Revised Data Summary Report: Results of the Revised
 Supplemental Sampling Plan Additional Data for Risk Assessment

Koppers Inc. Site Gainesville, FL

October 16, 2007

Prepared by
AMEC Earth and Environmental Inc.

Table of Contents

1.0 Background and Project Setting 2
2.0 Current On-Site Soil and Sediment Collection Activities 4
2.1 Evaluation of Historical Soil Data 4
2.2 Selection of Sample Locations and COPCs 5
2.3 Field Sampling and Laboratory Analysis 7
2.3.1 On-Site Soil Sample Collection. 8
2.3.2 Sample Analytical Protocols and Results 10
2.3.3 Quality Assurance/Quality Control 10
3.0 Data Validation 11
3.1 Data Review 11
3.2 Overall Data Useability 14
4.0 Summary of Current Data 14
4.1 Soils 14
4.1.1 Results by Depth 16
4.1.1.1 0 to 0.25 Foot Soils 16
4.1.1.2 $\quad 0.25$ to 0.5 Foot Soils 16
4.1.1.3 0.5 to 2 Foot Soils 17
4.1.1.4 2 to 6 Foot Soils 18
4.2 Sediment 19
5.0 References 22

List of Figures

Figure $1 \quad$ Site Location Map
Figure 2 Soil Arsenic Concentrations
Figure 3 Soil Benzo(a)pyrene Toxic Equivalent Concentrations
Figure 4 Soil Total PAH Concentrations
Figure 5 Soil Pentachlorophenol Concentrations
Figure $6 \quad$ Updated Soil 2,3,7,8-TCDD-TEQ Concentrations
Figure $7 \quad$ Updated Sediment Results

List of Tables

Table 1 Comparison of Analytical Results from Vista and CAS on a Total TEQ Basis
Table 2 Soil Sample Summary
Table 3 Soil Results $0-0.25$ feet
Table 4 Soil Results $0.25-0.5$ feet
Table 5 Soil Results $0.5-2$ feet
Table $6 \quad$ Soil Results 2-6 feet
Table 7 Sediment Sample Summary
Table 8 Sediment Results

Appendix A Data Summary
Appendix B Data Validation Report for Organic and Inorganic Analysis Data Appendix C Data Validation Reports for Reanalysis of PCDD/PCDF Samples by Vista and for Analysis of PCDD/PCDF Samples by CAS

Revised Data Summary Report: Results of the Revised Supplemental Sampling Plan Additional Data for Risk Assessment Koppers Inc. Site
Gainesville, FL

This Revised Data Summary Report (RDSR) documents the results of the soil and sediment data collection activities conducted by Beazer East Inc. (Beazer) during November and December of 2006 at the Koppers Inc. (KI) portion of the Cabot Carbon/Koppers Superfund Site in Gainesville Florida (Site). Following a review of the historical on-Site soil and sediment sampling data and discussions among representatives of Beazer, U.S. Environmental Protection Agency (EPA) Region 4, Florida Department of Environmental Protection (FDEP), and Alachua County, soil and sediment data collection activities were conducted, samples were analyzed, and data validation was initiated. All work was conducted in accordance with the Revised Supplemental Sampling Plan - Additional Data for Risk Assessment, Cabot Carbon/Koppers Superfund Site, Gainesville, Florida (Revised Workplan; Beazer, 2006a), which was submitted to EPA on September 25, 2006, with revisions and additions outlined in Beazer's October 31, 2006 follow-up letter (Beazer, 2006b). This document is a revision of the March 2007 Data Summary Report (DSR) submitted by AMEC Earth and Environmental Inc. (AMEC, 2007a) and incorporates changes resulting from a reanalysis (AMEC, 2007b) of certain PCDD/F samples that were potentially affected by quantitation bias.

This RDSR provides background on the Site, an overview of the historical soil and sediment investigation activities there, a discussion of data needs for risk assessment, and an overview of the implementation of the Sampling Plan. In addition, it provides a discussion and rationale for any points of departure from the Sampling Plan and an overview of the findings of the data validation process. Finally, it provides a general summary of the results of the sampling. The results presented in the RDSR are intended to provide a basis for discussions concerning the best approach to be taken in evaluating potential risks at the Site and ultimately making risk management decisions.

1.0 BACKGROUND AND PROJECT SETTING

The Site encompasses approximately 90 acres of land within the northern part of the city limits of Gainesville, Florida. It is zoned industrial and is the only parcel of land that is operating as industrial in the area. The next closest area zoned industrial is the Gainesville Industrial Area, which is located several miles to the north. The former Cabot Carbon property, located east of the Site, the marshy area to the north of the old Cabot Carbon facility, and the property to the east and south of the Site are zoned commercial. The land to the west and northwest of the Site is zoned single family and multiple family residential. Scattered small businesses and a trailer park are located to the north/northwest of the Site. Commercial facilities border the Site
to the south and east along NW 23rd Avenue and north Main Street. To the northeast, the adjacent land is primarily undeveloped and heavily vegetated (Figure 1).

The Site is characterized by relatively featureless terrain that slopes generally toward the northnortheast. Low swampy areas are prevalent in an undeveloped, heavily vegetated area to the northeast of the Site. A drainage ditch bisects the Site from southwest to northeast, carrying surface run-off toward Springstead Creek, located approximately 750 feet to the north.

The central and northern portions of the Site are primarily used for wood storage. The Site is serviced by a series of railroad sidings that enter the northeast corner. A main rail line of the Seaboard Coastline Railroad forms the eastern boundary of the Site.

The former and current processing facilities are located within the southeastern corner of the Site. This area, referenced herein as the Process Area, includes the former processing buildings, former tank containment and cooling pond areas, former drip track areas, and the currently operating process buildings and drip tracks. The central and northern portions of the Site have been cleared and graded and are now used as storage areas. These portions of the Site also contain a network of railroad tracks, gravel access roads, and a wood chipping area.

The former North and South Lagoons were used to manage wastewater generated by the treatment process. Based on aerial photographs, it appears that the North Lagoon operated from 1956 until the 1970s, and the South Lagoon operated from 1943 (or earlier) through 1975 or 1976. Both lagoons have been closed, covered and graded and the areas are currently used for storage of utility poles.

Wood treatment activities are ongoing on the Site and KI is currently treating wood with CCA in a smaller process building and separate drip tracks. These are located to the west of the former process building and drip tracks.

Over time, shallow soil fill, including crushed limestone, has been placed over much of the Site and continued surface maintenance is ongoing as part of routine site-related activities. This maintenance includes the addition of soil fill and crushed limestone and surface grading as necessary.

For the foreseeable future, it is expected that land uses in the area will continue to be the same as current uses. The Site is expected to remain zoned for industrial use and adjacent lands are expected to remain mixed residential and commercial.

2.0 CURRENT ON-SITE SOIL AND SEDIMENT COLLECTION ACTIVITIES

In September of 2005, Beazer asked AMEC Earth and Environmental (AMEC) to review the existing soil and sediment data to determine whether the existing data were adequate to provide a robust basis for conducting a human health risk assessment (HHRA) for the Site. This review included evaluating the existing soil and sediment data to identify whether: 1) historical sampling efforts were complete in terms of the areas sampled and the constituents analyzed; 2) the depths of sampling were representative of the depths that will need to be evaluated in the HHRA for the Site; and, 3) the quality of the data, in terms of analytical methods and detection limits used, was adequate.

2.1 Evaluation of Historical Soil Data

AMEC compiled all of the existing historical surface and subsurface soil data that had been collected from the Site and evaluated it to determine whether constituents of potential concern (COPCs) had been adequately characterized and delineated vertically and horizontally. In addition, AMEC considered whether the data that had been collected to date were adequate to characterize potential exposures that might occur at the Site. The review reached the conclusions summarized below.

- Previous sampling efforts provided data for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) metals, and polychlorinated dioxins and furans (PCDD/Fs). However, in some areas and depth increments, the numbers of samples that included analysis of this full suite of constituents were limited.
- The majority of previously collected soils data were from source areas with limited sampling in other areas of the Site. As a result, the historical data did not provide a strong basis for estimating soil concentrations for COPCs Site-wide. The review concluded that collecting additional data from portions of the Site with limited historical characterization would improve the estimates of Site-wide constituent concentrations.
- The number of true surface soil samples (i.e., samples that include ground surface and are not deeper than one foot) that had been collected was limited and most of the available "surface" soil samples included the 0 to 2 foot depth horizon. Because exposures to constituents in surface soils will likely occur within the top six inches of soil (or shallower), the review recommended collecting additional surface soil samples that include ground surface and have a total depth of one foot or less.
- Many of the historical samples were collected prior to 1990 and thus were 15 or more years old. Given the passage of time and that the Site remains an active industrial facility, constituent concentrations may have changed due to degradation, transport, and placement of cover. The review concluded that the older surface soil sampling data might not be representative of current Site conditions and recommended that additional sampling occur to identify current concentrations of COPCs in Site soils.
- Available data for PCDD/F concentrations below 1 part per billion (ppb) were limited. During previous sampling events, field immunoassay screening was used to determine
whether PCDD/F concentrations in certain locations exceeded EPA's previously established remedial goal of 1 ppb . If they did not, the samples were not sent to the laboratory for analysis. As a result, there were no quantitative results available for those samples that the immunoassays indicated had concentrations less than 1 ppb . The review recommended collecting additional PCDD/F data.
- Finally, limited sampling had been conducted of the sediments found in the drainage ditch that traverses the Site. To better understand the concentrations of constituents in drainage ditch sediments, the review recommended additional sampling of drainage ditch sediments.

To address these data gaps, AMEC recommended that additional soil and sediment sampling be conducted at the Site. The goals of this sampling effort were the following:

- Better characterize the COPC concentrations outside of the source areas and along Site boundaries;
- Collect additional surface soil samples to evaluate potential worker exposures;
- Provide more data on the spatial distribution of PCDD/Fs throughout the Site;
- Characterize current COPC concentrations in the sediments of the on-site drainage ditch;
- Confirm previous subsurface soil sampling results;
- Provide adequate data for the HHRA and spatial averaging; and
- Provide more information for evaluation of the potential for off-Site transport of COPCs.

2.2 Selection of Sample Locations and COPCs

In February of 2006, Beazer submitted a Sampling Workplan to EPA for approval (Beazer, 2006c). That plan proposed additional soil and sediment sampling. The Sampling Workplan proposed that soil samples be collected at the nodes of a 300 -ft by 300 -foot square grid over the entire Site. The sampling described in the plan was designed to ensure that the resulting data set would provide an adequate representation of surface soil conditions throughout the Site. In addition more focused sampling in some portions of the Site was also judged to be necessary to provide additional delineation (both horizontal and vertical) of constituents in the vicinity of potential or suspected source areas as well as portions of the Site boundary.

Initially, it was proposed that surface soil samples be collected from the 0 to 0.5 foot depth increment for use in evaluating potential risks associated with contact with COPCs in surface soils. It was also proposed that subsurface soil samples be collected from the 0.5 to 6 foot depth increment for use in evaluating potential risks associated with contact with COPCs in subsurface soils. A maximum sample depth of 6 feet was selected because this was the likely
maximum depth of any potential future subsurface work at the site (e.g., utility installation and/or repair).

Four sediment sample locations were proposed to characterize constituent concentrations in the drainage ditch. Sediment samples were proposed for the locations where the ditch crossed the northern and southern boundaries of the Site and two additional sample locations were proposed for central portions of the ditch.

Constituents evaluated in previous sampling efforts varied, with some samples limited to PAHs and other samples analyzed for a full suite of constituents. Previous investigations and risk assessment activities had indicated that potential risks at the Site were largely attributable to the presence of PAHs, pentachlorophenol, arsenic and PCDD/Fs. However, given that previous investigations did not consistently evaluate all COPCs, and that some samples had elevated or missing detection limits, the Sampling Workplan proposed analyzing soil and sediment samples for a full suite of COPCs including VOCs, SVOCs, and selected metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver). In addition, the Sampling Workplan proposed analyzing a subset of samples for $2,3,7,8$-substituted PCDD/Fs.

