - 110
2,4,6-Tribromophenol	113		40 - 139

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: ITW-2

Lab Sample ID: Date Sampled: 03/27/2008 0920 680-35434-2 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102694 Instrument ID: GC/MS SemiVolatiles - N

Preparation: 3520C Prep Batch: 680-101852 n9408.d Lab File ID:

Dilution: Initial Weight/Volume: 1030 mL 1.0 04/04/2008 1945 Date Analyzed: Final Weight/Volume: 1 mL

Date Prepared: 04/01/2008 1332 Injection Volume: 1.0 uL

Analyte	Result (ug/L)	Qualifier	RL
Phenol	<9.7		9.7
2,4-Dimethylphenol	<9.7		9.7
Pentachlorophenol	<49		49
Surrogate	%Rec		Acceptance Limits
Phenol-d5	82		38 - 116
2-Fluorophenol	80		36 - 110
2,4,6-Tribromophenol	99		40 - 139

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: ITW-13

Lab Sample ID: Date Sampled: 03/27/2008 1100 680-35434-3 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102550 Instrument ID: GC/MS SemiVolatiles - N

Preparation: 3520C Prep Batch: 680-101852 Lab File ID: n9419.d

Dilution: Initial Weight/Volume: 1030 mL 100 04/07/2008 1914 Date Analyzed: Final Weight/Volume: 1 mL

Date Prepared: 04/01/2008 1332 Injection Volume: 1.0 uL

Analyte	Result (ug/L)	Qualifier	RL
Phenol	5900		970
2,4-Dimethylphenol	2300		970
Pentachlorophenol	<4900		4900
Surrogate	%Rec		Acceptance Limits

Surrogate	%Rec		Acceptance Limits
Phenol-d5	0	D	38 - 116
2-Fluorophenol	0	D	36 - 110
2,4,6-Tribromophenol	0	D	40 - 139

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: ITW-14

2,4,6-Tribromophenol

Lab Sample ID: Date Sampled: 03/27/2008 1130 680-35434-4 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102551 Instrument ID: GC/MS SemiVolatiles - N

3520C Prep Batch: 680-101852 Preparation: Lab File ID: n9444.d

Dilution: Initial Weight/Volume: 1030 mL 50 04/08/2008 1739 Date Analyzed: Final Weight/Volume: 1 mL

Date Prepared: 04/01/2008 1332 Injection Volume: 1.0 uL

0

Analyte	Result (ug/L)	Qualifier	RL
Phenol	<490		490
2,4-Dimethylphenol	3900		490
Pentachlorophenol	<2400		2400
Surrogate	%Rec		Acceptance Limits
Phenol-d5	0	D	38 - 116
2-Fluorophenol	0	D	36 - 110

D

40 - 139

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: ESE-002

Lab Sample ID: Date Sampled: 03/27/2008 0945 680-35434-5 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102694 Instrument ID: GC/MS SemiVolatiles - N

n9411.d Preparation: 3520C Prep Batch: 680-101852 Lab File ID:

Dilution: Initial Weight/Volume: 1060 mL 1.0 04/04/2008 2054 Date Analyzed: Final Weight/Volume: 1 mL

Analyte	Result (ug/L)	Qualifier	RL	
Phenol	<9.4		9.4	
2,4-Dimethylphenol	<9.4		9.4	
Pentachlorophenol	<47		47	
Surrogate	%Rec		Acceptance Limits	
Phenol-d5	66		38 - 116	
2-Fluorophenol	65		36 - 110	
2,4,6-Tribromophenol	79		40 - 139	

40 - 139

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-004

2,4,6-Tribromophenol

 Lab Sample ID:
 680-35434-6
 Date Sampled:
 03/27/2008 1010

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102694 Instrument ID: GC/MS SemiVolatiles - N

Preparation: 3520C Prep Batch: 680-101852 Lab File ID: n9412.d

Dilution: 1.0 Initial Weight/Volume: 1060 mL

 Date Analyzed:
 04/04/2008 2117
 Final Weight/Volume:
 1 mL

 Date Prepared:
 04/01/2008 1332
 Injection Volume:
 1.0 uL

82

Analyte	Result (ug/L)	Qualifier	RL
Phenol	<9.4		9.4
2,4-Dimethylphenol	<9.4		9.4
Pentachlorophenol	<47		47
Surrogate	%Rec		Acceptance Limits
Phenol-d5	48		38 - 116
2-Fluorophenol	42		36 - 110

40 - 139

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: ESE-007

2,4,6-Tribromophenol

Lab Sample ID: 03/27/2008 1030 680-35434-7 Date Sampled: 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102550 Instrument ID: GC/MS SemiVolatiles - N

Preparation: 3520C Prep Batch: 680-101852 Lab File ID: n9421.d

Dilution: Initial Weight/Volume: 1060 mL 5.0 Date Analyzed: 04/07/2008 2000 Final Weight/Volume: 1 mL

Date Prepared: 04/01/2008 1332 Injection Volume: 1.0 uL

85

Analyte	Result (ug/L)	Qualifier	RL
Phenol	390		47
2,4-Dimethylphenol	230		47
Pentachlorophenol	<240		240
Surrogate	%Rec		Acceptance Limits
Phenol-d5	71		38 - 116
2-Fluorophenol	62		36 - 110

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: WMW-17E

Lab Sample ID: 680-35434-8 Date Sampled: 03/27/2008 1200 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102550 Instrument ID: GC/MS SemiVolatiles - N

Preparation: 3520C Prep Batch: 680-101852 n9414.d Lab File ID:

Dilution: Initial Weight/Volume: 1060 mL 1.0 04/07/2008 1704 Date Analyzed: Final Weight/Volume: 1 mL

Analyte	Result (ug/L)	Qualifier	RL
Phenol	<9.4		9.4
2,4-Dimethylphenol	<9.4		9.4
Pentachlorophenol	<47		47
Surrogate	%Rec		Acceptance Limits
Phenol-d5	70		38 - 116
2-Fluorophenol	70		36 - 110
2,4,6-Tribromophenol	83		40 - 139

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: WMW-18E

Lab Sample ID: 680-35434-9 Date Sampled: 03/27/2008 1230 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102550 Instrument ID: GC/MS SemiVolatiles - N

Preparation: 3520C Prep Batch: 680-101852 n9415.d Lab File ID:

Dilution: Initial Weight/Volume: 1030 mL 1.0 04/07/2008 1727 Date Analyzed: Final Weight/Volume: 1 mL

Analyte	Result (ug/L)	Qualifier	RL
Phenol	<9.7		9.7
2,4-Dimethylphenol	<9.7		9.7
Pentachlorophenol	<49		49
Surrogate	%Rec		Acceptance Limits
Phenol-d5	66		38 - 116
2-Fluorophenol	68		36 - 110
2,4,6-Tribromophenol	87		40 - 139

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: DUP01

Lab Sample ID: Date Sampled: 03/27/2008 0000 680-35434-10FD 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102694 Instrument ID: GC/MS SemiVolatiles - N

Preparation: 3520C Prep Batch: 680-101852 n9406.d Lab File ID:

Dilution: Initial Weight/Volume: 1030 mL 1.0 04/04/2008 1858 Date Analyzed: Final Weight/Volume: 1 mL

Analyte	Result (ug/L)	Qualifier	RL
Phenol	<9.7		9.7
2,4-Dimethylphenol	<9.7		9.7
Pentachlorophenol	<49		49
Surrogate	%Rec		Acceptance Limits
Phenol-d5	90		38 - 116
2-Fluorophenol	85		36 - 110
2,4,6-Tribromophenol	93		40 - 139

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: **EQBLK**

Lab Sample ID: Date Sampled: 03/27/2008 1120 680-35434-11EB 03/28/2008 0900 Client Matrix: Water Date Received:

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: 8270C Analysis Batch: 680-102550 Instrument ID: GC/MS SemiVolatiles - N

3520C Prep Batch: 680-101852 Preparation: Lab File ID: n9407.d

Dilution: Initial Weight/Volume: 1030 mL 1.0 04/07/2008 1641 Date Analyzed: Final Weight/Volume: 1 mL

Analyte	Result (ug/L)	Qualifier	RL	
Phenol	<9.7		9.7	
2,4-Dimethylphenol	<9.7		9.7	
Pentachlorophenol	<49		49	
Surrogate	%Rec		Acceptance Limits	
Phenol-d5	76		38 - 116	
2-Fluorophenol	80		36 - 110	
2,4,6-Tribromophenol	84		40 - 139	

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-1

 Lab Sample ID:
 680-35434-1
 Date Sampled:
 03/27/2008 0900

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR

Preparation: 3520C Prep Batch: 400-66906 Lab File ID: 004-0401 D

 Preparation:
 3520C
 Prep Batch: 400-66906
 Lab File ID:
 004-0401.D

Dilution: 1.0 Initial Weight/Volume: 1080 mL

Date Analyzed: 04/03/2008 1603 Final Weight/Volume: 1.0 mL

Analyte	Result (ug/L) Qualifi	er RL
Acenaphthene	<0.93	0.93
Acenaphthylene	<0.93	0.93
Anthracene	<0.93	0.93
Benzo[a]anthracene	<0.19	0.19
Benzo[a]pyrene	<0.19	0.19
Benzo[b]fluoranthene	<0.19	0.19
Benzo[g,h,i]perylene	<0.93	0.93
Benzo[k]fluoranthene	<0.46	0.46
Chrysene	<0.93	0.93
Dibenz(a,h)anthracene	<0.19	0.19
Fluoranthene	<0.93	0.93
Fluorene	<0.93	0.93
Indeno[1,2,3-cd]pyrene	<0.19	0.19
1-Methylnaphthalene	<0.93	0.93
2-Methylnaphthalene	<0.93	0.93
Naphthalene	<0.93	0.93
Phenanthrene	<0.93	0.93
Pyrene	<0.93	0.93
Surrogate	%Rec	Acceptance Limits
2-Chloroanthracene	52	41 - 177

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-2

Lab Sample ID: 680-35434-2 Date Sampled: 03/27/2008 0920 03/28/2008 0900 Client Matrix: Water Date Received:

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR 3520C Prep Batch: 400-66906 Lab File ID: Preparation: 005-0501.D

Dilution: Initial Weight/Volume: 1.0

1030 mL 04/03/2008 1637 Date Analyzed: Final Weight/Volume: 1.0 mL

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	<0.97		0.97
Acenaphthylene	<0.97		0.97
Anthracene	<0.97		0.97
Benzo[a]anthracene	<0.19		0.19
Benzo[a]pyrene	<0.19		0.19
Benzo[b]fluoranthene	<0.19		0.19
Benzo[g,h,i]perylene	<0.97		0.97
Benzo[k]fluoranthene	<0.49		0.49
Chrysene	<0.97		0.97
Dibenz(a,h)anthracene	<0.19		0.19
Fluoranthene	<0.97		0.97
Fluorene	<0.97		0.97
Indeno[1,2,3-cd]pyrene	<0.19		0.19
1-Methylnaphthalene	<0.97		0.97
2-Methylnaphthalene	<0.97		0.97
Naphthalene	<0.97		0.97
Phenanthrene	<0.97		0.97
Pyrene	<0.97		0.97
Surrogate	%Rec		Acceptance Limits
2-Chloroanthracene	70		41 - 177

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-13

 Lab Sample ID:
 680-35434-3
 Date Sampled:
 03/27/2008 1100

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR

 Preparation:
 3520C
 Prep Batch: 400-66906
 Lab File ID:
 006-0601.D

Dilution: 1.0 Initial Weight/Volume: 1050 mL
Date Analyzed: 04/03/2008 1710 Final Weight/Volume: 1.0 mL

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	<0.95		0.95
Acenaphthylene	<0.95		0.95
Anthracene	<0.95		0.95
Benzo[a]anthracene	<0.19		0.19
Benzo[a]pyrene	<0.19		0.19
Benzo[b]fluoranthene	<0.19		0.19
Benzo[g,h,i]perylene	<0.95		0.95
Benzo[k]fluoranthene	<0.48		0.48
Chrysene	<0.95		0.95
Dibenz(a,h)anthracene	<0.19		0.19
Fluoranthene	<0.95		0.95
Fluorene	<0.95		0.95
Indeno[1,2,3-cd]pyrene	<0.19		0.19
1-Methylnaphthalene	3.3		0.95
2-Methylnaphthalene	3.9		0.95
Naphthalene	53		0.95
Phenanthrene	<0.95		0.95
Pyrene	<0.95		0.95
Surrogate	%Rec		Acceptance Limits
2-Chloroanthracene	49		41 - 177