In August of 2006, Beazer received comments from EPA, FDEP, and Alachua County concerning the February 2006 Sampling Workplan. In those comments, the Agencies made the following requests:

- Collect samples from the 0 to 0.25 foot soil interval in selected locations and analyze for metals, PCDD/Fs, VOCs and SVOCs.
- Summarize the historical data as an appendix to the sampling plan;
- Collect soil samples from a few additional locations;
- Instead of collecting composite subsurface samples in the interval between 6 inches and 6 feet, collect samples in the interval between 6 inches and 2 feet.
- Collect sediment samples from additional locations in the drainage ditch;
- Conduct background sediment sampling;
- Add 1,1-biphenyl to the SVOC analysis and copper, antimony and vanadium to the metals analysis;
- Modify detection limits for phenolic compounds to ensure that they are below soil screening target levels established by FDEP.

In response to these comments, Beazer submitted a Revised Workplan, which incorporated most, but not all of the requested changes (Beazer, 2006a). Specifically, Beazer agreed to make the following modifications to the Sampling Workplan:

- Collect samples from the 0 to 0.25 foot depth increment at all surface soil sampling locations proposed in the Workplan, rather than a subset of sample locations;
- Summarize soil sampling data in an Appendix to the Workplan;
- Collect subsurface samples that are composites of the depth interval between 6 inches and 2 feet.
- Collect subsurface samples that are composites of the depth interval between 2 feet and 6 feet.
- Collect sediment samples from three additional locations along the drainage ditch.
- Collect one additional sediment sample immediately up-gradient from the Site, south of the southern boundary of the site. In addition, collect one sediment sample at the northern boundary of the Site.

Subsequent to the submission of the Revised Workplan, representatives of Beazer, AMEC, GeoTrans, FDEP, EPA, and Alachua County met in Atlanta to discuss the historical data, the Revised Workplan, and the proposed risk assessment approach. During that meeting, agreement was reached about additional modifications to the Revised Workplan. These modifications included the following:

- Eliminate surface water sampling from the drainage ditch;
- Collect deeper (0.5 to 2 foot) sediment samples at two locations along the drainage ditch, as long as the water table does not interfere with this collection;
- Add an additional surface soil sampling location between SS68 and SS89 and evaluate it for all analytes;
- Add PCDD/F sampling locations along the southern and eastern boundaries of the Site and move samples along the western boundary of the Site so that they are more evenly distributed.

In addition, in re-reviewing the historical data for the Site, Beazer proposed to collect some additional, focused samples in certain areas, particularly in the source areas, to provide a more robust characterization of those areas. All of these additional modifications were summarized in an October 31, 2006 letter from Beazer to EPA (Beazer, 2006b).

2.3 Field Sampling and Laboratory Analysis

Implementation of the Revised Workplan was initiated November 29, 2006 and completed on December 5, 2006. A summary of the sample collection and the analytical protocols used is provided in the following sections, as are the analytical results. More specific information about
sampling and analytical protocols can be found in the Revised Workplan and its Quality Assurance Project Plan (QAPP) (Beazer, 2006a).

2.3.1 On-Site Soil Sample Collection

Prior to initiating field activities, sample locations were marked by a field geologist and the locations were reviewed with on-site personnel to determine whether any of these locations were associated with the presence of underground utilities. After consideration of Site-specific factors, four sampling locations (described below) needed to be re-located.

- Soil sample SS33 had to be relocated approximately 130 feet to the southwest because the original sample location was under a pile of wood chips (bark pile) that was approximately ten feet high;
- Soil sample SS46 had to be relocated approximately 20 feet to the northeast because the original sample location was positioned under process equipment;
- Soil sample SS77 had to be relocated approximately 14 feet to the west because the original sample location was positioned beneath process equipment; and,
- Sediment sample SD09 had to be relocated approximately 40 feet to the south to remain within the chain link boundary fence. It was collected just inside the fence on the Koppers property.

At locations where only shallow soil samples (i.e., 0 to 0.25 foot and 0.25 foot to 0.5 foot bgs) were collected, samples were collected using a stainless steel hand trowel. The hand trowel was used to excavate a hole to a depth of 0.25 ft bgs. The hole was made of sufficient diameter to collect the required soil volume. Soils were carefully removed from the excavation and placed into a stainless steel bowl. Upon completion, the field geologist excavated the same hole to a depth of 0.5 feet bgs and placed those soils in a second stainless steel bowl. The soil was screened in the field for total VOC using a photo ionization detector (PID).

The work plan indicated that the deeper samples (0.5 to 6 feet) would be collected with a Geoprobe or equivalent direct push rig. However, the drilling company that was used had a safety protocol that required that all borehole locations be cleared of subsurface utilities to a depth of five feet below the ground surface using a hand auger. Since the deeper samples were to be collected only to a depth of six feet below the ground surface, it did not make sense to use a drill rig to complete the remaining one foot of drilling. Thus the deeper samples collected at each location were collected using the hand auger.

After screening a sample for the presence of VOCs with a PID, the geologist classified each soil interval in accordance with the Unified Soil Classification System (USCS). In addition, each sample was evaluated in the field for visual evidence of impacts (e.g., staining). The PID reading for each boring was recorded in a field notebook and on a soil boring log form for each
location. The PID was calibrated each day according to manufacturer specifications and the results were recorded in the field log book. Sample locations were identified and recorded using a hand-held global positioning system (GPS) meter.

Sediment samples were collected as composite samples. Since there was no water in the ditch, disturbances at one sampling location had no potential to affect the other sampling locations. Thus, the order of the sampling did not begin at the furthest downstream location and proceed to successive upstream locations. Sediment samples were collected by hand using a stainless steel sampling instrument.

In order to reduce the potential for cross-contamination between borings, to the extent possible, sampling locations in areas that appeared to be less affected by elevated constituent concentrations were sampled first. Available Site data and knowledge regarding current and historical site operations were used to make a determination as to which areas were anticipated to have lower constituent concentrations.

Samples for VOC analysis and headspace-screening were collected first, as soon as possible after opening the acetate liner or removing the soil from the ground using the trowel, followed by SVOCs, PCDD/Fs (if required) and metals, in that order. Discrete VOC soil samples were collected using Terra Core samplers. Non-VOC samples from each of the required depth intervals were placed in separate stainless steel sample bowls and homogenized. The samples were then transferred into the proper sample containers and labeled.

Site-specific sample identification numbers were assigned prior to sample collection. Each sample was identified in the field notebook and field sampling form by a unique six digit alphanumeric code, using the following identification scheme.

- Sample Matrix code: The sample matrix code describes the matrix (e.g., "SS" for soil, SD for sediment).
- Location Code: The sample location code followed the sample matrix code and consisted of a two-digit code that indicated the sample location (e.g., SS01, SS85), or a three digit code for sample locations "100" and higher. Locations codes lower than 10 were preceded by a zero (e.g., "01", "02", etc.).
- Depth Code: Soil samples from intervals 0 to 0.25 feet were designated as "A"; those from 0.25 to 0.5 ft were designed as " B ", and those from 0.5 to 2 ft bgs and 2 to 6 ft bgs were designated as "C" and "D", respectively.
- Sample Type: The last letter of the sample identification was (A) for regular samples, (B) for duplicates, (C) for MS/MSD and (D) for equipment blanks.

Once labeled, samples were placed in a cooler with ice. They were then shipped to Columbia Analytical Services (CAS) for laboratory analyses.

Upon completion, each boring was filled with bentonite grout to ground level where there was no existing surface cover (e.g., dirt, landscaping, etc.). In areas where there was existing surface cover, the borings were filled with bentonite grout or bentonite hydrated pellets to 1 foot bgs and the top foot was filled with material similar to the existing cover material (i.e., asphalt where there was asphalt, concrete where there was concrete, etc.).

2.3.2 Sample Analytical Protocols and Results

Sample analysis was conducted as outlined in Table 3 of the Revised Workplan. Sample analysis for VOCs, SVOCs and metals was conducted by the CAS laboratory in Jacksonville, FL. Sample analysis for dioxins/furans was conducted by the CAS laboratory in Houston, TX. Selective ion monitoring (SIM) was undertaken for the analysis of PAHs and pentachlorophenol in order to ensure that detection limits would be as low as possible.

2.3.3 Quality Assurance/Quality Control

As outlined in the QAPP, the overall quality assurance (QA) objective for this program was to provide defensible results to characterize site conditions and to support risk assessment and potential remediation needs for the Site. In order to meet these objectives, procedures for field sampling, laboratory analysis, chain-of-custody and reporting were developed and implemented in order that they would result in data of known and acceptable quality.

Procedures for sampling, laboratory analysis, chain-of-custody and reporting followed the procedures outlined in the QAPP that was developed for the Workplan with the following exceptions.

- According to the QAPP, a trip blank was to be included in the cooler with all VOC samples. The proper protocol for trip blanks is that each day that VOC samples are collected, a trip blank is to be included in the cooler and accompany the VOC samples from collection through shipment to the lab. The typical procedure would be that all the VOC samples collected each day are stored and shipped in one cooler that contains a trip blank. The field team did not consolidate all the VOC samples into one cooler and, therefore, had to include a trip blank in each of the seven coolers shipped on a single day. No other trip blanks were shipped on the other days of sampling.
- Metals were analyzed by 6020 (ICP-MS) and not 6010 as described in the QAPP in order to achieve lower detection limits.
- The laboratory did not utilize the appropriate samples submitted for MS/MSD as there was no indication on the chain-of-custody as to which samples should be used for this purpose. The laboratory did, however, complete MS/MSD analysis for project samples for metals, SVOCs and PAH. Matrix spikes for VOCs were not prepared and analyzed,
due to limited volume. The laboratory also performed an LCS/LCSD in order to show precision.
- No matrix spike samples were prepared or analyzed for dioxins. The laboratory did prepare and analyze LCS/LCSD samples for dioxins to demonstrate precision.

3.0 DATA VALIDATION

Data for the analyses of the soils and sediments for VOCs, SVOCs, and metals were validated in general accordance with EPA National Functional Guidelines for Organic Data Review (EPA, 1999a), EPA National Functional Guidelines for Inorganic Data Review (EPA, 2004), and EPA Region IV Data Validation Standard Operating Procedures for Contract Laboratory Program Routine Analytical Services (EPA, 1999b). The data validation report for these data is provided in Appendix B.

Data for the analyses of the soils for dioxins and furans was validated in general accordance with EPA National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) (EPA, 2005) and the EPA Region IV Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry (EPA, 2002). As discussed in the original Data Summary Report (DSR) (AMEC, 2007a), AMEC's data validation of the PCDD/F analytical data, provided by CAS's Houston laboratory, indicated that many of the PCDD/F results were estimates with indeterminate, but likely low, bias. Based on these concerns, all samples potentially affected by this bias were identified and sent to a second analytical laboratory (Vista Analytical Laboratories) for reanalysis. Once the Vista analyses were complete, the data underwent validation using the same approach applied to the CAS analytical results. The data validation report for these data is provided in Appendix C.

3.1 Data Review

The laboratory-based QA/QC for VOCs, SVOCs and metals analyzed by the CAS laboratory in Jacksonville, FL was generally acceptable, including initial and continuing calibrations, instrument tunes, method blanks and laboratory control samples. Holding times were met for all initial extractions and analyses. A limited number of samples required re-extraction and reanalysis for PAHs by SIM due to significant method blank contamination in their initial analysis, and these re-extractions were performed after holding times were exceeded. Analytical results for acenaphthene, fluorene, phenanthrene and 2-methylnaphthalene were rejected in a small number of these samples.

Matrix interferences were noted to affect the VOC analyses in samples SS077CA, SS100CA, SS100DA, SS100DB, SD006AC and data were rejected for isopropylbenzene, 1,3dichlorobenzene, 1,4-dichlorobenezene, 1,2-dichlorobenzene, 1,2-dibromo-3-chloropropane
and 1,2,4-trichlorobenzene. All VOC analytes were rejected for sample SS073BA, again, due to severe matrix interferences.