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-14

 Lab Sample ID:
 680-35434-4
 Date Sampled:
 03/27/2008 1130

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR

Propagation: 3520C Prop Batch: 400-66906 Lab File ID: 003-0301 D

 Preparation:
 3520C
 Prep Batch: 400-66906
 Lab File ID:
 003-0301.D

 Dilution:
 10
 Initial Weight/Volume:
 1080 mL

 Date Analyzed:
 04/08/2008 1242
 Final Weight/Volume:
 1.0 mL

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	17	Р	9.3
Acenaphthylene	380		9.3
Anthracene	<9.3		9.3
Benzo[a]anthracene	<1.9		1.9
Benzo[a]pyrene	5.0		1.9
Benzo[b]fluoranthene	15	Р	1.9
Benzo[g,h,i]perylene	<9.3		9.3
Benzo[k]fluoranthene	<4.6		4.6
Chrysene	<9.3		9.3
Dibenz(a,h)anthracene	<1.9		1.9
Fluoranthene	150	Р	9.3
Fluorene	71	Р	9.3
Indeno[1,2,3-cd]pyrene	<1.9		1.9
1-Methylnaphthalene	170	Р	9.3
2-Methylnaphthalene	80	Р	9.3
Naphthalene	200	Р	9.3
Phenanthrene	29	Р	9.3
Pyrene	22	Р	9.3
Surrogate	%Rec		Acceptance Limits
2-Chloroanthracene	884	Х	41 - 177

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-002

 Lab Sample ID:
 680-35434-5
 Date Sampled:
 03/27/2008 0945

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8310 Polynuclear Aromatic Hydrocarbons

Method:8310Analysis Batch: 400-67036Instrument ID:HPLC/UV/FLUORPreparation:3520CPrep Batch: 400-66906Lab File ID:008-0801.D

Preparation: 3520C Prep Batch: 400-66906 Lab File ID: 008-0801.D Dilution: 1.0 Initial Weight/Volume: 1070 mL

Date Analyzed: 04/03/2008 1818 Final Weight/Volume: 1.0 mL

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	<0.93		0.93
Acenaphthylene	<0.93		0.93
Anthracene	<0.93		0.93
Benzo[a]anthracene	<0.19		0.19
Benzo[a]pyrene	<0.19		0.19
Benzo[b]fluoranthene	<0.19		0.19
Benzo[g,h,i]perylene	<0.93		0.93
Benzo[k]fluoranthene	<0.47		0.47
Chrysene	<0.93		0.93
Dibenz(a,h)anthracene	<0.19		0.19
Fluoranthene	9.0	Р	0.93
Fluorene	<0.93		0.93
Indeno[1,2,3-cd]pyrene	<0.19		0.19
1-Methylnaphthalene	<0.93		0.93
2-Methylnaphthalene	<0.93		0.93
Naphthalene	<0.93		0.93
Phenanthrene	<0.93		0.93
Pyrene	3.9		0.93
Surrogate	%Rec	Acceptano	ce Limits
2-Chloroanthracene	85	41 - 177	

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-004

Lab Sample ID: 680-35434-6 Date Sampled: 03/27/2008 1010 03/28/2008 0900 Client Matrix: Water Date Received:

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR

3520C Prep Batch: 400-66906 Preparation: Lab File ID: 009-0901.D

Dilution: Initial Weight/Volume: 1080 mL 1.0 04/03/2008 1851 Date Analyzed: Final Weight/Volume: 1.0 mL

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	<0.93		0.93
Acenaphthylene	<0.93		0.93
Anthracene	<0.93		0.93
Benzo[a]anthracene	<0.19		0.19
Benzo[a]pyrene	<0.19		0.19
Benzo[b]fluoranthene	<0.19		0.19
Benzo[g,h,i]perylene	<0.93		0.93
Benzo[k]fluoranthene	<0.46		0.46
Chrysene	<0.93		0.93
Dibenz(a,h)anthracene	<0.19		0.19
Fluoranthene	<0.93		0.93
Fluorene	<0.93		0.93
Indeno[1,2,3-cd]pyrene	<0.19		0.19
1-Methylnaphthalene	<0.93		0.93
2-Methylnaphthalene	<0.93		0.93
Naphthalene	<0.93		0.93
Phenanthrene	<0.93		0.93
Pyrene	<0.93		0.93
Surrogate	%Rec		Acceptance Limits
2-Chloroanthracene	64		41 - 177

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-007

 Lab Sample ID:
 680-35434-7
 Date Sampled:
 03/27/2008 1030

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR

Proporation: 3520C Proporation: 1520C Instrument ID: HPLC/UV/FLUOR

 Preparation:
 3520C
 Prep Batch: 400-66906
 Lab File ID:
 010-1001.D

Dilution: 1.0 Initial Weight/Volume: 1050 mL

Date Analyzed: 04/03/2008 1925 Final Weight/Volume: 1.0 mL

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	<0.95		0.95
Acenaphthylene	<0.95		0.95
Anthracene	<0.95		0.95
Benzo[a]anthracene	<0.19		0.19
Benzo[a]pyrene	<0.19		0.19
Benzo[b]fluoranthene	<0.19		0.19
Benzo[g,h,i]perylene	<0.95		0.95
Benzo[k]fluoranthene	<0.48		0.48
Chrysene	<0.95		0.95
Dibenz(a,h)anthracene	<0.19		0.19
Fluoranthene	<0.95		0.95
Fluorene	<0.95		0.95
Indeno[1,2,3-cd]pyrene	<0.19		0.19
1-Methylnaphthalene	<0.95		0.95
2-Methylnaphthalene	<0.95		0.95
Naphthalene	3.7		0.95
Phenanthrene	<0.95		0.95
Pyrene	<0.95		0.95
Surrogate	%Rec		Acceptance Limits
2-Chloroanthracene	46		41 - 177

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: WMW-17E

 Lab Sample ID:
 680-35434-8
 Date Sampled:
 03/27/2008 1200

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR

 Preparation:
 3520C
 Prep Batch: 400-66906
 Lab File ID:
 011-1101.D

 Dilution:
 1.0
 Initial Weight/Volume:
 1080 mL

 Date Analyzed:
 04/03/2008 1959
 Final Weight/Volume:
 1.0 mL

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	<0.93		0.93
Acenaphthylene	5.7		0.93
Anthracene	<0.93		0.93
Benzo[a]anthracene	<0.19		0.19
Benzo[a]pyrene	<0.19		0.19
Benzo[b]fluoranthene	<0.19		0.19
Benzo[g,h,i]perylene	<0.93		0.93
Benzo[k]fluoranthene	<0.46		0.46
Chrysene	<0.93		0.93
Dibenz(a,h)anthracene	<0.19		0.19
Fluoranthene	<0.93		0.93
Fluorene	<0.93		0.93
Indeno[1,2,3-cd]pyrene	<0.19		0.19
1-Methylnaphthalene	1.3		0.93
2-Methylnaphthalene	<0.93		0.93
Naphthalene	2.6		0.93
Phenanthrene	<0.93		0.93
Pyrene	<0.93		0.93
Surrogate	%Rec		Acceptance Limits
2-Chloroanthracene	72		41 - 177

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: WMW-18E

 Lab Sample ID:
 680-35434-9
 Date Sampled:
 03/27/2008 1230

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR

Propagation: 3520C Prop Batch: 400-66906 Lab File ID: 012-1201 D

 Preparation:
 3520C
 Prep Batch: 400-66906
 Lab File ID:
 012-1201.D

Dilution: 1.0 Initial Weight/Volume: 1060 mL
Date Analyzed: 04/03/2008 2032 Final Weight/Volume: 1.0 mL

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	<0.94		0.94
Acenaphthylene	<0.94		0.94
Anthracene	<0.94		0.94
Benzo[a]anthracene	<0.19		0.19
Benzo[a]pyrene	<0.19		0.19
Benzo[b]fluoranthene	<0.19		0.19
Benzo[g,h,i]perylene	<0.94		0.94
Benzo[k]fluoranthene	<0.47		0.47
Chrysene	<0.94		0.94
Dibenz(a,h)anthracene	<0.19		0.19
Fluoranthene	<0.94		0.94
Fluorene	<0.94		0.94
Indeno[1,2,3-cd]pyrene	<0.19		0.19
1-Methylnaphthalene	<0.94		0.94
2-Methylnaphthalene	<0.94		0.94
Naphthalene	<0.94		0.94
Phenanthrene	<0.94		0.94
Pyrene	<0.94		0.94
Surrogate	%Rec		Acceptance Limits
2-Chloroanthracene	76		41 - 177

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: DUP01

 Lab Sample ID:
 680-35434-10FD
 Date Sampled:
 03/27/2008 0000

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR

Preparation: 3520C Prep Batch: 400-66906 Lab File ID: 013-1401 D

 Preparation:
 3520C
 Prep Batch: 400-66906
 Lab File ID:
 013-1401.D

Dilution: 1.0 Initial Weight/Volume: 1070 mL

Date Analyzed: 04/03/2008 2140 Final Weight/Volume: 1.0 mL

Date Prepared: 04/03/2008 0746

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	<0.93		0.93
Acenaphthylene	6.3		0.93
Anthracene	<0.93		0.93
Benzo[a]anthracene	<0.19		0.19
Benzo[a]pyrene	<0.19		0.19
Benzo[b]fluoranthene	<0.19		0.19
Benzo[g,h,i]perylene	<0.93		0.93
Benzo[k]fluoranthene	<0.47		0.47
Chrysene	<0.93		0.93
Dibenz(a,h)anthracene	<0.19		0.19
Fluoranthene	<0.93		0.93
Fluorene	<0.93		0.93
Indeno[1,2,3-cd]pyrene	<0.19		0.19
1-Methylnaphthalene	1.2		0.93
2-Methylnaphthalene	<0.93		0.93
Naphthalene	1.3	Р	0.93
Phenanthrene	<0.93		0.93
Pyrene	<0.93		0.93
Surrogate	%Rec	Acceptanc	e Limits
2-Chloroanthracene	75	41 - 177	

1.0 mL

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: **EQBLK**

Lab Sample ID: 680-35434-11EB Date Sampled: 03/27/2008 1120 03/28/2008 0900 Client Matrix: Water Date Received:

8310 Polynuclear Aromatic Hydrocarbons

Method: 8310 Analysis Batch: 400-67036 Instrument ID: HPLC/UV/FLUOR 3520C Prep Batch: 400-66906 Lab File ID: Preparation: 014-1501.D

Dilution: Initial Weight/Volume: 1050 mL 1.0

04/03/2008 2213 Date Analyzed: Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	<0.95		0.95
Acenaphthylene	<0.95		0.95
Anthracene	<0.95		0.95
Benzo[a]anthracene	<0.19		0.19
Benzo[a]pyrene	<0.19		0.19
Benzo[b]fluoranthene	<0.19		0.19
Benzo[g,h,i]perylene	<0.95		0.95
Benzo[k]fluoranthene	<0.48		0.48
Chrysene	<0.95		0.95
Dibenz(a,h)anthracene	<0.19		0.19
Fluoranthene	<0.95		0.95
Fluorene	<0.95		0.95
Indeno[1,2,3-cd]pyrene	<0.19		0.19
1-Methylnaphthalene	<0.95		0.95
2-Methylnaphthalene	<0.95		0.95
Naphthalene	<0.95		0.95
Phenanthrene	<0.95		0.95
Pyrene	<0.95		0.95
Surrogate	%Rec		Acceptance Limits
2-Chloroanthracene	82		41 - 177

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-1

 Lab Sample ID:
 680-35434-1
 Date Sampled:
 03/27/2008 0900

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method: 6010B Analysis Batch: 680-102220 Instrument ID: ICP/AES Preparation: 3005A Prep Batch: 680-101936 Lab File ID: N/A Dilution: 1.0 Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Date Analyzed: 04/03/2008 0840 Date Prepared: 04/01/2008 1547