For the dioxin and furan analyses conducted by the CAS laboratory in Houston, TX, results for samples with low levels of dioxins and furans (concentrations of 2,3,7,8-TCDD TEQ at approximately $200 \mathrm{ng} / \mathrm{kg}$ or below) are generally acceptable. Instrument tuning, calibrations, and laboratory control sample recoveries met method requirements. However, matrix interferences present in samples with higher concentrations of dioxins and furans (greater than 2,3,7,8-TCDD TEQ of about $200 \mathrm{ng} / \mathrm{kg}$) were not successfully removed during sample preparation and as a result, the apparent recoveries of the internal standards were well above method limits in such samples. For those samples, the laboratory could not provide reliable data on recoveries of hexa-, hepta- and octachlorinated PCDDs or PCDFs. The laboratory subsequently adjusted the results from dilutions of these samples in a manner that AMEC considered likely to introduce low bias to their final reported results.

While it was evident that PCDDs and PCDFs were present in samples in which the laboratory reported concentrations greater than about $200 \mathrm{ng} / \mathrm{kg} 2,3,7,8-\mathrm{TCDD}$ TEQ, the accuracy of the quantitations could not be determined. AMEC evaluated the data for samples affected by these interferences and subsequent laboratory data adjustment and made conservative estimates of the potential bias. The major contributors to the $2,3,7,8-$ TCDD TEQ at this Site are $1,2,3,4,6,7,8-H p C D D$ and OCDD. In most cases, the laboratory assumed that the recoveries of the affected hexa-, hepta-, and octachlorinated internal standards had been near 100 percent. However, in blanks, laboratory control samples, and relatively clean field samples not affected by the interference, recoveries of the HpCDD internal standard were typically 60 percent, while the OCDD internal standard frequently recovered near 20 to 30 percent. As a conservative approach, AMEC recalculated 2,3,7,8-TCDD TEQ for the affected samples using the assumption that the HpCDD recovery could have been as low as 33 percent and that the OCDD recovery could have been as low as 10 percent. Results of this analysis indicated that the laboratory reported results for some of these samples could be underestimated by as much as a factor of 4.

Based on these concerns, AMEC (2007a) recommended that the above described dioxin samples with potential bias due to matrix interference, inadequate cleanup, sample dilution, and inappropriate adjustments of dilution results be re-analyzed for dioxins and furans using smaller
sample volume, additional extract cleanup procedures, and more appropriate data reduction practices. Fifty-five ${ }^{1}$ samples with potential low bias were sent to Vista for reanalysis. In addition, CAS was not able to recover the cleanup standard for sample SS100DA, resulting in invalid data for all non-detected congeners. AMEC sent this sample to Vista for reanalysis to obtain usable data for the sample, not because of potential low bias. Four other samples were sent to Vista as "controls" to confirm the absence of a low bias in other samples. Three of these samples (SS026BA, SS057DA, and SS095BA) had acceptable internal standard recoveries and no data adjustments were made. The fourth control sample (SS100DB) had matrix interferences present with one internal standard recovery outside of limits but no dilution was required.

Once the Vista analyses were complete, the data underwent validation using the same approach applied to the CAS analytical results. The validation documented that Vista had used appropriate cleanup procedures to remove interferences. With one exception, all recoveries of internal standards were within method control limits. AMEC did not identify any reason to expect a consistent bias (high or low) in the results reported by Vista and determined that the results were valid as reported with minimal qualifications.

TEQ concentrations were calculated based on reported CAS and Vista analytical results, using the WHO (van den Berg et al., 2006) toxic equivalency factors. Table 1 presents the comparison of these results. If there was no bias, one would expect that the sample results would vary between the two laboratories, that roughly half of the sample results from CAS would be higher and half of the results lower than the results reported by Vista. However, this was not the case. TEQ concentrations reported by CAS were higher than those reported by Vista for only four of the 55 samples (7.3\%) with potential low bias. (Table 1 provides a comparison of sample results by presenting a ratio of the Vista concentrations and the CAS concentrations for the same samples. Ratios that are greater than 1 indicate that the CAS results were lower than the Vista results.) This comparison substantiated the concern that some of the CAS analytical

[^0]results had a consistent low bias and, thus, underestimated PCDD/F concentrations in soil and sediment samples by about a factor of two. While results for the control samples differed between the two laboratories, no consistent bias was expected nor was such a bias observed.

3.2 Overall Data Useability

As specified in the QAPP, 10 percent of the samples underwent full Tier III validation for all analyses while the remaining samples underwent Tier II validation. The data obtained from the CAS laboratory in Jacksonville are generally usable and of good quality. While VOC analytes were rejected in one sample, due to severe matrix interferences, no data were rejected for metals or for SVOCs, except PAHs as described above. The overall data set is approximately 98 percent complete.

Based on the comparison described above, AMEC has concluded that the PCDD/F analytical results reported by CAS, for those samples that required dilution, are not reliable predictors of PCDD/F concentrations in those locations at the Site and that the analytical data provided by Vista provide a more reliable representation of Site soil conditions. As a result, AMEC has updated the soil and sediment sampling database by replacing the PCDD/F results reported by CAS with those reported by Vista for those sampling locations for which analytical data were provided by both Vista and CAS. Using these updated data, AMEC has revised the report tables and Appendix A, such that the data now provide a more reliable basis for any Site-related risk assessments or remedial activities.

4.0 SUMMARY OF CURRENT DATA

All of the analytical results are presented in Appendix A, which reports the analytical results for all non-PCDD/F constituents that were reported in the March 2007 DSR, and updates the PCDD/F results from CAS with the new results reported by Vista, for those samples for which reanalysis was completed. As indicated earlier, previous investigations have indicated that the key constituents, from a risk assessment point of view, are arsenic, PAHs, pentachlorophenol, and dioxins/furans. This sampling effort has indicated that this is still true as discussed below.

4.1 Soils

Surface soil samples were collected from two depth increments (0 to 0.25 foot and 0.25 to 0.5 foot depth increments) at a total of 95 locations throughout the Site. Forty-eight of those samples were collected from the nodes of the 300 -foot by 300 -foot grid. The remaining 47 locations were selected to provide more focused sampling in areas requiring additional characterization. All of these surface soil samples were analyzed for VOCs, SVOCs and metals.

Soil from 40 surface soil locations was also analyzed for PCDD/Fs. Twenty-eight of these samples were collected from grid nodes. The remaining 22 samples were focused on the
perimeter of the Site, in areas that had not previously been sampled for PCDD/Fs, and within and adjacent to areas suspected of having elevated concentrations of other COPCs.

Subsurface soil samples (0.5 to 2 foot and 2 to 6 foot) were collected from 47 of the locations from which surface soil samples were collected. Twenty-five of those samples were collected from nodes of the grid; the remaining 22 samples were more focused soil samples collected primarily within known source areas. All of these surface soil samples were analyzed for VOCs, SVOCs and metals.

A subset of 30 subsurface locations was analyzed for PCDD/Fs. Nineteen of those samples were collected from nodes of the sampling grid. The remaining 11 samples were focused primarily within and adjacent to areas suspected of having elevated concentrations of other COPCs.

Table 2 provides a summary of the constituents that were detected in on-Site soils along with the numbers of detections, minimum concentrations and maximum concentrations. As an initial screen, maximum concentrations for each constituent were compared with the industrial soil screening concentration target levels (SCTLs) developed by FDEP (where available) and with the EPA Region IX commercial soil preliminary remediation goals (PRGs) when SCTLs were not available. This comparison indicated that most of the constituents detected had maximum concentrations that were below the screening level SCTL/PRG. For a limited number of constituents, the maximum values exceeded their SCTLs. These included the key constituents listed above (arsenic, PAHs, pentachlorophenol, and dioxins/furans), chromium, lead and bis(2chloroethyl)ether. There were no SCTLs or PRGs available for two of the constituents analyzed that had detectable results (4-bromophenyl phenyl ether and 4-chlorophenyl phenyl ether). However, each of the constituents was only detected in one out of 334 samples analyzed and thus these are not likely to be COPCs in the risk assessment.

It should be noted that both the SCTLs and the PRGs are highly conservative screening tools due to the conservative assumptions that are used to derive them. Consequently they may not be representative of the types of potential exposures that are occurring at the Site. These Sitespecific exposures will need to be evaluated in the human health risk assessment that is to be conducted for the Site.

The maximum detected concentration of $3,700 \mathrm{mg} / \mathrm{kg}$ for chromium was in the top 3 inches of soil at sample location SS95, which is located in the South Lagoon area. This concentration exceeds FDEP's SCTL of $470 \mathrm{mg} / \mathrm{kg}$ for industrial soil. However, more than 95 percent of the analytical results for chromium, at all depths, were below the SCTL of $470 \mathrm{mg} / \mathrm{kg}$. Thus chromium is not likely to be an important contributor to Site risks.

The maximum detected concentration of $2,200 \mathrm{mg} / \mathrm{kg}$ for lead was located in the top 3 inches of soil at SS32 which is located northwest of the North Lagoon area. This exceeds FDEP's SCTL of $1,400 \mathrm{mg} / \mathrm{kg}$ for industrial soil. However, all other samples at all depths had concentrations that were well below the SCTL for lead. Thus lead is not likely to be an important contributor to overall Site risks.

The maximum detected concentration of bis(2-chloroethyl)ether ($1.3 \mathrm{mg} / \mathrm{kg}$) exceeded the industrial SCTL of $0.5 \mathrm{mg} / \mathrm{kg}$. However, this constituent was detected in only one out of 334 samples collected and was found along the southern boundary of the Site. Thus it does not appear to be Site-related.

4.1.1 Results by Depth

All data for all constituents analyzed in soil samples are provided in Tables 3 through 6. Table 2 provides a summary of the minimum, maximum, and arithmetic mean concentrations of each constituent at each soil depth.

Analytical results for the key constituents at each sampling depth are summarized below. Results are also provided by key constituent in Figures 2 through 6.

4.1.1.1 0 to 0.25 Foot Soils

A total of 95 samples were collected from the 0 to 0.25 foot depth increment. The samples taken from 41 of those locations were analyzed for all constituents. The remaining samples were analyzed for VOCs, SVOCs and metals only. General trends for key constituents are summarized below.

Arsenic

Arsenic has been detected at all of the locations sampled. Concentrations range from 1.3 to $3,600 \mathrm{mg} / \mathrm{kg}$. The highest concentration is detected at location SS95 in the South Lagoon area. The Site-wide arithmetic mean concentration is $126 \mathrm{mg} / \mathrm{kg}$.

BAPTE

PAHs are detectable at all locations sampled. BAPTE concentrations range from 5.2 to 41,597 $\mu \mathrm{g} / \mathrm{kg}$. The highest concentration is located at location SS96, which is just to the west of the South Lagoon area. The Site-wide arithmetic mean concentration is $5,600 \mu \mathrm{~g} / \mathrm{kg}$.

Total PAH

Total PAH concentrations range from 50.48 to $292,400 \mu \mathrm{~g} / \mathrm{kg}$ with the highest concentration located at SS96, which is located just to the west of the South Lagoon area. The Site-wide arithmetic mean concentration of total PAHs is $42,000 \mu \mathrm{~g} / \mathrm{kg}$.

Pentachlorophenol

Pentachlorophenol concentrations range from non-detect to $160,000 \mu \mathrm{~g} / \mathrm{kg}$. The highest concentration was measured in sample SS58, which is located on the western edge of the Process Area. The Site-wide arithmetic mean concentration is $3,300 \mu \mathrm{~g} / \mathrm{kg}$.

PCDD/Fs

One or more PCDD/F congeners was detected at all locations analyzed for these constituents. The TEQ concentrations range from $18 \mathrm{ng} / \mathrm{kg}$ to $78,817 \mathrm{ng} / \mathrm{kg}$. The highest TEQ concentration of PCDD/Fs is also found at SS58, which is located on the western edge of the Process Area. The Site-Wide arithmetic mean concentration in the top 3 inches is $2,926 \mathrm{ng} / \mathrm{kg}$.

4.1.1.2 $\quad 0.25$ to 0.5 Foot Soils

A total of 95 samples were collected from the 0.25 to 0.5 foot depth increment. The samples taken from 41 of those locations were analyzed for all constituents. The remaining samples were analyzed for VOCs, SVOCs and metals only. General trends for key constituents are summarized below.

Arsenic

Arsenic has been detected at all of the locations sampled. Concentrations range from 0.6 to $720 \mathrm{mg} / \mathrm{kg}$. The highest concentration is detected at SS95 which is located in the South Lagoon area. The Site-wide arithmetic mean concentration at this depth is $65 \mathrm{mg} / \mathrm{kg}$.