Analyte	Result (ug/L)	Qualifier	RL
Arsenic	<10		10
Chromium	<10		10

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-2

 Lab Sample ID:
 680-35434-2
 Date Sampled:
 03/27/2008 0920

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method:6010BAnalysis Batch: 680-102220Instrument ID:ICP/AESPreparation:3005APrep Batch: 680-101936Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mLDate Analyzed:04/03/2008 0905Final Weight/Volume:50 mL

 Date Analyzed:
 04/03/2008 0905
 Final Weight/Volume:

 Date Prepared:
 04/01/2008 1547

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Arsenic
 <10</td>
 10

 Chromium
 <10</td>
 10

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-13

 Lab Sample ID:
 680-35434-3
 Date Sampled:
 03/27/2008 1100

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method:6010BAnalysis Batch: 680-102220Instrument ID:ICP/AESPreparation:3005APrep Batch: 680-101936Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mL

Date Analyzed: 04/03/2008 0910 Final Weight/Volume: 50 mL

Date Prepared: 04/01/2008 1547

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Arsenic
 12
 10

 Chromium
 <10</td>
 10

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ITW-14

 Lab Sample ID:
 680-35434-4
 Date Sampled:
 03/27/2008 1130

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method:6010BAnalysis Batch: 680-102220Instrument ID:ICP/AESPreparation:3005APrep Batch: 680-101936Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mL

Date Analyzed: 04/03/2008 0915 Final Weight/Volume: 50 mL

Date Prepared: 04/01/2008 1547

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Arsenic
 <10</td>
 10

 Chromium
 <10</td>
 10

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-002

 Lab Sample ID:
 680-35434-5
 Date Sampled:
 03/27/2008 0945

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method:6010BAnalysis Batch: 680-102220Instrument ID:ICP/AESPreparation:3005APrep Batch: 680-101936Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mLDate Analyzed:04/03/2008 0931Final Weight/Volume:50 mL

 Date Analyzed:
 04/03/2008 0931
 Final Weight/Volume:

 Date Prepared:
 04/01/2008 1547

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Arsenic
 <10</td>
 10

Chromium <10 10

10

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-004

Chromium

 Lab Sample ID:
 680-35434-6
 Date Sampled:
 03/27/2008 1010

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method:6010BAnalysis Batch: 680-102220Instrument ID:ICP/AESPreparation:3005APrep Batch: 680-101936Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mL

Date Analyzed: 04/03/2008 0936 Final Weight/Volume: 50 mL Date Prepared: 04/01/2008 1547

<10

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Arsenic
 <10</td>
 10

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: ESE-007

 Lab Sample ID:
 680-35434-7
 Date Sampled:
 03/27/2008 1030

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method:6010BAnalysis Batch: 680-102220Instrument ID:ICP/AESPreparation:3005APrep Batch: 680-101936Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mL

Date Analyzed: 04/03/2008 0941 Final Weight/Volume: 50 mL Date Prepared: 04/01/2008 1547

Jako I Idparou.

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Arsenic
 <10</td>
 10

 Chromium
 <10</td>
 10

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: WMW-17E

 Lab Sample ID:
 680-35434-8
 Date Sampled:
 03/27/2008 1200

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method:6010BAnalysis Batch: 680-102220Instrument ID:ICP/AESPreparation:3005APrep Batch: 680-101936Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mL

Date Analyzed: 04/03/2008 0946 Final Weight/Volume: 50 mL

Date Prepared: 04/01/2008 1547

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Arsenic
 <10</td>
 10

 Chromium
 <10</td>
 10

10

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: WMW-18E

Chromium

 Lab Sample ID:
 680-35434-9
 Date Sampled:
 03/27/2008 1230

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method:6010BAnalysis Batch: 680-102220Instrument ID:ICP/AESPreparation:3005APrep Batch: 680-101936Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mL

Date Analyzed: 04/03/2008 0951 Final Weight/Volume: 50 mL Date Prepared: 04/01/2008 1547

<10

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Arsenic
 <10</td>
 10

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Client Sample ID: DUP01

 Lab Sample ID:
 680-35434-10FD
 Date Sampled:
 03/27/2008 0000

 Client Matrix:
 Water
 Date Received:
 03/28/2008 0900

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method:6010BAnalysis Batch: 680-102220Instrument ID:ICP/AESPreparation:3005APrep Batch: 680-101936Lab File ID:N/ADilution:1.0Initial Weight/Volume:50 mL

Date Analyzed: 04/03/2008 0956 Final Weight/Volume: 50 mL

Date Prepared: 04/01/2008 1547

 Analyte
 Result (ug/L)
 Qualifier
 RL

 Arsenic
 <10</td>
 10

 Chromium
 <10</td>
 10

Job Number: 680-35434-1 Client: Weston Solutions, Inc.

Client Sample ID: **EQBLK**

03/27/2008 1120 Lab Sample ID: 680-35434-11EB Date Sampled: 03/28/2008 0900 Client Matrix: Water Date Received:

6010B Inductively Coupled Plasma - Atomic Emission Spectrometry-Total Recoverable

Method: 6010B Analysis Batch: 680-102220 Instrument ID: ICP/AES Preparation: 3005A Prep Batch: 680-101936 Lab File ID: N/A Dilution: 1.0 Initial Weight/Volume: 50 mL

04/03/2008 1001 Final Weight/Volume: 50 mL Date Analyzed:

Date Prepared: 04/01/2008 1547

Analyte Result (ug/L) Qualifier RL Arsenic <10 10 Chromium <10 10

DATA REPORTING QUALIFIERS

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
HPLC		
	X	Surrogate exceeds the control limits
	Р	The lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Method Blank - Batch: 680-102010 Method: 8260B Preparation: 5030B

Date Prepared:

04/02/2008 1106

Lab Sample ID: MB 680-102010/6 Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Client Matrix: Water Prep Batch: N/A Lab File ID: aq145.d

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 1106 Final Weight/Volume: 5 mL

Analyte	Result	Qual	RL
Xylenes, Total	<2.0		2.0
Toluene	<1.0		1.0
Methyl tert-butyl ether	<10		10
Ethylbenzene	<1.0		1.0
Benzene	<1.0		1.0
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	98	75 - 120	
Dibromofluoromethane	97	75 - 121	
Toluene-d8 (Surr)	103	75 - 120	

Lab Control Spike - Batch: 680-102010 Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 680-102010/7 Analysis Batch: 680-102010 Instrument ID: GC/MS Volatiles - A C2

Client Matrix: Water Prep Batch: N/A Lab File ID: aq139.d

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 5 mL

Date Analyzed: 04/02/2008 0925 Final Weight/Volume: 5 mL

Date Prepared: 04/02/2008 0925

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Xylenes, Total	150	137	91	84 - 118	
Toluene	50.0	47.5	95	81 - 117	
Methyl tert-butyl ether	100	104	104	77 - 121	
Ethylbenzene	50.0	46.3	93	86 - 116	
Benzene	50.0	46.7	93	77 - 119	
Surrogate	% F	lec	Acc	ceptance Limits	
4-Bromofluorobenzene	94			75 - 120	
Dibromofluoromethane	92			75 - 121	
Toluene-d8 (Surr)	94			75 - 120	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Method Blank - Batch: 680-101852 Method: 8270C Preparation: 3520C

Lab Sample ID: MB 680-101852/15-A Analysis Batch: 680-102551 Instrument ID: GC/MS SemiVolatiles - N

Client Matrix: Water Prep Batch: 680-101852 Lab File ID: n9438.d

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

 Date Analyzed:
 04/08/2008 1521
 Final Weight/Volume:
 1 mL

 Date Prepared:
 04/01/2008 1332
 Injection Volume:
 1.0 uL

Analyte Result Qual RL Phenol <10 10 2,4-Dimethylphenol <10 10 Pentachlorophenol <50 50 Surrogate % Rec Acceptance Limits

 Phenol-d5
 63
 38 - 116

 2-Fluorophenol
 64
 36 - 110

 2,4,6-Tribromophenol
 72
 40 - 139

Lab Control Spike - Batch: 680-101852 Method: 8270C Preparation: 3520C

·

Lab Sample ID: LCS 680-101852/16-A Analysis Batch: 680-102551 Instrument ID: GC/MS SemiVolatiles - N

Client Matrix: Water Prep Batch: 680-101852 Lab File ID: n9439.d

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

 Date Analyzed:
 04/08/2008 1544
 Final Weight/Volume:
 1 mL

 Date Prepared:
 04/01/2008 1332
 Injection Volume:
 1.0 uL

Spike Amount Result % Rec. Limit Qual Analyte 100 69 39 - 110 Phenol 69.3 2,4-Dimethylphenol 100 65.0 65 36 - 110 37 - 132 Pentachlorophenol 100 80.5 81

 Surrogate
 % Rec
 Acceptance Limits

 Phenol-d5
 74
 38 - 116

 2-Fluorophenol
 73
 36 - 110

 2,4,6-Tribromophenol
 90
 40 - 139

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Method Blank - Batch: 400-66906

Method: 8310 Preparation: 3520C

Lab Sample ID: MB 400-66906/15-A

Client Matrix: Water Dilution: 1.0

Date Analyzed: 04/03/2008 1019

Date Prepared: 04/02/2008 0746

Analysis Batch: 400-67036 Prep Batch: 400-66906

Units: ug/L

Instrument ID: HPLC/UV/FLUOR
Lab File ID: 003-0301.D
Initial Weight/Volume: 1000 mL
Final Weight/Volume: 1.0 mL

Injection Volume:

Column ID: PRIMARY

Analyte	Result	Qual	RL
Acenaphthene	<1.0		1.0
Acenaphthylene	<1.0		1.0
Anthracene	<1.0		1.0
Benzo[a]anthracene	<0.20		0.20
Benzo[a]pyrene	<0.20		0.20
Benzo[b]fluoranthene	<0.20		0.20
Benzo[g,h,i]perylene	<1.0		1.0
Benzo[k]fluoranthene	<0.50		0.50
Chrysene	<1.0		1.0
Dibenz(a,h)anthracene	<0.20		0.20
Fluoranthene	<1.0		1.0
Fluorene	<1.0		1.0
Indeno[1,2,3-cd]pyrene	<0.20		0.20
1-Methylnaphthalene	<1.0		1.0
2-Methylnaphthalene	<1.0		1.0
Naphthalene	<1.0		1.0
Phenanthrene	<1.0		1.0
Pyrene	<1.0		1.0
Surrogate	% Rec	Acceptance Limits	
2-Chloroanthracene	76	41 - 177	

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Lab Control Spike - Batch: 400-66906

Method: 8310 Preparation: 3520C

Lab Sample ID: LCS 400-66906/14-A

Client Matrix: Water Dilution: 1.0

Date Analyzed: 04/03/2008 1053 Date Prepared: 04/02/2008 0746 Analysis Batch: 400-67036 Prep Batch: 400-66906

Units: ug/L

Instrument ID: HPLC/UV/FLUOR
Lab File ID: 004-0401.D
Initial Weight/Volume: 1000 mL
Final Weight/Volume: 1.0 mL

Injection Volume:

Column ID: PRIMARY

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Acenaphthene	10.0	7.20	72	31 - 109	
Acenaphthylene	10.0	6.39	64	39 - 105	
Anthracene	10.0	7.61	76	43 - 121	
Benzo[a]anthracene	10.0	7.30	73	60 - 124	
Benzo[a]pyrene	10.0	6.25	62	41 - 128	
Benzo[b]fluoranthene	10.0	6.82	68	48 - 116	
Benzo[g,h,i]perylene	10.0	5.25	53	17 - 138	
Benzo[k]fluoranthene	10.0	6.45	64	35 - 120	
Chrysene	10.0	7.79	78	54 - 120	
Dibenz(a,h)anthracene	10.0	5.06	51	13 - 134	
Fluoranthene	10.0	7.40	74	55 - 138	
Fluorene	10.0	7.12	71	41 - 112	
Indeno[1,2,3-cd]pyrene	10.0	5.99	60	31 - 130	
1-Methylnaphthalene	10.0	6.82	68	32 - 96	
2-Methylnaphthalene	10.0	6.58	66	34 - 97	
Naphthalene	10.0	6.59	66	19 - 135	
Phenanthrene	10.0	7.31	73	45 - 117	
Pyrene	10.0	7.60	76	61 - 127	
Surrogate	% R	% Rec		Acceptance Limits	
2-Chloroanthracene	70				