BAPTE

PAHs are detectable at all locations sampled. BAPTE concentrations range from 0.99 to $138,100 \mu \mathrm{~g} / \mathrm{kg}$. The highest concentration is located at location SS58, which is located on the western edge of the Process Area. The Site-wide arithmetic mean concentration at this depth is $7,500 \mu \mathrm{~g} / \mathrm{kg}$.

Total PAH

Total PAH concentrations range from 11.5 to $2,533,800 \mu \mathrm{~g} / \mathrm{kg}$ with the highest concentration located at SS82, which is located in the Process Area. The Site-wide arithmetic mean concentration of total PAHs at this depth is $84,700 \mu \mathrm{~g} / \mathrm{kg}$.

Pentachlorophenol

Pentachlorophenol concentrations range from non-detect to $630,000 \mu \mathrm{~g} / \mathrm{kg}$. The highest concentration was also measured in sample SS58, which is located on the western edge of the Process Area. The Site-wide arithmetic mean concentration at this depth is $8,300 \mu \mathrm{~g} / \mathrm{kg}$.

PCDD/Fs

One or more PCDD/F congeners was detected at all locations analyzed for these constituents. The TEQ concentrations range from $2.44 \mathrm{ng} / \mathrm{kg}$ to $29,954 \mathrm{ng} / \mathrm{kg}$. The highest concentration is also found at SS58, which is located on the western edge of the Process Area. The Site-wide arithmetic mean TEQ concentration at this depth is $1,942 \mathrm{ng} / \mathrm{kg}$.

4.1.1.3 $\quad 0.5$ to 2 Foot Soils

A total of 47 samples were collected from the 0.5 to 2 foot depth increment. The samples taken from 27 of those locations were analyzed for all constituents. The remaining samples were analyzed for VOCs, SVOCs and metals only. General trends for key constituents are summarized below.

Arsenic

Concentrations of arsenic range from non-detect to $430 \mathrm{mg} / \mathrm{kg}$. The highest concentration is detected at SS95 which is located in the South Lagoon area. The Site-wide arithmetic mean concentration at this depth is $25 \mathrm{mg} / \mathrm{kg}$.

BAPTE

PAHs are detectable at all locations sampled. BAPTE concentrations range from 0.98 to $526,150 \mu \mathrm{~g} / \mathrm{kg}$. The highest concentration is located at location SS101, which is located in the North Lagoon area. The Site-wide arithmetic mean concentration at this depth is $16,000 \mu \mathrm{~g} / \mathrm{kg}$.

Total PAH

Total PAH concentrations range from 13.9 to $11,048,200 \mu \mathrm{~g} / \mathrm{kg}$ with the highest concentration of Total PAH was also located at SS101, which is located in the North Lagoon area. The Site-wide arithmetic mean concentration of total PAHs at this depth is $431,000 \mu \mathrm{~g} / \mathrm{kg}$.

Pentachlorophenol

Pentachlorophenol concentrations range from non-detect to $160,000 \mu \mathrm{~g} / \mathrm{kg}$. The highest concentration was also measured in sample SS101, which is located in the North Lagoon area. The Site-wide arithmetic mean concentration at this depth is $25,000 \mu \mathrm{~g} / \mathrm{kg}$.

PCDD/Fs

One or more PCDD/F congeners was detected at all locations analyzed for these constituents. The TEQ concentrations range from $0.33 \mathrm{ng} / \mathrm{kg}$ to $5,984 \mathrm{ng} / \mathrm{kg}$. The highest concentration is found at SS99, which is located in the Process Area. The Site-wide arithmetic mean TEQ concentration at this depth is $320 \mathrm{ng} / \mathrm{kg}$.

A total of 47 samples were collected from the 2 to 6 foot depth increment. The samples taken from 27 of those locations were analyzed for all constituents. The remaining samples were analyzed for VOCs, SVOCs and metals only. General trends for key constituents are summarized below.

Arsenic

Concentrations of arsenic range from non-detect to $280 \mathrm{mg} / \mathrm{kg}$. The highest concentration is detected at SS95 which is located in the South Lagoon area. The Site-wide arithmetic mean concentration at this depth is $11 \mathrm{mg} / \mathrm{kg}$.

BAPTE

PAHs are detectable at all locations sampled. BAPTE concentrations range from 0.99 to $589,260 \mu \mathrm{~g} / \mathrm{kg}$. The highest concentration is located at location SS101, which is located in the North Lagoon area. The Site-wide arithmetic mean concentration at this depth is $22,000 \mu \mathrm{~g} / \mathrm{kg}$.

Total PAH

Total PAH concentrations range from 11.74 to $12,359,100 \mu \mathrm{~g} / \mathrm{kg}$ with the highest concentration also located at SS101, which is located in the North lagoon area. The Site-wide arithmetic mean concentration of total PAHs at this depth is $607,000 \mu \mathrm{~g} / \mathrm{kg}$.

Pentachlorophenol

Pentachlorophenol concentrations range from non-detect to $360,000 \mu \mathrm{~g} / \mathrm{kg}$. The highest concentration is in sample SS28, which is located just to the northwest of the South Lagoon area. The Site-wide arithmetic mean concentration at this depth is $12,000 \mu \mathrm{~g} / \mathrm{kg}$.

PCDD/Fs

One or more PCDD/F congeners was detected at all locations analyzed for these constituents. The TEQ concentrations range from $0.28 \mathrm{ng} / \mathrm{kg}$ to $568 \mathrm{ng} / \mathrm{kg}$. The highest concentration is found at SS94, which is located on the western edge of the North Lagoon area. The Site-wide arithmetic mean TEQ concentration at this depth is $49 \mathrm{ng} / \mathrm{kg}$.

4.2 Sediment

Surface sediments (0 to 0.5 foot depth) were collected from a total of nine locations along the drainage ditch that traverses the Site. In addition, deeper 0.5 to 2 foot sediment samples were collected from two locations (SD04 and SD06) and analyzed (Figure 7). All sediment samples were analyzed for VOCs, SVOCs, metals and PCDD/Fs. Table 7 provides a summary of the constituents that were analyzed in sediments, along with the numbers of detections, minimum
concentrations and maximum concentrations. All data for all constituents analyzed in sediment samples are provided in Table 8.

Total PAH

Total PAH concentrations in surficial sediments ranged from 3,759 to $124,049 \mu \mathrm{~g} / \mathrm{kg}$. The maximum concentration was measured in SD02, which is located approximately 100 feet north of the southern point of entry into the Site. The arithmetic mean total PAH concentration for all surficial sediment samples was $51,000 \mu \mathrm{~g} / \mathrm{kg}$.

The two deeper sediment samples had concentrations of 60,290 and 7,165 $\mu \mathrm{g} / \mathrm{kg}$. These were located at sample locations SD04 and SD06, respectively.

BAPTE

BAPTE concentrations in surficial sediments ranged from 548 to $18,682 \mu \mathrm{~g} / \mathrm{kg}$. The maximum concentration was also measured at sampling location SD02. The arithmetic mean BAPTE concentration for all surficial sediment samples was $7,300 \mu \mathrm{~g} / \mathrm{kg}$.

The two deeper sediment samples had concentrations of 8,662 and $1,031 \mu \mathrm{~g} / \mathrm{kg}$. These were located at sample locations SD04 and SD06, respectively.

Arsenic

Arsenic concentrations in surficial sediments ranged from 1.7 to $390 \mathrm{mg} / \mathrm{kg}$. The maximum concentration was measured in SD05, which is located just southeast of the North Lagoon area. The arithmetic mean arsenic concentration for all surficial sediment samples was $124 \mathrm{mg} / \mathrm{kg}$.

The two deeper sediment samples had concentrations of 270 and $52 \mathrm{mg} / \mathrm{kg}$. These were located at sample locations SD04 and SD06, respectively.

PCDD/Fs

TEQ concentrations in surficial sediments ranged from 54 to $2,891 \mathrm{ng} / \mathrm{kg}$. The maximum concentration was measured in SD06, which is located just to the east of the North Lagoon area. The arithmetic mean TEQ concentration for all surficial sediment samples was $992 \mathrm{ng} / \mathrm{kg}$.

The two deeper sediment samples had TEQ concentrations of 4,602 and $379 \mathrm{ng} / \mathrm{kg}$. These were located at sample locations SD04 and SD06, respectively.

Pentachlorophenol

Pentachlorophenol concentrations in surficial sediments ranged from non-detect to $1,800 \mu \mathrm{~g} / \mathrm{kg}$. The maximum concentration was also measured in SD06, which is located just to the east of the North Lagoon area. The arithmetic mean pentachlorophenol concentration for all surficial sediment samples was $860 \mathrm{mg} / \mathrm{kg}$.

The two deeper sediment samples had concentrations of 1,800 and $200 \mu \mathrm{~g} / \mathrm{kg}$. These were located at sample locations SD04 and SD06, respectively.

5.0 REFERENCES

AMEC. 2007a. Data Summary Report: Results of the Revised Supplemental Sampling Plan Additional Data for Risk Assessment. Prepared by AMEC Earth \& Environmental, Inc. Portland, ME. March.

AMEC. 2007b. Data Summary Report Addendum: Results of the Revised Supplemental Sampling Plan - Additional Data for Risk Assessment. Prepared by AMEC Earth \& Environmental, Inc. Portland, ME. August.

Beazer. 2006a. Revised Supplemental Sampling Plan - Additional Data for Risk Assessment, Cabot Carbon/Koppers Superfund Site, Gainesville, Florida. Prepared by AMEC Earth \& Environmental, Westford, MA. September 25.

Beazer. 2006b. Letter to Amy McLaughlin, EPA Region 4 from Michael Slenska, re: Follow-up to October 4, 2006 Meeting. October 31.

Beazer. 2006c. Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment. Prepared by AMEC Earth \& Environmental, Westford, MA. February.

USEPA. 1999a. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/008. October

USEPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540-R-04-004. October

USEPA. 1999. Data Validation Standard Operating Procedures for Contract Laboratory Program Routine Analytical Services. Region IV. July.

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

Van den Berg, M., L.S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, H. Fiedler, H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher, J. Tuomisto, M. Tysklind, N. Walker, and R.E. Peterson. 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences 93(2):223-241.

Figures

Figure 1

Site Location Map

Beazer East, Inc

Pittsburgh, Pennsylvania Koppers Inc. Facility Gainesville, Florida

Earth \& Environmental, Inc

Tables

Table 1. Comparison of Analytical Results from Vista and CAS on a Total TEQ Basis Koppers Inc. Site, Gainesville, FL