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Method Blank - Batch: 680-101936 Method: 6010B

Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 680-101936/12-A

Client Matrix: Water Dilution: 1.0

04/03/2008 0829 Date Analyzed: Date Prepared: 04/01/2008 1547 Analysis Batch: 680-102220 Prep Batch: 680-101936

Units: ug/L

Instrument ID: ICP/AES Lab File ID: N/A

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL
Arsenic	<10		10
Chromium	<10		10

Lab Control Spike - Batch: 680-101936 Method: 6010B

Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 680-101936/13-A

Client Matrix: Water Dilution: 1.0

Date Analyzed: 04/03/2008 0834 04/01/2008 1547 Date Prepared:

Prep Batch: 680-101936

Units: ug/L

Analysis Batch: 680-102220

Instrument ID: ICP/AES Lab File ID: N/A

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Arsenic	2000	1950	98	75 - 125	
Chromium	200	205	102	75 - 125	

Quality Control Results

Client: Weston Solutions, Inc. Job Number: 680-35434-1

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 680-101936 Method: 6010B Preparation: 3005A **Total Recoverable**

MS Lab Sample ID: Client Matrix:

680-35434-1 Water

Analysis Batch: 680-102220 Prep Batch: 680-101936

ICP/AES Instrument ID: Lab File ID: N/A

Dilution:

1.0

04/03/2008 0855 Date Analyzed: Date Prepared: 04/01/2008 1547

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

MSD Lab Sample ID:

680-35434-1 Water

Analysis Batch: 680-102220

Instrument ID: ICP/AES Lab File ID: N/A

Client Matrix: Dilution:

1.0

Prep Batch: 680-101936

Initial Weight/Volume: 50 mL

Date Analyzed: 04/03/2008 0900 04/01/2008 1547 Date Prepared:

Final Weight/Volume: 50 mL

% Rec.

Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Arsenic	98	99	75 - 125	1	20		
Chromium	102	103	75 - 125	1	20		

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Phone (912) 354-7858 Fax (912) 35

Chain of Custody Record

Phone (912) 354-7858 Fax (912) 352-0165				THE CEADER INVERCONSENTAL TO
Client Information	Sampler: BRANT RC	2530 VA	Lab PM: Page, Abbie	Carrier Tracking No(s): COC No: 680-15623.1
Client Contact Mr. Ralph McKeen	70,3	7906	E-Mail: abbie.page@testamericainc.com	Page Page 1 of 2
Company: Weston Solutions, Inc.			Analysis	Requested Job#:
Address: 5430 Metric Place Suite 100	Due Date Requested:		OB.	Preservation Codes: A - HCL M - Hexane
City: Norcross	TAT Requested (days):	·	26	w
State, ZIp: GA, 30092	NORA	とそつ	0 0	D - Nitric Add P - Na204S E - NaHS04 Q - Na2803 E - MeOH R - Na282803
Phone: 386-462-2444(Fel) 770,325,7938	PO#: 32730		0)	or iic Acid
	WO#: 5.79101E+13		No)	J - Ice J - DI Water
Project Name: Cabot	Project #: 68000815		Su Su Cs	
Site:	SSOW#:		MtBE	of coi
	07	Sample Type	d Filtered form MS/N DB - As, C DB - BTEX DC - Selec D - PAH's	A PPROVE FOR
Sample Identification	Sample Date Time	_	Fie Per 601 802 827 831	Special Instruc
ITW-1	3/27 0900		V	
ITW-2	3/27 0920) G Water	\times \times \times \times	
ITW-13	3/27 1100	G Water	₹	
ITW-14	3/27 1130	G Water	~ ~ × × × ×	POSS TAR ER OF T
ESE-002	3127 0945	G Water	W N X X X	
ESE-004 TTME = 1010	3/27 0010) G Water	て × × × ×	680.35434
ESE-007	3/27 1030	G Water	て × × ×	
WMW-17E	3/27 1200) G Water	~ × × × ×	4.8/3.2
WMW-18E	3/27 1230) G Water	× × × × ×	1:1/9:5
DUP01	3/27 -	G Water	× × ×	John Laborator V Ada and to the second of th
EQBLK	3/27 1120) G Water	NN X X XX	C
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poi	Poison B Unknown U	Radiological	al (A fee Client	may be assessed if samples are retained longer than 1 month) Disposal By Lab Archive For Months
ested: I, II, III, IV, Other (specify)		c	ns/QC Requireme	
Empty Kit Relinquished by:	Date		Time:	Method of Shipment:
Relinquished to the the second	Date/Time: 80/85	OSCO WES	Siz Received by: 大人	Date/Type 25/07 0900 Company
Relinquished by	Date/Time:	Company	ľ	Date/Time. Company
Relinquished by	Date/Time:	Company	Received by:	Date/Time: Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks	emarks:

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Phone (912) 354-7858 Fax (912) 352-0165

Chain of Custody Record

7	7
ò	2
3	5
4)
)
	1
)
)

		and Other Remarks:	ature(s) °C and O	Cooler Temperature(s) °C	C _C						Custody Seals Intact: Custody Seal No.:	Cus
Company	Date/Time:			Received by:	R _e	Company			Date/Time:		Relinquished by:	Reling
Company				Received by:	Re	Company					Relinquished by:	Reling
Company Company	Date/Tigne: クレントラ		7	Received by:	り と Re	Company Company	00	3/09	Date/Time: 3/28/08	\	Whod by me Coulo	Relinqui
	Method of Shipment:	Method			Time:			Date:			Empty Kit Relinquished by:	Empt
		Requirements:	õ	Special Instructions/0	Speci					pecify)	Other	Deliv
Archive For Months		Disposal By Lab		Return To Client	Samp		Radiological	nown	n B Unknown	Skin Irritant Poison B	Non-Hazard Flammable S	
thos 4											sible Hazard Identification	Poss
					+							
680-35434						Water						
						Water					TB-02	
				メ		Water	1	No.)		TB-01	
						Water						
	X		N A	A	X		l co l	\bigvee	$\bigg angle$			
ALL VOAS APPROVED FOR SW8468260B Special Instructions/Note:	Total Numbe		8310 - PAH's 8021B - BTEX	8021B - BTEX	Perform MS/I 6010B - As, C	Matrix (W=water, S=solid, O=waste/oil, BT=Tissue, A=Air)	Sample Type (C=comp, G=grab)	Sample Time	Sample Date		Sample Identification	Sam
Other:			, MtB	,MtBE	ASD (SSOW#:		FLORIDA	Site.
L - EDA Z - other (specify)			<u>E</u> .						Project #: 68000815		ct Name: Ot	Cabot
				W					WO#: 5.79101E+13		Email: ralph.mckeen@westonsolutions.com	ralph.
- Amchlor - Ascorbic Acid				841	40)				PO#: 32730	7938	Phone: 386-462-2414(Tel) 770, 325.	986-4
A Cid				6 8			7	NOKINET	NO		State, Zip: GA, 30092	State GA,
H cetate				326				ays):	TAT Requested (days):		Norcross	Nord
Preservation Codes: A - HCL M - Hexane				roß				ed:	Due Date Requested:		Address: 5430 Metric Place Suite 100	Address: 5430 N
Job#:		Requested	Analysis								Company: Weston Solutions, Inc.	Com
Page: Page 2 of 2	P		ainc.com	E-Mail: abbie.page@testamericainc.	.page@t	O6 abbie	,79	0,325	77		Client Contact: Mr. Ralph McKeen	M ⊆ ⊆
COC No: 680-15623.2		Carrier Tracking No(s):			Lab PM: Page, Abbie	Lab PA Page	CANC	J Mcc	Sampler: BRARN		Client Information	<u>⊆</u>

SUMMARY OF PRE-REMEDIAL ACTION GROUNDWATER DATA EASTERN SITE GAINESVILLE, FLORIDA

Summary of Pre-Remedial Action Groundwater Data Eastern Site, Gainesville, Florida

Well	Parameters	IT Corp	Hunter/ ESE 1989	WESTON June 1992	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	ROD
Designation		Results	Results	Results	October 1992	January 1993	April 1993 Results	July 1993 Results	October 1993	January 1994	April 1994 Results	July 1994 Results	October 1994	January 1995	April 1995 Results	Cleanup Goal
			(μg/L) (2)		Results	Results	(μg/L) (3)	(μg/L) (3)	Results	Results	(μg/L) (3)	(μg/L) (3)	Results	Results	(Fg/L) (3)	Goai (μg/L)
		(μg/L) (1)	(μg/L) (2)	(μg/L) (3)	(μg/L) (3)	(μg/L) (3)	(μg/L) (3)	(μg/L) (3)	(μg/L) (3)	(μg/L) (3)	(μg/L) (3)	(μg/L) (3)	(μg/L) (3)	(μg/L) (3)	(Fg/L)(3)	(μg/L)
					(μg/L) (3)	(μg/L) (3)			(μg/L) (3)	(μg/L) (3)			(μg/L) (3)	(μg/L) (3)		1
ITW-1	Chromium	110	60.4	ND	NS	ND	NS	ND	NS	ND	NS	ND	NS	ND	NS	*100
ITW-2	Chromium	100	124	39	NS	ND	NS	ND	NS	8	NS	ND	NS	ND	NS	*100
ITW-3	Chromium	40	NS	11	10	24	NS	NS	NS	NS	NS	NS	NS	NS	NS	*100
ITW-4	Chromium	110	45.1	10	9	27	ND	ND	NS	7	ND	ND	ND	23	ND	*100
	Naphthalene	40	35	30	27	17	27	31	NS	5.8	25	58	81	46	25	18
	Acenaphthylene	ND	<1.0	11	13	ND	ND	17	NS	ND	16	7.7	13	8	5.7	130
	Acenaphthene	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	2	3.5	ND	ND	260
	Benzene	140	ND	20	52	20	24	11	NS	21	20	26	25	9.2	8	1
ITW-5	Chromium	<140	47.1	42	NS	26	8	14	26	5	ND	ND	6	6	5	*100
	Arsenic	73	NS	56	NS	65	43	45	48	45	38	34	50	43	46	50
	PCP	30	120	300	NS	980	690	1,500	890	730	1,100	580	550	440	ND	0.1
	Phenol	ND	65	30	NS	750	990	2,600	2,000	1,850	2,600	1,200	900	700	1,200	2,630
	Naphthalene	1,600	1,000	500	NS	860	2,700	1,300	1,200	900	1,500	1,600	1,600	1,500	670	18
	Acenaphthylene	18	12	44	NS	ND	48	ND	34	69	59	73	74	100	20	130
	Acenaphthene	370	540	ND	NS	190	ND	440	ND	ND	220	460	530	610	320	260
	Fluorene	340	210	180	NS	ND	ND	ND	330	300	320	380	470	450	240	323
	Phenanthrene	290	280	160	NS	ND	130	ND	ND	210	280	300	380	320	200	130
	Anthracene	25	17	12	NS	ND	ND	ND	ND	ND	29	22	31	20	15	1,310
	Benzene	<10	ND	4.8	NS	4.3	4.4	4.7	5	0.8	4.1	4.6	ND	5.7	4.6	1

The data presented in this table represents only those compounds that have been detected above detection limit in groundwater samples from the indicated wells.

- (1) Please see Table 6 of Remedial Investigation Report, Cabot Carbon/Koppers Site Vol. 1 (IT Corp., 1987) for analytical detection limits of individual compounds.
- (2) Please see Appendix B of Remedial Investigation/Risk Assessment at the Cabot Carbon/Koppers Site, Gainesville, Florida Vol. 3 (Hunter/ESE, 1989).
- (3) Please see individual groundwater report for analytical detection limits of compounds for different sampling events.

All results are in µg/L.

 μ g/L = micrograms per liter.

MDL = laboratory method detection limit.

ND = not detected above the MDL.

NS = not sampled for indicated compound.

- * The new EPA MCL for chromium is 100 μg/L. As per the ROD, this new MCL replaces the previous cleanup goals of 50 μg/L.
- ** Cleanup goal for indicated compound has not been established.
- + Analytical results from January 1994 are suspect. Past groundwater data review indicates sample bottles may have been mislabeled.
- ++ Sampled only for BTEX constituents.