		Total TEQ		
Sample ID	Units	CAS	VISTA	Vista/CAS Ratio
Control Samples - Low levels, no internal standard anomalies				
SS026BA	ng/kg	117.4	78.3	0.7
SS057DA	ng/kg	0.7	2.6	3.7
SS095BA	ng/kg	279.6	362.8	1.3
SS100DB	ng/kg	21.3	50.2	2.4
Apparent Sample Difference				
SS024CA	\|ng/kg	389.6	4.3	-
Reanalysis due to CAS failure to recover cleanup standard				
SS100DA	ng/kg	11.5	25.2	2.2
Reanalysis for internal standard/matrix interferences/dilution calculations				
SD004AA	ng/kg	203.1	293	1.4
SD004BA	ng/kg	2408.4	4601.6	1.9
SS002AA	ng/kg	79.2	108.0	1.4
SS002AC	ng/kg	54.0	104.6	1.9
SS003BA	ng/kg	91.1	113.5	1.2
SS005BA	ng/kg	499.1	791.9	1.6
SS006AA	ng/kg	554.3	907.2	1.6
SS006BA	ng/kg	488.0	748.1	1.5
SS020AA	ng/kg	698.1	795.2	1.1
SS026AA	ng/kg	1248.6	2503.2	2.0
SS035AA	ng/kg	47.6	80.6	1.7
SS037AA	ng/kg	445.1	632.7	1.4
SS037BA	ng/kg	376.0	572.7	1.5
SS038AA	ng/kg	1769.2	1741.3	1.0
SS038AC	ng/kg	1340.8	1525.2	1.1
SS041BA	ng/kg	531.4	731.5	1.4
SS044AA	ng/kg	1532.2	3406.1	2.2
SS044BA	ng/kg	2073.1	5501.1	2.7
SS046BA	ng/kg	988.0	1494.1	1.5
SS058AA	ng/kg	20845.5	78816.5	3.8
SS058BA	ng/kg	23883.5	29954.3	1.3
SS062AA	ng/kg	509.3	1003.5	2.0
SS066AA	ng/kg	627.9	925.9	1.5
SS068BA	ng/kg	2697.7	7502.0	2.8
SS070AA	ng/kg	2611.9	4020.6	1.5
SS070AB	ng/kg	2154.8	2800.9	1.3
SS070BA	ng/kg	6621.4	9051.8	1.4
SS076AA	ng/kg	610.3	848.0	1.4
SS076BA	ng/kg	785.4	945.7	1.2
SS081AA	ng/kg	223.8	362.8	1.6
SS081BA	ng/kg	199.8	216.1	1.1
SS082AA	ng/kg	272.1	994.8	3.7
SS082BA	ng/kg	1548.1	2891.1	1.9
SS082CA	ng/kg	529.2	1625.9	3.1
SS084BA	ng/kg	379.1	554.9	1.5
SS086AA	ng/kg	1674.2	1991.6	1.2
SS086BA	ng/kg	2517.1	3275.6	1.3
SS086CA	ng/kg	94.3	126.2	1.3
SS088AA	ng/kg	2195.2	3604.3	1.6
SS093AA	ng/kg	837.0	1371.3	1.6
SS093BA	ng/kg	134.8	187.6	1.4
SS094BA	ng/kg	514.0	697.7	1.4
SS094CA	ng/kg	343.0	688.5	2.0
SS094DA	ng/kg	476.4	568.0	1.2
SS095AA	ng/kg	3045.4	5839.5	1.9
SS096AA	ng/kg	4253.1	7160.8	1.7
SS096CA	ng/kg	603.9	242.9	0.4
SS099BA	ng/kg	5332.7	7257.4	1.4
SS099CA	ng/kg	2768.6	5984.1	2.2
SS100AA	ng/kg	366.1	2108.2	5.8
SS100BA	ng/kg	2780.0	2333.6	0.8
SS100CA	ng/kg	179.4	141.0	0.8
SS101AA	ng/kg	5707.1	4893.3	0.9
SS101BA	ng/kg	3448.9	4397.2	1.3
SS101CA	ng/kg	290.1	914.9	3.2

Table 2. Soil Sample Summary
Koppers Inc. Site, Gainesville, FL

Lab Method	Compound	Number of Samples	Number of Detects	Minimum Detection	Maximum Detection	Units	Location of Maximum Detection	Minimum Reporting Limit	Maximum Reporting Limit
SVOC (SIM)	2-METHYLNAPHTHALENE	321	211	1.7	700000	ug/kg	SS101DA	1.6	81000
	ACENAPHTHENE	321	130	3	910000	ug/kg	SS101DA	2.8	150000
	ACENAPHTHYLENE	321	290	2.8	18000	ug/kg	SS058BA	2.7	3300
	ANTHRACENE	321	310	0.74	1400000	ug/kg	SS101CA	0.63	3400
	BENZO(A)ANTHRACENE	321	312	0.73	930000	ug/kg	SS101DA	0.52	2800
	BENZO(A)PYRENE	321	307	2	400000	ug/kg	SS101DA	1.2	6200
	BENZO(B)FLUORANTHENE	321	312	1	650000	ug/kg	SS101DA	0.83	4500
	BENZO(G,H,I)PERYLENE	321	310	0.99	63000	ug/kg	SS058BA	0.67	830
	BENZO(K)FLUORANTHENE	321	311	0.78	190000	ug/kg	SS058BA	0.67	3700
	CHRYSENE	321	315	0.74	790000	ug/kg	SS101DA	0.5	2700
	DIBENZO(A,H)ANTHRACENE	321	309	0.57	26000	ug/kg	SS058BA	0.53	650
	FLUORANTHENE	321	312	1.5	1200000	ug/kg	SS101DA	0.61	32000
	FLUORENE	321	192	1.9	900000	ug/kg	SS101DA	1.6	81000
	INDENO(1,2,3-CD)PYRENE	321	310	1	220000	ug/kg	SS101DA	0.9	4700
	NAPHTHALENE	321	225	1.1	1200000	ug/kg	SS101DA	0.53	28000
	PENTACHLOROPHENOL	321	272	1.1	630000	ug/kg	SS058BA	0.72	3800
	PHENANTHRENE	321	276	3.6	2500000	ug/kg	SS101DA	3.4	180000
	PYRENE	321	316	0.57	810000	ug/kg	SS101DA	0.54	28000
Dioxin	1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	151	152	0.898	522000	ng/kg	SS058AA	0.028	522000
	1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	151	152	12.833	3240000	ng/kg	SS058AA	0.046	3240000
	1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	143	152	0.179	45300	ng/kg	SS058AA	0.041	45300
	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	141	152	0.171	15700	ng/kg	SS058AA	0.015	15700
	1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	146	152	0.143	24400	ng/kg	SS058AA	0.017	24400
	1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	136	152	0.117	10200	ng/kg	SS058AA	0.018	10200
	1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	150	152	0.385	105000	ng/kg	SS058AA	0.018	105000
	1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	84	152	0.096	4250	ng/kg	SS058AA	0.016	4250
	1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	147	152	0.242	49500	ng/kg	SS058AA	0.018	49500
	1,2,3,7,8-PENTACHLORODIBENZOFURAN	121	152	0.037	1430	ng/kg	SS058AA	0.015	1430
	1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	140	152	0.134	6350	ng/kg	SS058AA	0.015	6350
	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	135	152	0.129	21000	ng/kg	SS058AA	0.017	21000
	2,3,4,7,8-PENTACHLORODIBENZOFURAN	126	152	0.135	3300	ng/kg	SS058AA	0.011	3300
	2,3,7,8-TETRACHLORODIBENZOFURAN	71	152	0.427	266	ng/kg	SS058AA	0.012	266
	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	74	152	0.238	291	ng/kg	SS058AA	0.009	291
	OCTACHLORODIBENZOFURAN	152	152	2.716	2460000	ng/kg	SS058AA	0.044	2460000
	OCTACHLORODIBENZO-P-DIOXIN	152	152	43.117	31000000	ng/kg	SS058AA	0.057	31000000
	TOTAL HEPTACHLORINATED DIBENZOFURANS	152	152	0.898	2420000	ng/kg	SS058AA	0.028	2420000
	TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	152	152	16.054	7220000	ng/kg	SS058AA	0.046	7220000
	TOTAL HEXACHLORINATED DIBENZOFURANS	152	152	1.018	558000	ng/kg	SS058AA	0.015	558000
	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	152	152	0.741	546000	ng/kg	SS058AA	0.017	546000
	TOTAL PENTACHLORINATED DIBENZOFURANS	152	152	0.174	48400	ng/kg	SS058AA	0.011	48400
	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	148	152	0.295	24300	ng/kg	SS058AA	0.015	24300
	TOTAL TETRACHLORINATED DIBENZOFURANS	137	152	0.117	5510	ng/kg	SS058AA	0.012	5510
	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	127	152	0.078	1890	ng/kg	SS058AA	0.009	1890

Table 2. Soil Sample Summary
Koppers Inc. Site, Gainesville, FL

Lab Method	Compound	Number of Samples	Number of Detects	Minimum Detection	Maximum Detection	Units	Location of Maximum Detection	Minimum Reporting Limit	Maximum Reporting Limit
Metals	ANTIMONY	321	130	0.37	200	mg/kg	SS032AA	0.32	3.5
	ARSENIC	321	305	0.44	3600	mg/kg	SS095AA	0.39	5.3
	BARIUM	321	321	1.6	180	mg/kg	SS011BA	0.34	3.7
	CADMIUM	321	40	0.3	1.9	$\mathrm{mg} / \mathrm{kg}$	SS040AA	0.28	3
	CHROMIUM	321	321	0.95	3700	mg/kg	SS095AA	0.09	2.1
	COPPER	321	315	0.33	2200	mg/kg	SS095AA	0.29	6.7
	LEAD	321	321	0.88	2200	mg/kg	SS032AA	0.12	1.3
	SELENIUM	321	8	0.93	2.1	mg/kg	SS064AA	0.8	8.7
	SILVER	321	1	0.61	0.61	mg/kg	SS095AA	0.36	3.9
	VANADIUM (FUME OR DUST)	321	262	0.97	34	$\mathrm{mg} / \mathrm{kg}$	SS062BA	0.86	9.3
	MERCURY	321	320	0.0046	3.2	mg/kg	SS095AA	0.0041	0.052

Table 2. Soil Sample Summary
Koppers Inc. Site, Gainesville, FL

Lab Method	Compound	Number of Samples	Number of Detects	Minimum Detection	Maximum Detection	Units	Location of Maximum Detection	Minimum Reporting Limit	Maximum Reporting Limit
VOC	1,1,1-TRICHLOROETHANE	321	0					0.054	0.29
	1,1,2,2-TETRACHLOROETHANE	321	0					0.054	0.16
	1,1,2-TRICHLOROETHANE	321	0					0.04	0.32
	1,1-DICHLOROETHANE	321	0					0.056	0.16
	1,1-DICHLOROETHYLENE	321	0					0.053	0.41
	1,2,4-TRICHLOROBENZENE	321	0					0.094	0.36
	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	321	0					0.081	1.2
	1,2-DIBROMOETHANE	321	0					0.049	0.14
	1,2-DICHLOROBENZENE	321	3	0.52	0.66	ug/kg	SS039AA	0.038	0.19
	1,2-DICHLOROETHANE	321	0					0.043	0.24
	1,2-DICHLOROPROPANE	321	0					0.023	0.13
	1,4-DICHLOROBENZENE	321	3	0.51	0.72	ug/kg	SS094DA	0.038	0.21
	ACETONE	321	122	3	660	ug/kg	SS024BA	0.26	6
	BENZENE	321	8	0.53	130	ug/kg	SS101DA	0.04	0.94
	BROMODICHLOROMETHANE	321	0					0.038	0.7
	BROMOMETHANE	321	0					0.074	0.77
	CARBON DISULFIDE	321	0					0.43	3.9
	CARBON TETRACHLORIDE	321	0					0.065	0.84
	CFC-11	321	0					0.065	0.63
	CFC-12	321	0					0.08	0.77
	CHLORINATED FLUOROCARBON (FREON 113)	321	0					0.087	0.87
	CHLOROBENZENE	321	0					0.024	0.96
	CHLORODIBROMOMETHANE	321	0					0.031	0.6
	CHLOROETHANE	321	0					0.079	0.87
	CHLOROFORM	321	2	0.57	2	ug/kg	SS008AA	0.048	0.82
	CHLOROMETHANE	321	0					0.076	1.1
	CIS-1,2-DICHLOROETHYLENE	321	0					0.047	0.63
	CIS-1,3-DICHLOROPROPENE	321	0					0.022	0.7
	CYCLOHEXANE	321	4	0.63	1.2	ug/kg	SS101DA	0.054	0.92
	DICHLOROMETHANE	321	6	5.3	8.5	ug/kg	SS020BA	0.06	0.94
	ETHYLBENZENE	321	11	0.42	83	ug/kg	SS100CA	0.023	1.1
	ISOPROPYLBENZENE	321	1	0.74	0.74	ug/kg	SS095DA	0.03	1.2
	m,p-Xylenes	321	10	1	210	ug/kg	SS100CA	0.058	2.1
	M-DICHLOROBENZENE	321	0					0.032	0.12
	METHYL ACETATE	321	1	2.1	2.1	ug/kg	SS002AA	0.11	0.46
	METHYL ETHYL KETONE	321	16	1.9	22	ug/kg	SS082BA	0.31	2.7
	METHYL ISOBUTYL KETONE	321	2	20	22	ug/kg	SS101CA	0.4	1.8
	METHYL N-BUTYL KETONE	321	0					0.49	2.4
	METHYLBENZENE	321	38	0.48	140	ug/kg	SS100DA	0.024	1.1
	METHYLCYLOHEXANE	321	11	0.085	8.8	ug/kg	SS101DA	0.052	1.1
	O-XYLENE	321	12	0.64	130	ug/kg	SS100CA	0.023	0.96
	STYRENE (MONOMER)	321	12	0.73	230	ug/kg	SS100DA	0.027	1.1
	TERT-BUTYL METHYL ETHER	321	0					0.043	0.77
	TETRACHLOROETHYLENE	321	1	0.71	0.71	ug/kg	SS073AA	0.04	0.96
	TRANS-1,2-DICHLOROETHENE	321	0					0.058	0.92
	TRANS-1,2-DICHLOROPROPENE	321	0					0.028	0.72
	TRIBOMOMETHANE	321	0					0.044	0.94
	TRICHLOROETHYLENE	321	0					0.052	0.96
	VINYL CHLORIDE	321	0					0.07	0.58