Well	Parameters	IT Corp	Hunter/	WESTON	WESTON	WESTON	WESTON	ROD								
Designation		1987	ESE 1989	June 1992	October	January	April 1993	July 1993	October	January	April 1994	July 1994	October	January	April 1995	Cleanup
		Results	Results	Results	1992	1993	Results	Results	1993	1994	Results	Results	1994	1995	Results	Goal
		$(\mu g/L)$ (1)	(µg/L) (2)	$(\mu g/L)$ (3)	Results	Results	$(\mu g/L)$ (3)	$(\mu g/L)$ (3)	Results	Results	$(\mu g/L)$ (3)	$(\mu g/L)$ (3)	Results	Results	(Fg/L) (3)	(µg/L)
					$(\mu g/L)$ (3)	$(\mu g/L)$ (3)			$(\mu g/L)$ (3)	$(\mu g/L)$ (3)			(µg/L) (3)	$(\mu g/L)$ (3)		
ITW-6	Cl	170	NS	170	110	NS	NC	NS	NS	NS	NC	7	NS	NC	NS	*100
11W-6	Chromium	1,700	NS NS	170 1,100	580	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	450	NS NS	NS NS	NS NS	*100
	Naphthalene		ND ND	1,100 ND		NS NS		NS NS	NS NS	NS NS	NS NS			NS NS	NS NS	
	Acenaphthylene	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	90	NS NS	NS NS	NS NS	130 260
	Acenaphthene	200	NS NS	73	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	83	NS NS	NS NS	NS NS	323
	Fluorene Phenanthrene	32	NS NS	19	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	28	NS NS	NS NS	NS NS	130
			NS NS	2		NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	28	NS NS	NS NS	NS NS	
	Anthracene	<10 <10	NS NS	1.2	ND 1.5	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS		NS NS	NS NS	NS NS	1,310
ITW-7	Benzene Chromium	280	NS NS	1.2	82		NS NS	NS NS	NS NS	NS NS	NS NS	ND	NS NS	NS NS	NS NS	*100
11 W-/		280	NS NS	57	ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND ND	NS NS	NS NS	NS NS	50
	Arsenic	10	NS NS	ND	ND 11	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	7.4	NS NS	NS NS	NS NS	130
	Acenaphthylene	ND	ND ND	ND ND	ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	2.7	NS NS	NS NS	NS NS	260
	Acenaphthene Fluorene	ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	3.3	NS NS	NS NS	NS NS	323
	Phenanthrene	ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.4	NS NS	NS NS	NS NS	130
		ND ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.4	NS NS	NS NS	NS NS	1,310
	Anthracene	ND ND	NS NS	0.8	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND	NS NS	NS NS	NS NS	
	Total Potentially Carcinogenic PAHs	ND	NS	0.8	ND	N2	NS	NS	NS	NS	NS	ND	NS	NS	NS	0.003
	Benzene	25	NS	14	12	NS	NS	NS	NS	NS	NS	16	NS	NS	NS	1
ITW-8	Chromium	80	NS	7	NS	ND	NS	NS	NS	*100						
11 //-0	Arsenic	1	NS	ND	NS	ND	NS	NS	NS	50						
	Phenol	890	NS	720	NS	350	NS	NS	NS	2,630						
	Naphthalene	48	NS	15	NS	8.2	NS	NS	NS	18						
	Acenaphthylene	ND	NS	73	NS	100	NS	NS	NS	130						
	Acenaphthene	ND	ND	ND	NS	22	NS	NS	NS	260						
	Fluorene	ND	ND	ND	NS	1.2	NS	NS	NS	323						
	Benzene	40	NS	ND	NS	NS	NS	NS	47	NS	NS	31	NS	NS	NS	1
ITW-9	Chromium	170	NS	14	NS	ND	NS	NS	NS	*100						
12,,,	Arsenic	4	NS	ND	NS	ND	NS	NS	NS	50						
	Naphthalene	ND	ND	ND	NS	30	NS	NS	NS	18						
	Acenaphthylene	ND	ND	ND	NS	120	NS	NS	NS	130						
	Acenaphthene	ND	ND	ND	NS	54	NS	NS	NS	260						
	Fluorene	ND	ND	ND	NS	3.6	NS	NS	NS	323						
	Phenanthrene	ND	ND	ND	NS	0.5	NS	NS	NS	130						
	Phenol	76	NS	180	NS	190	NS	NS	NS	2,630						
	Benzene	<10	NS	31	NS	NS	NS	NS	22	NS	NS	ND	NS	NS	NS	1

Well Designation	Parameters	IT Corp 1987		WESTON June 1992	WESTON October	WESTON January	WESTON April 1993	WESTON July 1993	WESTON October	WESTON January	WESTON April 1994	WESTON July 1994	WESTON October	WESTON January	WESTON April 1995	ROD Cleanup
Designation		Results	Results	Results	1992	1993	Results	Results	1993	1994	Results	Results	1994	1995	Results	Goal
			(μg/L) (2)		Results	Results	(μg/L) (3)	(μg/L) (3)	Results	Results	(μg/L) (3)	(μg/L) (3)	Results	Results	(Fg/L) (3)	(μg/L)
		4.6 / ()	4.8 / / /	4.6 / (*)	$(\mu g/L)\ (3)$	$(\mu g/L)~(3)$	(FB) (-)	W-8 / (-)	$(\mu g/L)\ (3)$	$(\mu g/L)$ (3)	4.8 / (-/	4.8 / (-/	(µg/L) (3)	$(\mu g/L)\ (3)$	(8)	4.8
ITW-10 +	Chromium	100	NS	77	53	71	19	12	30	9	ND	ND	8	5	5	*100
	Phenol	ND	NS	5,400	3,060	7,900	13,000	13,000	8,300	ND	1,800	1,200	500	284	310	2,630
	Naphthalene	ND	NS	ND	ND	14	35	84	ND	ND	ND	ND	ND	ND	ND	18
	Acenaphthylene	ND	NS	ND	ND	640	41	470	25	8.5	ND	ND	310	ND	ND	130
	Fluorene	ND	NS	ND	ND	2.6	ND	ND	1.1	ND	ND	0.7	ND	ND	ND	323
	Benzene	150	NS	320	200	250	130	120	120	61	59	65	12	64	60	1
ITW-11 +	Chromium	240	NS	130	12	23	ND	ND	ND	ND	ND	ND	ND	ND	ND	*100
	Arsenic	9	NS	21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
	Acenaphthylene	ND	NS	ND	15	ND	7.8	59	61	400	ND	ND	ND	ND	ND	130
	Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8	ND	ND	ND	323
	Phenanthrene	ND	NS	ND	0.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	130
	Pyrene	ND	NS	ND	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	130
	Total Potentially	ND	NS	ND	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003
	Carcinogenic PAHs															
	Benzene	<10	NS	3.3	2.7	2.5	1.6	2.7	3.7	2.8	2.5	1.1	0.6	3.7	4.1	1
	Phenol	ND	NS	ND	ND	ND	ND	ND	ND	8,500	ND	ND	ND	ND	ND	2,630
ITW-12	Chromium	0.06	NS	NS	NS	NS	NS	12	ND	ND	NS	NS	NS	NS	NS	*100
ITW-13	Chromium	80	34.4	10	13	10	ND	ND	ND	ND	ND	ND	6	ND	ND	*100
	Phenol	ND	6,500	2,700	2,500	4,000	11,000	7,000	9,300	8,900	6,200	7,500	4,820	5,720	7,100	2,630
	Naphthalene	ND	59	38	6.1	32	84	71	83	51	35	63	40	47	34	18
	Acenaphthylene	ND	<20	35	46	210	240	12	ND	300	ND	ND	370	ND	ND	130
	Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	33	ND	260
	Fluorene	ND	<20	0.3	0.7	0.8	1.2	1.1	1.6	1.8	ND	2.8	3.7	2.1	1.7	323
	Phenanthrene	ND	<20	0.3	ND	0.3	ND	0.4	0.4	0.2	0.26	0.5	0.5	0.6	0.43	130
	Anthracene	ND	?	ND	ND	ND	ND	ND	ND	ND	ND	0.2	ND	0.18	0.16	1,310
	Total Potentially	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47	ND	ND	0.003
	Carcinogenic PAHs															
	Benzene	100	ND	130	140	130	82	49	65	55	75	64	59	62	66	1

Well Designation	Parameters	IT Corp 1987 Results	Hunter/ ESE 1989 Results (µg/L) (2)	WESTON June 1992 Results (µg/L) (3)	WESTON October 1992 Results	WESTON January 1993 Results	WESTON April 1993 Results (µg/L) (3)	WESTON July 1993 Results (µg/L) (3)	WESTON October 1993 Results	WESTON January 1994 Results	WESTON April 1994 Results (µg/L) (3)	WESTON July 1994 Results (µg/L) (3)	WESTON October 1994 Results	WESTON January 1995 Results	WESTON April 1995 Results (Fg/L) (3)	ROD Cleanup Goal (µg/L)
		(Fg/ 2) (1)	(pg/2) (2)	(pg/2) (c)	(μg/L) (3)	(μg/L) (3)	(Fg /2) (0)	(pg/2) (e)	(μg/L) (3)	(μg/L) (3)	(p.g /2) (0)	(µg /2) (e)	(μg/L) (3)	(μg/L) (3)	(192) (0)	(µg/2)
ITW-14	Chromium	140	NS	ND	7	10	ND	5	ND	6	ND	ND	ND	ND	5	*100
	Phenol	4,100	NS	2,700	2,300	1,600	14,000	9,900	12,000	8,600	5,000	6,700	910	4,460	1,700	2,630
	Naphthalene	18	NS	170	ND	ND	1,100	390	ND	1,100	480	5,400	700	350	240	18
	Acenaphthylene	<10	NS	190	1,600	360	1,200	1,800	9,900	2,700	1,200	13,000	2,000	890	650	130
	Acenaphthene	<10	NS	ND	ND	83	ND	ND	ND	ND	3,100	48,000	3,300	1,400	720	260
	Fluorene	ND	NS	72	80	51	31	50	1,100	370	700	3,500	330	71	59	323
	Phenanthrene	<10	NS	40	12	ND	37	36	ND	230	190	2,000	180	25	23	130
	Anthracene	ND	NS	ND	ND	ND	ND	ND	ND	ND	53	270	16	3.1	3.8	1,310
	Total Potentially Carcinogenic PAHs	ND	NS	49	1,000	19.6	ND	ND	6,040	1,590	ND	ND	410	32	71	0.003
	Benzene	130	NS	45	180	170	68	150	180	120	130	140	160	160	120	1
	Pyrene	ND	NS	ND	ND	ND	ND	ND	5,000	ND	ND	ND	69	ND	6.4	130
ITW-15	Chromium	70	NS	6	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	*100
	Arsenic	9	NS	ND	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	50
	Phenol	2,200	NS	260	NS	NS	NS	NS	NS	NS	NS	140	NS	NS	NS	2,630
	Naphthalene	ND	NS	ND	NS	NS	NS	NS	NS	NS	NS	4.2	NS	NS	NS	18
	Acenaphthylene	ND	NS	120	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	130
	Fluorene	ND	NS	0.6	NS	NS	NS	NS	NS	NS	NS	1.4	NS	NS	NS	323
	Benzene	19	NS	7	NS	NS	NS	NS	NS	NS	NS	3	NS	NS	NS	1
ITW-16	Chromium	200	NS	61	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	*100
	Arsenic	10	NS	ND	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	50
	Naphthalene	16	NS	3.5	NS	NS	NS	NS	NS	NS	NS	7.9	NS	NS	NS	18
	Acenaphthylene	ND	NS	130	NS	NS	NS	NS	NS	NS	NS	140	NS	NS	NS	130
	Acenaphthene	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	3.6	NS	NS	NS	260
	Fluorene	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	0.5	NS	NS	NS	323
	Benzene	<10	NS	ND	NS	NS	NS	NS	NS	NS	NS	ND	NS	NS	NS	1
ITW-17	Chromium	190	14.3	29	34	12	5	5	NS	NS	NS	NS	NS	NS	NS	*100
	Phenol	<10	6,200	660	1,080	1,400	ND	3,800	NS	NS	NS	NS	NS	NS	NS	2,630
	Naphthalene	ND	140	21	9.4	23	21	170	NS	NS	NS	NS	NS	NS	NS	18
	Acenaphthylene	ND	<20	ND	140	ND	25	310	NS	NS	NS	NS	NS	NS	NS	130
	Acenaphthene	ND	<20	ND	ND	3.7	ND	ND	NS	NS	NS	NS	NS	NS	NS	260
	Fluorene	ND	<20	ND	0.5	0.9	ND	7.3	NS	NS	NS	NS	NS	NS	NS	323
	Phenanthrene	<10	<20	1.3	ND	0.8	0.2	0.9	NS	NS	NS	NS	NS	NS	NS	130
	Benzene	12	ND	26	17	36	10	39	NS	NS	NS	NS	NS	NS	NS	1