Page 3 of 4

Table 2. Soil Sample Summary
Koppers Inc. Site, Gainesville, FL

Lab Method	Compound	Number of Samples	Number of Detects	Minimum Detection	Maximum Detection	Units	Location of Maximum Detection	Minimum Reporting Limit	Maximum Reporting Limit
SVOC	2,4,5-TRICHLOROPHENOL	321	2	45	290	ug/kg	SS082BA	14	180
	2,4,6-TRICHLOROPHENOL	321	0					37	480
	2,4-DICHLOROPHENOL	321	0					18	230
	2,4-DIMETHYLPHENOL	321	20	22	3800	ug/kg	SS100DA	20	250
	2,4-DINITROPHENOL	321	0					13	160
	2,4-DINITROTOLUENE	321	1	82	82	ug/kg	SS067BA	10	130
	2,6-DINITROTOLUENE	321	0					37	480
	2-CHLORONAPHTHALENE	321	0					17	220
	2-CHLOROPHENOL	321	0					19	240
	2-METHYLPHENOL (O-CRESOL)	321	0					13	160
	2-NITROANILINE	321	1	30	30	ug/kg	SS067BA	23	290
	2-NITROPHENOL	321	0					15	190
	3,3'-DICHLOROBENZIDINE	321	0					35	450
	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	321	0					14	180
	3-NITROANILINE	321	1	37	37	ug/kg	SS067BA	18	230
	4,6-DINITRO-2-METHYLPHENOL	321	2	28	60	ug/kg	SS067BA	9.6	130
	4-BROMOPHENYL PHENYL ETHER	321	1	53	53	ug/kg	SS067BA	10	130
	4-CHLORO-3-METHYLPHENOL	321	1	34	34	ug/kg	SS067BA	17	220
	4-CHLOROPHENYL PHENYL ETHER	321	1	35	35	ug/kg	SS067BA	23	290
	4-METHYLPHENOL (M/P-CRESOL)	321	6	29	3800	ug/kg	SS101DA	27	350
	4-NITROPHENOL	321	0					18	230
	BENZYL BUTYL PHTHALATE	321	13	22	180	ug/kg	SS067BA	19	240
	BIPHENYL	321	12	2400	110000	ug/kg	SS101CA	160	19000
	BIPHENYL	321	12	2400	110000	ug/kg	SS101DA	160	19000
	BIS(2-CHLORETHOXY)METHANE	321	0					18	230
	BIS(2-CHLOROETHYL)ETHER	321	1	1300	1300	ug/kg	SS054AA	16	200
	BIS(2-CHLOROISOPROPYL) ETHER	321	0					22	280
	BIS(2-ETHYLHEXYL)PHTHALATE	321	83	20	780	ug/kg	SS051AA	17	220
	CARBAZOLE	321	223	19	160000	ug/kg	SS100DB	17	2100
	DIBENZOFURAN	321	213	14	350000	ug/kg	SS101CA	14	1700
	DIETHYL PHTHALATE	321	1	64	64	ug/kg	SS067BA	13	160
	DIMETHYL PHTHALATE	321	1	36	36	ug/kg	SS067BA	10	130
	DI-N-BUTYL-PHTHALATE	321	1	190	190	ug/kg	SS067BA	63	810
	DI-N-OCTYL-PHTHALATE	321	5	20	180	ug/kg	SS042AA	16	200
	DI-N-OCTYL-PHTHALATE	321	5	20	180	ug/kg	SS067BA	16	200
	HEXACHLORO-1,3-BUTADIENE	321	0					18	230
	HEXACHLOROBENZENE	321	1	78	78	ug/kg	SS067BA	8.5	110
	HEXACHLOROCYCLOPENTADIENE	321	0					12	150
	HEXACHLOROETHANE	321	0					18	230
	NITROBENZENE	321	0					21	270
	N-NITROSO-DI-N-PROPYLAMINE	321	0					19	240
	N-NITROSODIPHENYLAMINE	321	1	86	86	ug/kg	SS067BA	12	150
	P-CHLOROANILINE	321	0					27	350
	PHENOL	321	0					17	220
	P-NITROANILINE	321	3	34	70	ug/kg	SS067BA	13	160
```SVOC = semivolatile organic compound VOC = volatile organic compound \(\mathrm{mg} / \mathrm{kg}=\) miligram per kilogram ug/kg = microgram per kilogram \(\mathrm{ng} / \mathrm{kg}=\) nanogram per kilogram```									

Table 3. Soil Results 0-0.25 Feet Koppers Inc. Site, Gainesville, Florida

Sample	Total PAH	PENTACHLOROPHENOL Concentration Units	ARSENIC   Concentration Units	BAPTEQ		Dioxin TEQ	
	Concentration Units			Concentration	Units	Concentration	Units
SS001AA	8448.8 ug/kg	120 J ug/kg	$20 \mathrm{mg} / \mathrm{kg}$	1172.4	ug/kg	17.65 J	$\mathrm{ng} / \mathrm{kg}$
SS002AA	10928.5 J ug/kg	150 J ug/kg	4.1 J mg/kg	1588	ug/kg	108.03 J	$n g / \mathrm{kg}$
SS002AC	11606 J ug/kg	170 J ug/kg	$5.9 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1726.1	ug/kg	104.57 J	$n g / \mathrm{kg}$
SS003AA	3984.5 J ug/kg	150 J ug/kg	$6 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	531.84	ug/kg	186.22 J	$\mathrm{ng} / \mathrm{kg}$
SS004AA	13215 J ug/kg	56 J ug/kg	5.8 mg/kg	1928.9	ug/kg		
SS005AA	9531 J ug/kg	190 J ug/kg	$5 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1175	ug/kg	177.62 J	$\mathrm{ng} / \mathrm{kg}$
SS006AA	18997 J ug/kg	480 J ug/kg	$17 \mathrm{mg} / \mathrm{kg}$	2367.3	ug/kg	907.16 J	$n g / k g$
SS007AA	$1485.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	150 J ug/kg	$4.2 \mathrm{mg} / \mathrm{kg}$	160.14 J	ug/kg	268.19 J	$\mathrm{ng} / \mathrm{kg}$
SS008AA	32849.5 J ug/kg	870 J ug/kg	$4.8 \mathrm{mg} / \mathrm{kg}$	4318.1	ug/kg		
SS009AA	1882.8 J ug/kg	180 J ug/kg	$1.3 \mathrm{mg} / \mathrm{kg}$	207.98 J	ug/kg		
SS010AA	9497.5 ug/kg	76 J ug/kg	$16 \mathrm{mg} / \mathrm{kg}$	1016.06	ug/kg		
SS010AB	9517.5 ug/kg	79 J ug/kg	$12 \mathrm{mg} / \mathrm{kg}$	1092.37	ug/kg		
SS011AA	9060 J ug/kg	61 J ug/kg	$11 \mathrm{mg} / \mathrm{kg}$	1162.59 J	ug/kg		
SS012AA	11309 J ug/kg	530 ug/kg	$49 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1665.1	ug/kg		
SS012AC	$11410.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	550 ug/kg	$33 \mathrm{~J} \mathrm{mg/kg}$	1676.1	ug/kg		
SS013AA	32841 J ug/kg	490 ug/kg	$48 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1875.4	ug/kg		
SS014AA	19759.5 J ug/kg	330 J ug/kg	$94 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	2952.6	ug/kg		
SS015AA	11795 J ug/kg	310 J ug/kg	$61 \mathrm{mg} / \mathrm{kg}$	1315	ug/kg		
SS016AA	38895 J ug/kg	950 J ug/kg	$21 \mathrm{mg} / \mathrm{kg}$	5358.6	ug/kg		
SS017AA	13952 J ug/kg	1300 ug/kg	$10 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1542.3	ug/kg		
SS018AA	37085 J ug/kg	560 ug/kg	3.1 J mg/kg	3783.2	ug/kg		
SS019AA	$6242.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	160 J ug/kg	$5.6 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	810.5	ug/kg		
SS020AA	7256.45 ug/kg	730 ug/kg	$35 \mathrm{mg} / \mathrm{kg}$	1032.24	ug/kg	795.17 J	$n g / k g$
SS021AA	$165510 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	$15000 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	$1500 \mathrm{mg} / \mathrm{kg}$	23175	ug/kg		
SS022AA	1058.88 J ug/kg	31 J ug/kg	$4.2 \mathrm{mg} / \mathrm{kg}$	134.53	ug/kg	67.99 J	$\mathrm{ng} / \mathrm{kg}$
SS022AB	969.18 J ug/kg	28 J ug/kg	$4.2 \mathrm{mg} / \mathrm{kg}$	124.91	ug/kg	61.96 J	$\mathrm{ng} / \mathrm{kg}$
SS023AA	33336 J ug/kg	1600 J ug/kg	$16 \mathrm{mg} / \mathrm{kg}$	3318.6	ug/kg		
SS024AA	4134 J ug/kg	0.75 U ug/kg	$25 \mathrm{mg} / \mathrm{kg}$	414.87 J	ug/kg	207.72 J	$\mathrm{ng} / \mathrm{kg}$
SS025AA	11604 J ug/kg	800 ug/kg	$79 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1270.1 J	ug/kg		
SS026AA	67522 J ug/kg	2900 J ug/kg	$77 \mathrm{mg} / \mathrm{kg}$	11256.2	ug/kg	2503.19 J	$n g / k g$
SS027AA	24395 J ug/kg	1100 ug/kg	$17 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	2956.7	ug/kg		
SS028AA	170492 J ug/kg	2600 J ug/kg	$5 \mathrm{mg} / \mathrm{kg}$	23410	ug/kg		
SS028AB	182115 J ug/kg	3200 J ug/kg	$4.3 \mathrm{mg} / \mathrm{kg}$	25300	ug/kg		
SS029AA	670.7 J ug/kg	110 J ug/kg	$4.5 \mathrm{mg} / \mathrm{kg}$	69.797 J	ug/kg		
SS030AA	11925.5 J ug/kg	7.4 U ug/kg	$8.7 \mathrm{mg} / \mathrm{kg}$	1790.3 J	ug/kg		
SS031AA	15150 J ug/kg	390 ug/kg	$91 \mathrm{mg} / \mathrm{kg}$	2299.2	ug/kg		
SS032AA	26286 J ug/kg	1900 J ug/kg	$36 \mathrm{mg} / \mathrm{kg}$	2622.1	ug/kg		
SS033AA	50.48 J ug/kg	0.74 U ug/kg	$52 \mathrm{mg} / \mathrm{kg}$	5.2125 J	ug/kg		
SS034AA	$14400 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	940 ug/kg	$11 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1845.2	ug/kg		
SS035AA	$15409 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	220 J ug/kg	$11 \mathrm{mg} / \mathrm{kg}$	2488.6	ug/kg	80.63 J	$n g / k g$
SS036AA	6229.5 J ug/kg	190 J ug/kg	$77 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	713.52	ug/kg		
SS036AC	6332.5 ug/kg	210 J ug/kg	120 J mg/kg	751.2	ug/kg		
SS037AA	62400 J ug/kg	690 J ug/kg	$120 \mathrm{mg} / \mathrm{kg}$	7971.5	ug/kg	632.65 J	$n g / k g$
SS038AA	26359 J ug/kg	1900 ug/kg	$430 \mathrm{mg} / \mathrm{kg}$	3346.5	ug/kg	1741.34 J	$n g / k g$
SS038AC	21536.5 ug/kg	1400 ug/kg	330 mg/kg	2755	ug/kg	1525.18 J	$n g / k g$
SS039AA	6744.25 ug/kg	270 J ug/kg	$77 \mathrm{mg} / \mathrm{kg}$	820.9	ug/kg		
SS040AA	30609.5 ug/kg	6500 ug/kg	310 mg/kg	3299.5	ug/kg		
SS041AA	15463 J ug/kg	410 ug/kg	$37 \mathrm{mg} / \mathrm{kg}$	2136.2 J	ug/kg	1497.61 J	$\mathrm{ng} / \mathrm{kg}$
SS042AA	54195 J ug/kg	310 J ug/kg	$23 \mathrm{mg} / \mathrm{kg}$	6941.3	ug/kg		
SS043AA	37865 J ug/kg	830 J ug/kg	$17 \mathrm{mg} / \mathrm{kg}$	3395.6	ug/kg	212.39 J	$\mathrm{ng} / \mathrm{kg}$