Well Designation	Parameters	IT Corp 1987 Results (µg/L) (1)	Hunter/ ESE 1989 Results (µg/L) (2)	WESTON June 1992 Results (µg/L) (3)	WESTON October 1992 Results (µg/L) (3)	WESTON January 1993 Results (µg/L) (3)	WESTON April 1993 Results (µg/L) (3)	WESTON July 1993 Results (µg/L) (3)	WESTON October 1993 Results (µg/L) (3)	WESTON January 1994 Results (µg/L) (3)	WESTON April 1994 Results (µg/L) (3)	WESTON July 1994 Results (µg/L) (3)	WESTON October 1994 Results (µg/L) (3)	WESTON January 1995 Results (µg/L) (3)	WESTON April 1995 Results (Fg/L) (3)	ROD Cleanup Goal (µg/L)
WMW-17E	Chromium	NS	NS	NS	NS	NS	NS	25	5	ND	ND	ND	ND	6	10	*100
	Benzene	NS	NS	NS	NS	NS	NS	2.5	20	3.3	1.4	2.5	2.3	49	14	1
	Naphthalene	NS	NS	NS	NS	NS	NS	4.5	15	3.5	ND	2.1	ND	20	6	18
	Acenaphthylene	NS	NS	NS	NS	NS	NS	10	ND	7.1	ND	4.2	ND	ND	ND	130
	Acenaphthene	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	13	6.2	ND	260
	Anthracene	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	0.9	0.39	0.2	ND	1,310
	Pyrene	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	2.4	ND	ND	ND	130
	Fluorene	NS	NS	NS	NS	NS	NS	0.7	ND	ND	ND	0.3	1.2	1.3	ND	323
	PCP	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	94	ND	ND	0.1
	Phenol	NS	NS	NS	NS	NS	NS	ND	3,000	ND	ND	ND	ND	340	ND	2,630
	Phenanthrene	NS	NS	NS	NS	NS	NS	ND	0.5	ND	ND	ND	1.3	0.32	ND	130
	Total Potentially	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	2	ND	ND	0.003
	Carcinogenic PAHs															
ITW-18	Chromium	110	126	44	47	33	14	16	NS	NS	NS	NS	NS	NS	NS	*100
WMW-18E	Chromium	NS	NS	NS	NS	NS	NS	130	10	8	29	17	230	140	50	*100
	Arsenic	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	19	ND	ND	50
	PCP	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	34	ND	ND	0.1
	Acenaphthylene	NS	NS	NS	NS	NS	NS	5.6	6.8	ND	3.2	7.6	10	ND	ND	130
	Pyrene	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	0.21	ND	130
	Fluorene	NS	NS	NS	NS	NS	NS	ND	ND	ND	0.5	ND	ND	ND	ND	323
	Total Potentially Carcinogenic PAHs	NS	NS	NS	NS	NS	NS	0.4	ND	ND	ND	0.5	0.88	ND	ND	0.003
ITW-19	Chromium	420	NS	47	10	7.4	7	9	ND	9	ND	ND	ND	ND	ND	*100
	Naphthalene	150	NS	96	89	62	88	110	59	68	79	180	170	180	130	18
	Acenaphthylene	ND	NS	ND	ND	ND	9.7	8.5	ND	ND	ND	13	7.2	8.4	ND	130
	Acenaphthene	ND	NS	ND	ND	7.5	ND	ND	ND	7.4	7.7	28	21	28	17	260
	Fluorene	<10	NS	ND	6.2	6	9.2	ND	ND	7.9	7.3	17	14	15	10	323
	Phenanthrene	ND	NS	ND	0.6	0.2	0.6	0.7	0.2	0.3	0.3	0.8	0.54	0.68	0.66	130
	Anthracene	ND	NS	ND	ND	ND	ND	ND	ND	ND	0.2	0.4	0.26	0.25	0.26	1,310
	Benzene	<10	NS	0.9	1.1	1	0.6	0.8	1.2	0.9	1	ND	0.9	0.9	0.9	1
ITW-20	Chromium	470	148	25	13	6.5	ND	ND	ND	8	21	ND	ND	ND	ND	*100
	Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.7	1

Well Designation	Parameters	IT Corp 1987 Results (µg/L) (1)	Hunter/ ESE 1989 Results (µg/L) (2)	WESTON June 1992 Results (µg/L) (3)	WESTON October 1992 Results (µg/L) (3)	WESTON January 1993 Results (µg/L) (3)	WESTON April 1993 Results (µg/L) (3)	WESTON July 1993 Results (µg/L) (3)	WESTON October 1993 Results (µg/L) (3)	WESTON January 1994 Results (µg/L) (3)	WESTON April 1994 Results (µg/L) (3)	WESTON July 1994 Results (µg/L) (3)	WESTON October 1994 Results (µg/L) (3)	WESTON January 1995 Results (µg/L) (3)	WESTON April 1995 Results (Fg/L) (3)	ROD Cleanup Goal (µg/L)
ITW-21	Chromium	60	29.9	8	NS	6.2	ND	ND	NS	ND	ND	ND	ND	ND	ND	*100
	Arsenic	2	NS	42	NS	46	18	20	NS	22	13	15	12	14	10	50
	PCP	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	124	ND	ND	0.1
	Naphthalene	3,400	2,700	4,600	NS	4,300	70	3,100	NS	6,000	3,000	6,600	7,200	6,200	4,500	18
	Acenaphthylene	11	<4.0	260	NS	ND	12	ND	NS	230	94	180	290	220	150	130
	Acenaphthene	210	380	ND	NS	200	ND	ND	NS	ND	100	460	430	380	300	260
	Fluorene	130	160	5.6	NS	120	ND	15	NS	180	100	210	270	220	180	323
	Phenanthrene	ND	69	82	NS	45	ND	5	NS	63	47	79	87	68	55	130
	Anthracene	ND	ND	ND	NS	ND	ND	ND	NS	ND	1.6	2	1.1	1.3	1.2	1,310
	Benzene	ND	ND	8.2	NS	6	5.4	28	NS	3.1	4	3.7	3.5	3.7	2.9	1
ITW-22	Chromium	100	NS	11	NS	11	ND	ND	NS	ND	ND	ND	ND	ND	ND	*100
	Arsenic	8	NS	13	NS	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	50
	PCP	ND	ND	ND	NS	ND	ND	ND	NS	ND	ND	ND	52	ND	ND	0.1
	Naphthalene	<10	NS	ND	NS	1.5	ND	ND	NS	ND	ND	11	ND	3.1	ND	18
	Acenaphthene	ND	ND	ND	NS	ND	ND	ND	NS	ND	ND	3.9	ND	ND	ND	260
	Phenanthrene	ND	ND	ND	NS	ND	ND	ND	NS	ND	ND	0.2	ND	ND	ND	130
	Total Potentially Carcinogenic PAHs	<10	NS	0.2	NS	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	0.003
ESE-001	Chromium	NS	62.4	51	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	*100
	Acenaphthene	NS	1.3	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	260
	Naphthalene	NS	5.2	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	18
ESE-002	Chromium	NS	55.6	170	120	39	ND	ND	ND	28	5	ND	19	ND	7	*100
	Naphthalene	NS	27	ND	ND	2	59	7.3	4.8	42	110	12	ND	9.5	6.7	18
	Acenaphthylene	NS	<1.0	ND	ND	ND	5.5	ND	ND	ND	2.9	4	11	ND	10	130
	Acenaphthene	NS	9.3	ND	ND	ND	ND	ND	ND	8.8	4.6	ND	ND	ND	ND	260
	Fluorene	NS	4.4	ND	ND	1	ND	ND	ND	13	9.4	5.1	1.2	2.5	ND	323
]	Phenanthrene	NS	<1.0	18	0.4	1.5	3.7	1.2	1.4	12	9.4	9.4	1.2	1.1	0.55	130
	Anthracene	NS	<1.0	1.2	ND	ND	ND	ND	ND	0.8	0.5	0.9	0.29	0.28	0.16	1,310
	Benzene	NS	ND	13	5.2	7.7	4.3	9.2	11	4.2	2.5	2.5	0.8	5	5.1	1
	Pyrene	NS	<1.0	ND	ND	ND	ND	ND	ND	0.6	1.1	2.4	1.8	1.7	1.1	130
	Total Potentially Carcinogenic PAHs	NS	ND	ND	ND	ND	ND	ND	ND	ND	0.3	ND	0.33	ND	ND	0.003
ESE-003	Chromium	NS	31.3	100	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	*100
202 000	Benzene	NS	NS	0.8	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1

Well	Parameters	IT Corp	Hunter/	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	WESTON	ROD
Designation	1 at affecters	1987	ESE 1989	June 1992	October	January	April 1993	July 1993	October	January	April 1994	July 1994	October	January	April 1995	Cleanup
		Results	Results	Results	1992	1993	Results	Results	1993	1994	Results	Results	1994	1995	Results	Goal
		(µg/L) (1)	(µg/L) (2)	$(\mu g/L) (3)$	Results	Results	(µg/L) (3)	(µg/L) (3)	Results	Results	(µg/L) (3)	(µg/L) (3)	Results	Results	(Fg/L) (3)	(µg/L)
					$(\mu g/L)$ (3)	$(\mu g/L)$ (3)			$(\mu g/L)$ (3)	$(\mu g/L)$ (3)			$(\mu g/L)$ (3)	$(\mu g/L)\ (3)$		1
ESE-004	Chromium	NS	70.2	120	29	29	ND	9	8	7	6	ND	8	5	13	*100
	Phenol	NS	260	ND	23	ND	50	40	ND	ND	315	ND	16	ND	610	2,630
	Naphthalene	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.5	18
	Acenaphthylene	NS	ND	ND	ND	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	130
	Phenanthrene	NS	ND	ND	ND	ND	ND	ND	0.5	ND	ND	0.2	ND	ND	ND	130
	Anthracene	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.21	ND	ND	1,310
	Benzene	NS	ND	ND	ND	ND	ND	ND	3.2	ND	1.8	ND	ND	ND	3.6	1
	Fluorene	NS	<1.0	ND	ND	ND	ND	ND	ND	0.3	ND	0.7	ND	ND	ND	323
ESE-005	Chromium	NS	59.2	110	53	20	11	ND	ND	ND	ND	ND	ND	ND	ND	*100
	PCP	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	90	ND	ND	0.1
	Phenol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	90	ND	ND	56	2,630
	Naphthalene	NS	1,300	660	97	730	170	400	1,000	1,100	420	610	1,100	1,200	3,600	18
	Acenaphthylene	NS	< 5.0	81	89	ND	ND	ND	320	ND	49	35	270	84	300	130
	Acenaphthene	NS	68	17	ND	ND	ND	360	ND	ND	ND	44	49	120	190	260
	Fluorene	NS	30	21	4.7	22	10	ND	3.9	45	13	16	42	41	61	323
	Phenanthrene	NS	4.3	4.1	1.1	3.7	1.8	3.4	2.5	8.9	3.5	2.9	5	8.1	20	130
	Anthracene	NS	ND	ND	ND	ND	ND	ND	ND	ND	0.3	0.3	0.62	0.53	0.96	1,310
	Pyrene	NS	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	ND	ND	4.2	130
	Total Potentially	NS	<61	ND	2.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003
	Carcinogenic PAHs	NG	100	50	40	50	4.5	7.5	120	F.C.	40	0.6	0.5	00	150	1
EGE 004	Benzene	NS NS	<100 230	50 64	49 NS	59	45 NS	75 NS	130 NS	56 NS	48 NS	86	85 NS	90 NS	150 NS	*100
ESE-006	Chromium Phenol	NS NS	81	ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	2,630
	Naphthalene	NS NS	340	560	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	18
	Acenaphthylene	NS	<20	880	NS NS	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS NS	130
	Fluorene	NS	ND	24	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	323
	Phenanthrene	NS	ND	7.9	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS	130
	Benzene	NS	320	65	NS NS	NS NS	60	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	130
ESE-007	Chromium	NS	45.7	96	47	26	11	9	24	22	5	ND	15	9	10	*100
ESE-007	Phenol	NS	11,000	240	490	1,550	890	5,000	4,300	6,400	2,100	4,000	3,200	830	540	2,630
	Naphthalene	NS	<40	2.4	12	21	14	25	13	14	15	19	17	35	21	18
	Acenaphthylene	NS	<40	130	210	320	110	ND	9.1	450	ND	ND	440	ND	ND	130
	Acenaphthene	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	260
	Phenanthrene	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.69	ND	0.31	130
	Anthracene	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.25	ND	0.22	1,310
	Fluorene	NS	<40	ND	ND	0.8	ND	ND	1	1.6	ND	2.1	ND	2.8	ND	323
	Total Potentially	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.29	ND	ND	0.003
	Carcinogenic PAHs															<u> </u>
	Benzene	NS	ND	74	30	48	9.8	37	25	33	30	38	35	34	10	1

Summary of Pre-Remedial Action Groundwater Data Eastern Site, Gainesville, Florida

Well	Parameters	IT Corp	Hunter/	WESTON	WESTON	ROD										
Designation		1987	ESE 1989	June 1992	October	January	April 1993	July 1993	October	January	April 1994	July 1994	October	January	April 1995	Cleanup
		Results	Results	Results	1992	1993	Results	Results	1993	1994	Results	Results	1994	1995	Results	Goal
		$(\mu g/L)$ (1)	$(\mu g/L)$ (2)	$(\mu g/L)$ (3)	Results	Results	$(\mu g/L)$ (3)	$(\mu g/L)$ (3)	Results	Results	$(\mu g/L)$ (3)	$(\mu g/L)$ (3)	Results	Results	(Fg/L)(3)	(µg/L)
					$(\mu g/L)$ (3)	$(\mu g/L)$ (3)			$(\mu g/L)$ (3)	$(\mu g/L)$ (3)			$(\mu g/L)$ (3)	$(\mu g/L)$ (3)		1
ITF-1 ++	Benzene	ND	ND	ND	ND	NS	NS	1								
	Toluene	ND	ND	1.6	1.6	NS	NS	**								
	Ethylbenzene	ND	ND	1.4	ND	NS	NS	**								
	Xylenes	NS	NS	3.1	4.3	NS	NS	**								
ITF-2 ++	Benzene	ND	ND	ND	NS	NS	1									
	Toluene	ND	ND	ND	NS	NS	**									
	Ethylbenzene	ND	ND	ND	NS	NS	**									
	Xylenes	NS	NS	ND	NS	NS	**									
ITF-3 ++	Benzene	ND	ND	2.8	3.5	3.6	2.4	2.6	3.5	2.7	NS	NS	NS	NS	NS	1
	Toluene	ND	ND	1	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	**
	Ethylbenzene	ND	NS	NS	NS	NS	NS	**								
	Xylenes	NS	NS	1.1	1.6	1.4	1.3	3	2	2.1	NS	NS	NS	NS	NS	**

The data presented in this table represents only those compounds that have been detected above detection limit in groundwater samples from the indicated wells.

- (1) Please see Table 6 of Remedial Investigation Report, Cabot Carbon/Koppers Site Vol. 1 (IT Corp., 1987) for analytical detection limits of individual compounds.
- (2) Please see Appendix B of Remedial Investigation/Risk Assessment at the Cabot Carbon/Koppers Site, Gainesville, Florida Vol. 3 (Hunter/ESE, 1989).
- (3) Please see individual groundwater report for analytical detection limits of compounds for different sampling events.

All results are in µg/L.

 μ g/L = micrograms per liter.

MDL = laboratory method detection limit.

ND = not detected above the MDL.

NS = not sampled for indicated compound.

- * The new EPA MCL for chromium is 100 μg/L. As per the ROD, this new MCL replaces the previous cleanup goals of 50 μg/L.
- ** Cleanup goal for indicated compound has not been established.
- + Analytical results from January 1994 are suspect. Past groundwater data review indicates sample bottles may have been mislabeled.
- ++ Sampled only for BTEX constituents.

APPENDIX D

SUMMARY OF POST-REMEDIAL ACTION GROUNDWATER DATA EASTERN SITE GAINESVILLE, FLORIDA

Appendix D

					1	1					1		ı	1	1	ı		ı	1	1		ı	1	1		ROD
WELL																										cleanup
DESIGNATION	PARAMETERS	Jun-02	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Mar-04	Jun-04	Sep-04	Dec-04	Mar-05	Jun-05	Sep-05	Dec-05	Mar-06	Jun-06	Sep-06	Dec-06	Mar-07	Jun-07	Sep-07	Dec-07	Mar-08	goal
			•																				•			
ITW-1	Chromium	ND	ND	ND	ND 0.07	ND	ND 0.70	ND 0.0	ND 0.40	ND 0.50	ND 0.47	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 4	ND	*100
ITW-1	Acenaphthene Anthracene	ND	ND	ND	0.67 ND	ND ND	0.72 ND	0.6 ND	0.19	0.50	0.47	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	260
ITW-1		ND 0.7	ND ND	ND 0.7				0.49	ND 0.33	0.079	0.044		ND	ND	ND	ND ND				ND ND	ND ND	ND	ND			1,310
ITW-1 ITW-1	Fluorene Naphthalene	0.7 ND	ND	0.7 ND	0.9 ND	0.54 ND	0.81 ND	ND	0.32 ND	0.31 ND	0.37 1.60	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	323 18
	Phenanthrene	ND	ND	ND	ND ND	ND ND	ND	ND	ND	0.045	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	130
ITW-1 ITW-1	1- Methylnaphthalene	ND	ND	ND	ND	ND ND	ND	ND	ND	0.52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	*
ITW-1	2- Methylnaphthalene	ND	ND	ND	ND	ND ND	ND	ND	ND	0.66	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	*
ITW-2	Benzene	ND	ND	ND	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
ITW-2	Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
ITW-2	Acenaphthene	ND	ND	ND	ND ND	0.66	1.3	0.8	0.12	67	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260
ITW-2	Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,310
ITW-2	Fluoranthene	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
ITW-2	Fluorene	1.2	1.3	1.1	0.98	1	1.6	1.3	0.61	52	0.19	ND	0.56	ND	0.52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	323
ITW-2	Naphthalene	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND	ND	ND	18
ITW-2	Phenanthrene	ND	ND	ND	ND	ND	ND	ND	ND	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	130
ITW-2	Pyrene	ND	ND	ND	ND	ND	ND	ND	ND	4.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	130
ITW-2	2- Methylnaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	58	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
ITW-2	Chromium	16	32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	*100
ITW-13	Benzene	NS	71	78	82	85	55	120	61	72	ND	63	ND	ND	ND	58	64	88	81	87	81	88	81	74	100	1
ITW-13	Toluene	NS	590	460	460	430	250	350	250	300	350	230	190	170	170	270	280	280	310	290	310	440	390	280	420	*
ITW-13	Ethylbenzene	NS	270	320	320	300	220	370	240	240	260	250	190	230	240	260	260	280	280	300	270	270	260	270	350	*
ITW-13	Total Xylenes	NS	162	171	208	174	116	255	154	135	144	150	120	150	140	160	160	190	190	190	180	180	170	160	210	*
ITW-13	Acenaphthene	NS	ND	ND	ND	0.52	ND	ND	0.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260
ITW-13	Acenaphthylene	NS	63	53	56	24	ND	ND	13	1.2	12	ND	ND	ND	9.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	130
ITW-13	Anthracene	NS	ND	ND	ND	ND	ND	ND	0.0084	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,310
ITW-13	Benzo (a) anthracene	NS	ND	ND	ND	ND	ND	ND	0.012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	PAH
ITW-13	Benzo (b) fluoranthene	NS	ND	ND	ND	ND	ND	ND	0.031	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	PAH
ITW-13	Fluorene	NS	0.9	0.52	0.56	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	323
ITW-13	Naphthalene	NS	78	68 ND	84 ND	55 ND	80 ND	35 ND	28	36	34	ND	24	23	21	31 ND	54	48	45 ND	26	ND	45	71 ND	41 ND	53	18
ITW-13	Phenanthrene	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	130
IT\A/ 42	Total Potentially	NC	ND	ND	ND	ND	ND	ND	0.042	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002
ITW-13 ITW-13	Carcinogenic PAHs 1- Methylnaphthalene	NS NS	5.3	ND 5.4	2.5	ND 4.3	ND ND	ND 3	0.043 1.2	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND 2.7	ND 4.6	3.3	ND ND	ND ND	ND 5.8	ND ND	2.3	ND 3.3	0.003
ITW-13	2- Methylnaphthalene	NS	6	8.1	5.8	5.5	ND	3.4	2.4	1.5	0.99	ND	ND	ND	1.6	ND	4.1	3.9	3.7	ND	ND	3.4	ND	2.4	3.9	*
ITW-13	Phenol	NS	8600	9600	9000	4100	2000	5800	7700	4200	10000	5300	2400	ND	940	5200	6200	13000	8800	4600	1500	3100	6100	6300	5900	2630
ITW-13	2,4- Dimethylphenol	NS	2500	3700	3000	3300	2600	2000	2800	2200	2700	2900	1800	990	2600	2200	1800	3100	2600	1900	830	1800	2200	2000	2300	*
ITW-13	2- Methylphenol	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1800	440	1700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	*
ITW-13	3&4- Methylphenol	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	6000	950	2700	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	*
ITW-13	Arsenic	NS	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	12	50
ITW-13	Chromium	NS	14	14	22	ND	ND	ND	12	ND	ND	ND	14	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	*100
ITW-14	Benzene	NS	39	33	ND	ND	30	45	31	43	ND	33	26	ND	ND	ND	25	31	57	47	26	ND	ND	39	46	1
ITW-14	Toluene	NS	740	610	490	360	590	880	540	730	300	630	440	470	380	350	440	420	790	650	230	670	500	580	700	*
ITW-14	Ethylbenzene	NS	190	140	130	120	120	210	140	140	ND	150	110	130	110	94	120	120	210	150	97	200	120	160	160	*
ITW-14	Total Xylenes	NS	590	453	468	345	395	624	389	444	ND	470	320	440	330	270	320	350	620	470	280	640	380	470	480	*
ITW-14	Acenaphthene	NS	220	360	170	66	34	36	240	77	4.8	60	ND	ND	ND	ND	ND	ND	23	250	ND	ND	ND	ND	17	260
ITW-14	Acenaphthylene	NS	1800	1100	1000	440	ND	76	1000	370	83	ND	ND	ND	420	ND	ND	ND	480	610	320	240	**4900	ND	380	130
ITW-14	Anthracene	NS	39	62	44	12	ND	9.1	76	0.30	2.7	ND	ND	ND	26.0	3.2	3.0	3.0	5.1	ND	ND	ND	ND	ND	ND	1310
ITW-14	Benzo (a) anthracene	NS	220	310	180	51	ND	3.8	ND	ND	ND	ND	ND	ND	ND	2.8	3.4	1.0	2.2	ND	ND	3.4	**100	0.2	ND	PAH
ITW-14	Benzo (a) pyrene	NS	ND	ND	7.3	1.1	ND	ND	17	ND	ND	ND	ND	ND	ND	4.6	5.7	1.8	3.7	ND	ND	0.57	**45	ND	5	PAH
ITW-14	Benzo (b) fluoranthene	NS	46 ND	44	60 ND	4.8	ND	ND	120	75	ND	ND	ND	ND	ND	ND	ND 10.0	1.3	23	120	ND	27	**1300	1.2	15 ND	PAH
ITW-14	Benzo (g,h,i) perylene	NS	ND	ND	ND	ND	ND	ND	8.1	3.8	ND	ND	ND	ND	ND	11.0	10.0	2.3	12.0	ND	ND	3.6	**300	ND	ND	*
	Benzo (k) flouranthene	NS	ND 240	ND 340	ND 360	ND 56	ND	ND 4	24 ND	16	ND	ND	ND 000	ND	ND 170	9.5	11	2.6	9.5	ND	ND	8.4	**320 **1500	ND 4	ND	PAH
ITW-14	Chrysene	NS	240	340	260	56	ND	4	ND	28	ND	ND	900	ND	170	5.7	ND	4.7	14.0	ND	ND	41	**1500	4	ND	PAH
IT\A/ 1.4	Dibenzo (a,h)	NC	ND	NID	NID	ND	ND	ND	ND	NID	NID	NID	ND	ND	ND	2.2	2.0	2.6	6.0	ND	NID	NID	**120	ND	ND	DALI
ITW-14 ITW-14	anthracene Indeno(1,2,3-cd)pyrene	NS NS	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 34	ND 24	ND ND	ND ND	ND ND	ND ND	ND ND	3.3 0.7	3.8 0.73	3.6 ND	6.2	ND ND	ND ND	ND 4	**250	ND ND	ND ND	PAH PAH
ITW-14 ITW-14	Fluoranthene	NS NS	160	230	120	52	ND ND	17	ND	260	ND ND	ND ND	ND ND	ND ND	ND ND	140	180	60	ND	500	ND ND	190	**10000	19	150	YAH *
ITW-14 ITW-14	Fluoranthene	NS	200	290	230	99	ND	20	350	260	20	ND	ND ND	ND	ND ND	ND	ND	52.0	67.0	140	ND ND	61	**2400	ND	71	323
11 77-14	iluotette	INO	200	∠50	230	33	טאו	20	330	200	20	שוו	רואר	טאו	טאו	טאו	שמו	JZ.U	07.0	140	שאו	Οí	Z4UU	טאו	7.1	3 2 3