SS044AA	215190 ug/kg	3000 J ug/kg	$35 \mathrm{mg} / \mathrm{kg}$	39093	ug/kg	3406.06 J	$n g / k g$
SS045AA	$16100.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	280 J ug/kg	$29 \mathrm{mg} / \mathrm{kg}$	2456.5 J	ug/kg		
SS046AA	26768.6 ug/kg	570 ug/kg	$12 \mathrm{mg} / \mathrm{kg}$	4144.2	ug/kg	365.99 J	$\mathrm{ng} / \mathrm{kg}$
SS047AA	1896.88 J ug/kg	490 J ug/kg	$6.7 \mathrm{mg} / \mathrm{kg}$	276.65 J	ug/kg		
SS047AC	2220.9 J ug/kg	320 J ug/kg	6.1 mg/kg	315.87 J	ug/kg		
SS048AA	13712 J ug/kg	510 J ug/kg	$49 \mathrm{mg} / \mathrm{kg}$	1665.3	ug/kg		
SS049AA	$6760.5 \mathrm{ug} / \mathrm{kg}$	150 J ug/kg	$40 \mathrm{mg} / \mathrm{kg}$	800.35	ug/kg		
SS050AA	16929.5 J ug/kg	340 J ug/kg	200 J mg/kg	1847 J	ug/kg		
SS051AA	20276 J ug/kg	1300 ug/kg	$57 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	2773.6	ug/kg		
SS052AA	46045 J ug/kg	1200 J ug/kg	$97 \mathrm{mg} / \mathrm{kg}$	4071.7 J	ug/kg		
SS054AA	23968 J ug/kg	320 J ug/kg	$26 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	2844.3	ug/kg		
SS054AB	24536 J ug/kg	330 J ug/kg	$23 \mathrm{mg} / \mathrm{kg}$	2923.4	ug/kg		

Table 3. Soil Results 0-0.25 Feet Koppers Inc. Site, Gainesville, Florida

Sample	Total PAH Concentration Units	PENTACHLOROPHENOL Concentration Units	ARSENIC Concentration Units	BAPTEQ   Concentration	Units	Dioxin TEQ   Concentration	Units
SS057AA	$1436.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	$130 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	$17 \mathrm{mg} / \mathrm{kg}$	173.04 J	ug/kg	51.32 J	ng/kg
SS058AA	242545 J ug/kg	$160000 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	220 mg/kg	29793	ug/kg	78816.50 J	$n g / k g$
SS059AA	49400 J ug/kg	$3400 \mathrm{ug} / \mathrm{kg}$	200 J mg/kg	4550.9	ug/kg		
SS060AA	33685 J ug/kg	1000 J ug/kg	200 J mg/kg	3502.2	ug/kg		
SS062AA	30597.4 J ug/kg	7.9 U ug/kg	$82 \mathrm{mg} / \mathrm{kg}$	3284.5	ug/kg	1003.45 J	$n g / k g$
SS064AA	18474 J ug/kg	560 ug/kg	70 mg/kg	2260.9	ug/kg		
SS066AA	11288 J ug/kg	350 J ug/kg	$81 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1376.62 J	ug/kg	925.88 J	$n g / k g$
SS066AB	15498 J ug/kg	510 J ug/kg	$95 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1816.6	ug/kg	570.90 J	ng/kg
SS067AA	114655 J ug/kg	3200 J ug/kg	230 J mg/kg	14841	ug/kg		
SS068AA	23797 J ug/kg	1400 J ug/kg	160 mg/kg	2865.3	ug/kg	911.22 J	ng/kg
SS069AA	15138.5 J ug/kg	57 J ug/kg	$26 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1997.7	ug/kg		
SS070AA	79105 J ug/kg	3700 J ug/kg	$48 \mathrm{mg} / \mathrm{kg}$	10249.6	ug/kg	4020.65 J	$n g / k g$
SS070AB	88320 J ug/kg	2700 J ug/kg	$53 \mathrm{mg} / \mathrm{kg}$	12305.5	ug/kg	2800.90 J	$n g / k g$
SS071AA	$3661.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	35 J ug/kg	6.1 mg/kg	491.87	ug/kg	39.54 J	ng/kg
SS072AA	34827.5 ug/kg	7100 ug/kg	$63 \mathrm{mg} / \mathrm{kg}$	3566	ug/kg		
SS073AA	92460 J ug/kg	8100 ug/kg	180 J mg/kg	12852.4	ug/kg		
SS074AA	138850 ug/kg	2700 J ug/kg	$110 \mathrm{mg} / \mathrm{kg}$	17492	ug/kg		
SS075AA	69748 J ug/kg	910 ug/kg	260 mg/kg	10539.5	ug/kg		
SS076AA	58388 J ug/kg	830 J ug/kg	120 mg/kg	7690.5	ug/kg	848.04 J	$n g / k g$
SS077AA	218800 J ug/kg	670 J ug/kg	$6.4 \mathrm{mg} / \mathrm{kg}$	26542	ug/kg		
SS078AA	$1265.015 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	21 J ug/kg	$6.9 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	176.93	ug/kg		
SS079AA	25247.5 J ug/kg	1800 ug/kg	$140 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	3186.3	ug/kg		
SS080AA	6305 ug/kg	150 J ug/kg	$5.4 \mathrm{mg} / \mathrm{kg}$	780.35	ug/kg	83.40 J	$\mathrm{ng} / \mathrm{kg}$
SS081AA	39712.5 ug/kg	140 J ug/kg	$19 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	4809.1	ug/kg	362.84 J	$n g / k g$
SS082AA	$46402.9 \mathrm{ug} / \mathrm{kg}$	$910 \mathrm{ug} / \mathrm{kg}$	$14 \mathrm{mg} / \mathrm{kg}$	6531.2	ug/kg	994.84 J	$n g / k g$
SS083AA	$14865.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	660 J ug/kg	$46 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1649.3	ug/kg		
SS084AA	1044.3 ug/kg	72 ug/kg	$4.4 \mathrm{mg} / \mathrm{kg}$	97.57	ug/kg	57.46 J	ng/kg
SS085AA	27265 J ug/kg	2600 ug/kg	120 J mg/kg	3349.4	ug/kg		
SS086AA	$14905.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	850 J ug/kg	$49 \mathrm{mg} / \mathrm{kg}$	1724.5	ug/kg	1991.60 J	$n g / k g$
SS087AA	19529 J ug/kg	590 ug/kg	$17 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1971.1	ug/kg		
SS088AA	59753 ug/kg	2400 J ug/kg	$120 \mathrm{mg} / \mathrm{kg}$	8262.9	ug/kg	3604.30 J	$n g / k g$
SS089AA	155600 J ug/kg	8600 ug/kg	170 J mg/kg	17355	ug/kg		
SS090AA	71545 J ug/kg	2500 J ug/kg	120 J mg/kg	8164.7	ug/kg		
SS091AA	72370 ug/kg	$8100 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	$600 \mathrm{mg} / \mathrm{kg}$	9826.5	ug/kg		
SS092AA	75920 J ug/kg	4100 ug/kg	130 J mg/kg	10298.2	ug/kg		
SS093AA	26734.5 J ug/kg	830 ug/kg	$57 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	3348.6	ug/kg	1371.30 J	$n g / k g$
SS094AA	10898 J ug/kg	180 J ug/kg	$30 \mathrm{mg} / \mathrm{kg}$	1398.2	ug/kg	277.53 J	ng/kg
SS094AB	8850.5 J ug/kg	170 J ug/kg	$25 \mathrm{mg} / \mathrm{kg}$	1092.13	ug/kg	303.81 J	ng/kg
SS095AA	63160 J ug/kg	$15000 \mathrm{ug} / \mathrm{kg}$	3600 mg/kg	9186.8	ug/kg	5839.49 J	$n g / k g$
SS096AA	292400 J ug/kg	9000 ug/kg	$450 \mathrm{mg} / \mathrm{kg}$	41597	ug/kg	7160.76 J	$n g / k g$
SS097AA	2602.85 ug/kg	180 J ug/kg	2.7 mg/kg	343.06	ug/kg	61.53 J	ng/kg
SS098AA	9321 J ug/kg	7.5 U ug/kg	$7.7 \mathrm{mg} / \mathrm{kg}$	1091.61	ug/kg	336.82 J	$\mathrm{ng} / \mathrm{kg}$
SS099AA	12432 J ug/kg	16 U ug/kg	1.8 mg/kg	1661.1	ug/kg	276.39 J	ng/kg
SS100AA	55392 J ug/kg	900 J ug/kg	290 J mg/kg	5661.1	ug/kg	2108.21 J	$n g / k g$
SS101AA	209470 J ug/kg	3100 ug/kg	$57 \mathrm{mg} / \mathrm{kg}$	36974	ug/kg	4893.35 J	$n g / \mathrm{kg}$

Notes:
$\mathrm{mg} / \mathrm{kg}$ : miligrams per kilogram $\quad \mathrm{U}=$ non-detect
ng/kg: nanograms per kilogram $\quad \mathrm{J}=$ estimated detect
ug/kg: micrograms per kilogram
Dioxin $T E Q$ values in italics are new results from Vista laboratory

Table 4. Soil Results 0.25-0.5 Feet Koppers Inc. Site, Gainesville, FL


Table 4. Soil Results 0.25-0.5 Feet Koppers Inc. Site, Gainesville, FL

Sample	Total PAH	PENTACHLOROPHENOL Concentration Units	ARSENIC Concentration Units	BAPTEQ	Dioxin TEQ
	Concentration Units			Concentration Units	Concentration Units
SS051BA	67065 J ug/kg	$1400 \mathrm{ug} / \mathrm{kg}$	$63 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	7582.1 ug/kg	
SS052BA	39325 J ug/kg	1300 J ug/kg	$25 \mathrm{mg} / \mathrm{kg}$	3543.4 J ug/kg	
SS054BA	22418.5 J ug/kg	96 J ug/kg	$20 \mathrm{mg} / \mathrm{kg}$	$2870.3 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	
SS057BA	$32.7 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	11 J ug/kg	0.6 mg/kg	$1.72 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	$3.23 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS058BA	1890300 J ug/kg	630000 J ug/kg	$78 \mathrm{mg} / \mathrm{kg}$	$138100 \mathrm{ug} / \mathrm{kg}$	$29954.34 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS059BA	86160 J ug/kg	2600 ug/kg	200 J mg/kg	$9961.2 \mathrm{ug} / \mathrm{kg}$	
SS060BA	20415 J ug/kg	710 J ug/kg	160 J mg/kg	2200.8 ug/kg	
SS062BA	11547.45 J ug/kg	8.1 U ug/kg	$12 \mathrm{mg} / \mathrm{kg}$	1528.3 ug/kg	308.31 J ng/kg
SS064BA	12227.25 J ug/kg	260 J ug/kg	$110 \mathrm{mg} / \mathrm{kg}$	$1579.2 \mathrm{ug} / \mathrm{kg}$	
SS066BA	$525.3 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	20 J ug/kg	$54 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	$54.41 \mathrm{ug} / \mathrm{kg}$	32.71 J ng/kg
SS067BA	61335 J ug/kg	2900 J ug/kg	220 J mg/kg	7662.6 J ug/kg	
SS067BB	68924.5 J ug/kg	2100 J ug/kg	120 J mg/kg	$6509.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	
SS068BA	35653 J ug/kg	3400 ug/kg	190 mg/kg	3898.8 J ug/kg	$7501.99 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS069BA	14446 J ug/kg	15 U ug/kg	$14 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	$2195.4 \mathrm{ug} / \mathrm{kg}$	