Appendix D

Jun-06 210 11.0 8.8 110 91 15.0 220 4300 NS	Sep-06 230 20.0 12 150 100 61.3	250 ND 260 310 200	Mar-07 260 ND ND 83 97	Jun-07 250 30 ND 160	**3000 **1400 ND	Dec-07 120 ND	Mar-08	cleanup goal
210 11.0 8.8 110 91 15.0 220 4300	230 20.0 12 150 100	250 ND 260 310	260 ND ND 83	250 30 ND	**3000 **1400	120		
11.0 8.8 110 91 15.0 220 4300	20.0 12 150 100 61.3	ND 260 310	ND ND 83	30 ND	**1400		200	12
8.8 110 91 15.0 220 4300	12 150 100 61.3	260 310	ND 83	ND		ND		18
110 91 15.0 220 4300	150 100 61.3	310	83	_	ND	.,_	29	130
91 15.0 220 4300	100 61.3			160	_	ND	22	130
15.0 220 4300	61.3	200	97		**4300	36	170	*
220 4300				120	**4200	60	80	*
220 4300		400.0	0	04.07	0		20	0.000
4300		120.0 520	0 ND	84.07 ND	0 ND	5.1 ND	20 ND	0.003 2,630
	640 4800	4900	11000	3900	1700	2600	3900	2,03U *
	NS	NS	NS	NS	NS	NS	NS	*
NS	NS	NS	NS	NS	NS	NS	NS	*
ND	ND	ND	ND	ND	ND	ND	ND	50
ND	ND	ND	ND	ND	ND	ND	ND	*100
ND	ND	ND	ND	ND	ND	ND	ND	1
ND	ND	ND	ND	ND	ND	ND	1.1	*
ND	ND	ND	ND	ND	ND	ND	3.4	*
ND	ND	ND	ND	ND	ND	ND	ND	260
								130
								1,310 323
								18
		-		_		+		130
ND	ND	ND	ND	ND	ND	ND	ND	130
ND	ND	ND	ND	ND	ND	ND	ND	0.003
ND	ND	ND	ND	ND	ND	ND	1.3	*
ND	ND	ND	ND	ND	ND	ND	ND	*
					_			*
								0.1
								2,630 *100
								100
			-					*
ND	ND	ND	ND		ND	ND	ND	*
ND	ND	ND	ND	ND	ND	ND	ND	260
ND	ND	ND	ND	ND	ND	ND	ND	130
ND	ND	ND	ND	ND	ND	ND	ND	PAH
ND	ND	ND	ND	ND	ND	ND	ND	323
ND	ND	ND	ND	ND	ND	ND	ND	18
					_			130
טא	טא	טאו	טא	טא	ND	ND	טא	130
ND	ND	ND	ND	ND	ND	ND	ND	0.003
		-			-			*
ND	ND	ND	ND	ND	ND	ND	ND	*
ND	ND	ND	ND	ND	ND	ND	ND	0.1
ND	ND	ND	ND	ND	ND	ND	ND	*
70	170	220	ND	ND	ND	ND	ND	*100
ND	14	20	ND	ND	ND	ND	ND	50
ND	ND	ND	ND	ND	ND	ND	ND	1
	ND		ND		ND	ND	ND	*
		_						*
				_				260
		-	-					130 1,310
		-			-			PAH
				_				PAH
5.3	6.6	ND	4.7	2.6	ND	18	9	*
7.8	2.1	3.8	2.3	1.5	34	ND	ND	323
	ND	ND ND ND <	ND ND ND ND ND ND	ND ND ND ND ND ND ND<	ND	ND	ND	ND

Appendix D

Summary of Recent Post-Remedial Action Groundwater Data Eastern Site, Gainesville, Florida

																										ROD
WELL																										cleanup
DESIGNATION	PARAMETERS	Jun-02	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Mar-04	Jun-04	Sep-04	Dec-04	Mar-05	Jun-05	Sep-05	Dec-05	Mar-06	Jun-06	Sep-06	Dec-06	Mar-07	Jun-07	Sep-07	Dec-07	Mar-08	goal
ESE-002	Naphthalene	4.3	150	36	1.8	5.6	3	10	65	ND	ND	6.2	ND	ND	ND	3	ND	ND	ND	ND	ND	0.93	ND	ND	ND	18
ESE-002	Phenanthrene	17Y	4.4	82.0	4.7	34.0	7.5	18.0	38.0	0.035	37	24	36	11	15	4	3.5	4.8	ND	ND	ND	ND	10	ND	ND	130
ESE-002	Pvrene	2.7	2.3	4.1	1.8	3.3	4.1	3.1	3.1	ND	ND	4.4	ND	ND	ND	3.6	2.5	2.5	2.7	2.6	1.6	1.5	4.8	11	3.9	130
ESE-002	1- Methylnaphthalene	2.5P	19	21	1.1	3.4	2.3	3.9	30	0.22	ND	4.1	ND	ND	ND	1.6	ND	3.4	ND	7.5	ND	ND	ND	ND	ND	*
ESE-002	2-Methylnaphthalene	23.0	36.0	65.0	5.1	14.0	3.7	8.2	110.0	1.3	6.0	4.0	ND	ND	48.0	15	ND	14	4.7	14	ND	ND	ND	ND	ND	*
	Total Potentially																									
ESE-002	Carcinogenic PAHs	ND	ND	ND	ND	ND	ND	ND	0.091	ND	0.021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.23	0.19	0	0.003
ESE-002	Phenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,630
ESE-002	2,4- Dimethylphenol	ND	ND	ND	12	ND	ND	12	ND	ND	ND	ND	13	ND	ND	22	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
ESE-002	Chromium	58	13	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	10	ND	21	ND	ND	ND	ND	ND	*100
ESE-004	Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
ESE-004	Ethylbenzene	4.3	ND	5.1	ND	2.2	1.3	2.2	1.7	1.6	ND	2.0	1.3	1.8	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	*
ESE-004	Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	130
ESE-004	Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,310
ESE-004	Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	323
ESE-004	Naphthalene	ND	ND	ND	ND	ND	ND	0.38	ND	0.48	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	18
ESE-004	Phenanthrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	130
ESE-004	2,4- Dimethylphenol	ND	ND	22	ND	ND	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	ND	ND	ND	*
ESE-004	Phenol	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,630
ESE-004	Chromium	15	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	10	ND	ND	ND	ND	ND	*100
ESE-007	Benzene	ND	12	12	2.7	2.6	1.8	1.8	1.2	8.0	ND	ND	2.3	3.1	1.8	ND	1.1	4.7	3	11	9.5	20	14	12	9.3	1
ESE-007	Toluene	380	320	300	9.5	26	6.8	3.8	3.3	78	62	25	22	33	7.8	43	11	26	2.2	190	210	290	190	160	120	*
ESE-007	Ethylbenzene	37	53	47	42	8.2	6.3	4.9	4	24	ND	10	7.7	11	6	11	3.9	13	1.5	29	31	56	37	34	31	*
ESE-007	Total Xylenes	ND	40	45	10.4	9.4	5.3	4.9	4	20.7	ND	ND	7.6	10	5.6	10	3.9	14	4.5	31	30	61	44	39	34	*
ESE-007	Acenaphthene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND	ND	ND(J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260
ESE-007	Acenaphthylene	ND	5.6	7.5	ND	1.5	ND	ND	ND	1.2	1.8	ND	ND	1.3(J)	ND	ND	ND	ND	1.5	ND	ND	ND	ND	ND	ND	130
ESE-007	Anthracene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,310
ESE-007	Fluorene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	323
ESE-007	Naphthalene	7.3	7.4	7.7	2.6	2.2	3.8	2.3	1.5	4.2	3.5	5.2	1.9	2.3	2.3	ND	ND	1.6	1.6	ND	4.5	10	12	6.6	3.7	18
ESE-007	Phenanthrene	ND	ND	ND	ND	ND	ND	ND 0.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.5	ND	ND	ND	130
ESE-007	1-Methylnaphthalene	ND	1.4	1.1	ND	ND	ND	0.58	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.93	2.5	ND	ND	ND	
ESE-007	2-Methylnaphthalene	ND	1.3	1.3	ND	ND	ND	0.54	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND	ND	ND	
FCF 007	Total Potentially	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.000
ESE-007	Carcinogenic PAHs	ND 470	ND 4500	ND 2700	ND	ND 200	ND 50	ND 20	ND	ND 650	ND 1000	ND 200	ND 40	ND 220	ND	ND 400	ND	ND 270	ND 50	ND	ND 2400	ND 1500	ND 2000	ND	ND 200	0.003
ESE-007	Phenol 2.4- Dimethylphenol	470 540	4500 550	3700 580	680 ND	390 80	52 62	28 40	33 41	650 280	1000 210	290 ND	40 35	330 99	130	490 95	230 56	270 140	58 36	1400 330	3400 600	1500 520	2000 680	1400	390 230	2,630
ESE-007 ESE-007	2,4- Dimetnylphenol	NS NS	NS NS	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	15	99 61	64 36	95 67	NS NS	NS NS	NS	NS	NS	NS NS	NS NS	410 NS	NS NS	*
ESE-007	3&4- Methylphenol	NS	NS	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS NS	79	320	170	360	NS NS	NS NS	NS NS	NS	NS NS	NS	NS NS	NS	NS	*
ESE-007	Arsenic	35	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	ND	20	11	ND	ND	ND	ND	50
ESE-007	Chromium	560	1900	180	ND 22	190	1900	1900	87	490	510	240	63	37	ND 24	11	11	110	150	230	ND	ND ND	ND ND	ND ND	ND ND	*100
E3E-00 <i>1</i>	Officialities	000	1000	100		100	1000	1000	0,	400	0.10	240	00	0,	27	''	''	110	100	200	110	110	110	110	110	100

All results are in ug/l (micrograms per liter).

ND = Not detected above the MDL.

NS = Not sampled for indicated compound.

^{* =} No ROD Cleanup Goal for compound. Tested as part of complete scan for tests 8021, 8270 or 8310.

Y = Target compounds were quantified from a secondary dilution due to analyte abundance in the sample.

P = Identification of target analytes using LC methodology is based on retention time. Discretion should be employed during data review and interpretation of results for this target compound.

^{** =} Free-phase product was observed in the groundwater sample collected at ITW-14 during the September 2007 sampling event.

PAH = Included as Total Potentially Carcinogenic PAHs.