SS070BA	143290 J ug/kg	7500 ug/kg	$61 \mathrm{mg} / \mathrm{kg}$	21362 ug/kg	$9051.81 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS071BA	2463.5 J ug/kg	25 J ug/kg	$4.6 \mathrm{mg} / \mathrm{kg}$	$324.45 \mathrm{ug} / \mathrm{kg}$	$28.24 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS072BA	45678.5 ug/kg	9200 ug/kg	$59 \mathrm{mg} / \mathrm{kg}$	$4785.6 \mathrm{ug} / \mathrm{kg}$	
SS073BA	125620 J ug/kg	6700 ug/kg	150 J mg/kg	19110 ug/kg	
SS074BA	132210 ug/kg	4500 J ug/kg	$55 \mathrm{mg} / \mathrm{kg}$	16809.4 ug/kg	
SS075BA	172775 J ug/kg	900 J ug/kg	120 mg/kg	25646 J ug/kg	
SS076BA	82435 J ug/kg	1100 J ug/kg	$130 \mathrm{mg} / \mathrm{kg}$	10999.6 ug/kg	$945.70 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS077BA	6410.5 J ug/kg	7.4 UJ ug/kg	$1.3 \mathrm{mg} / \mathrm{kg}$	791.35 J ug/kg	
SS078BA	373.57 J ug/kg	5.8 J ug/kg	0.86 J mg/kg	48.69 J ug/kg	
SS079BA	41744 J ug/kg	1800 J ug/kg	$86 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	5387 ug/kg	
SS080BA	2583.5 J ug/kg	7.5 U ug/kg	$0.95 \mathrm{mg} / \mathrm{kg}$	431.94 J ug/kg	$6.17 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS080BB	1140.7 J ug/kg	98 J ug/kg	$1 \mathrm{mg} / \mathrm{kg}$	129.92 J ug/kg	$4.49 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS081BA	17945 J ug/kg	120 J ug/kg	5.8 J mg/kg	$2533.5 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	$216.06 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS082BA	2533800 ug/kg	3300 J ug/kg	$39 \mathrm{mg} / \mathrm{kg}$	67690 ug/kg	$2891.05 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS083BA	22576 J ug/kg	990 ug/kg	$45 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	2432.2 ug/kg	
SS084BA	13508 ug/kg	910 ug/kg	$13 \mathrm{mg} / \mathrm{kg}$	1818.2 ug/kg	$554.94 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS085BA	157810 J ug/kg	13000 ug/kg	$69 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	21066 ug/kg	
SS086BA	34607 J ug/kg	3100 J ug/kg	$42 \mathrm{mg} / \mathrm{kg}$	3997.6 J ug/kg	$3275.61 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS086BB	38950 J ug/kg	2800 J ug/kg	$41 \mathrm{mg} / \mathrm{kg}$	4387.6 J ug/kg	$2431.99 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS087BA	14336.5 J ug/kg	530 ug/kg	$18 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	1603.4 J ug/kg	
SS088BA	10713 J ug/kg	580 J ug/kg	$50 \mathrm{mg} / \mathrm{kg}$	1456.96 ug/kg	$487.17 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS089BA	126415 J ug/kg	12000 ug/kg	$86 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	14033 ug/kg	
SS090BA	52895 J ug/kg	1900 J ug/kg	$41 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	$4917.9 \mathrm{ug} / \mathrm{kg}$	
SS090BC	44065 J ug/kg	1500 J ug/kg	$35 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	$4087.9 \mathrm{ug} / \mathrm{kg}$	
SS091BA	42541 J ug/kg	3200 ug/kg	$110 \mathrm{mg} / \mathrm{kg}$	$5384.6 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	
SS092BA	85960 J ug/kg	5100 ug/kg	130 J mg/kg	$10843.2 \mathrm{ug} / \mathrm{kg}$	
SS093BA	13970.5 J ug/kg	150 J ug/kg	$16 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	$1892.5 \mathrm{ug} / \mathrm{kg}$	$187.64 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS094BA	19825 J ug/kg	750 ug/kg	$28 \mathrm{mg} / \mathrm{kg}$	2618.5 J ug/kg	$697.69 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS095BA	5734 J ug/kg	$1000 \mathrm{ug} / \mathrm{kg}$	720 mg/kg	$870.74 \mathrm{ug} / \mathrm{kg}$	362.78 J ng/kg
SS096BA	264215 J ug/kg	2900 J ug/kg	$140 \mathrm{mg} / \mathrm{kg}$	39099 ug/kg	$658.60 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS097BA	$125.19 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	17 J ug/kg	$1.9 \mathrm{mg} / \mathrm{kg}$	$14.173 \mathrm{~J} \mathrm{ug} / \mathrm{kg}$	$2.44 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS098BA	2357 ug/kg	0.89 U ug/kg	2.1 mg/kg	$104.83 \mathrm{ug} / \mathrm{kg}$	$40.27 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS099BA	70100 ug/kg	20000 ug/kg	$15 \mathrm{mg} / \mathrm{kg}$	$9806.1 \mathrm{ug} / \mathrm{kg}$	7257.42 J ng/kg
SS100BA	102240 ug/kg	3300 J ug/kg	120 J mg/kg	17617.5 ug/kg	$2333.61 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$
SS101BA	237910 J ug/kg	$3100 \mathrm{ug} / \mathrm{kg}$	$55 \mathrm{mg} / \mathrm{kg}$	44986 J ug/kg	$4397.23 \mathrm{~J} \mathrm{ng} / \mathrm{kg}$

Notes:
$\mathrm{mg} / \mathrm{kg}$ : miligrams per kilogram $\quad \mathrm{U}=$ non-detect
ng/kg: nanograms per kilogram J = estimated detect
ug/kg: micrograms per kilogram
Dioxin TEQ values in italics are new results from Vista laboratory

Table 5. Soil Results 0.5-2 Feet
Koppers Inc. Site, Gainesville, FL

Sample	Total PAH		PENTACHLOROPHENOL Concentration Units		ARSENIC   Concentration Units		BAPTEQ		Dioxin TEQ			
	Concentration	Units			Concentration	Units	Concentration	Units				
SS001CA	47.84 J	ug/kg	0.87 U	ug/kg			100	mg/kg	4.8715 J	ug/kg	0.58 J	ng/kg
SS003CA	5673 J	ug/kg	7.7 UJ	ug/kg	19 J	mg/kg	568.79 J	ug/kg	4.41 J	ng/kg		
SS003CB	2673.5 J	ug/kg	7.6 UJ	ug/kg	14 J	mg/kg	314.75 J	ug/kg	3.06 J	ng/kg		
SS005CA	8480	ug/kg	280 J	ug/kg	4.3 J	mg/kg	1097.5	ug/kg	117.70 J	ng/kg		
SS007CA	629.82 J	ug/kg	9.8 J	ug/kg	1.4	mg/kg	95.68	ug/kg	8.28 J	ng/kg		
SS020CA	420.15 J	ug/kg	46	ug/kg	9.2	mg/kg	54.38	ug/kg	72.69 J	ng/kg		
SS020CC	431.2 J	ug/kg	46	ug/kg	9.9	mg/kg	56.49	ug/kg	65.62 J	ng/kg		
SS022CA	15.99 J	ug/kg	0.73 U	ug/kg	0.96	mg/kg	0.98	ug/kg	2.55 J	$\mathrm{ng} / \mathrm{kg}$		
SS024CA	303.8 J	ug/kg	2.2 J	ug/kg	0.42 UJ	mg/kg	34.27	ug/kg	4.27 J	$n g / k g$		
SS026CA	251.67	ug/kg	13 J	ug/kg	26	mg/kg	36.35	ug/kg	4.93 J	ng/kg		
SS026CC	296.57	ug/kg	14 J	ug/kg	35	mg/kg	45.51	ug/kg	6.17 J	ng/kg		
SS028CA	8100 J	ug/kg	66000	ug/kg	0.66	mg/kg	992.65	ug/kg				
SS029CA	13.925 J	ug/kg	0.75 U	ug/kg	0.53	mg/kg	1.06 J	ug/kg				
SS030CA	2337.37 J	ug/kg	0.73 U	ug/kg	1.1 J	mg/kg	260.72 J	ug/kg				
SS031CA	149.32 J	ug/kg	3.9 J	ug/kg	0.41 UJ	mg/kg	18.45 J	ug/kg				
SS035CA	125.22 J	ug/kg	0.73 U	ug/kg	0.47 J	mg/kg	17.06 J	ug/kg	0.76 J	ng/kg		
SS036CA	22630 J	ug/kg	100 J	ug/kg	0.53	mg/kg	742.4 J	ug/kg				
SS038CA	205.93 J	ug/kg	17 J	ug/kg	100	mg/kg	21.95	ug/kg	2.73 J	ng/kg		
SS039CA	85.77 J	ug/kg	13 J	ug/kg	3.7	mg/kg	9.69 J	ug/kg				
SS041CA	947.07 J	ug/kg	29 J	ug/kg	3.3 J	mg/kg	127.76 J	ug/kg	69.02 J	ng/kg		
SS045CA	122.3 J	ug/kg	1.1 J	ug/kg	62	mg/kg	13.45 J	ug/kg				
SS046CA	830.75 J	ug/kg	47	ug/kg	0.78	mg/kg	99.53	ug/kg	54.48 J	ng/kg		
SS047CA	35805 J	ug/kg	600	ug/kg	4.9	mg/kg	5363.5	ug/kg				
SS048CA	364 J	ug/kg	18 J	ug/kg	0.43 U	mg/kg	41.05	ug/kg				
SS049CA	17983.2 J	ug/kg	130 J	ug/kg	22 J	mg/kg	2707.7 J	ug/kg				
SS052CA	7678.3 J	ug/kg	110 J	ug/kg	19	mg/kg	848.45	ug/kg				
SS057CA	39.66 J	ug/kg	11 J	ug/kg	0.66 J	mg/kg	1.82 J	ug/kg	4.24 J	ng/kg		
SS057CB	26.99 J	ug/kg	11 J	ug/kg	0.41 U	mg/kg	2.02 J	ug/kg	2.39 J	ng/kg		
SS062CA	30283.75 J	ug/kg	7.5 U	ug/kg	9.6	mg/kg	5527.8	ug/kg	7.20 J	ng/kg		
SS062CC	53477 J	ug/kg	7.9 U	ug/kg	13	mg/kg	9508.5	ug/kg	10.38 J	ng/kg		
SS064CA	539.72 J	ug/kg	44	ug/kg	1.4	mg/kg	53.7	ug/kg				
SS066CA	183.8 J	ug/kg	16 J	ug/kg	9.3 J	mg/kg	13.7 J	ug/kg				
SS068CA	390.97 J	ug/kg	8.8 J	ug/kg	31 J	mg/kg	44.55 J	ug/kg	11.33 J	ng/kg		
SS070CA	9440 J	ug/kg	440	ug/kg	8.2	mg/kg	1292.28	ug/kg				
SS072CA	18109.5 J	ug/kg	1600	ug/kg	14	mg/kg	1955.2	ug/kg				
SS072CC	39855 J	ug/kg	3300	ug/kg	16	mg/kg	4501	ug/kg				
SS075CA	9443.5 J	ug/kg	39 J	ug/kg	23 J	mg/kg	1436.85 J	ug/kg				
SS077CA	714200 J	ug/kg	310 J	ug/kg	14 J	mg/kg	56963 J	ug/kg				
SS078CA	203.67 J	ug/kg	2.7 J	ug/kg	0.99 J	mg/kg	21.9 J	ug/kg				
SS080CA	344.47 J	ug/kg	0.73 U	ug/kg	0.48 J	mg/kg	14.17 J	ug/kg	1.49 J	$\mathrm{ng} / \mathrm{kg}$		
SS082CA	722760 J	ug/kg	770	ug/kg	91	mg/kg	26757	ug/kg	1625.92 J	$n g / k g$		
SS084CA	334.06	ug/kg	0.74 U	ug/kg	22	mg/kg	44.28	ug/kg				
SS086CA	374930 J	ug/kg	1700	ug/kg	7.6	mg/kg	7391 J	ug/kg	126.21 J	$n g / k g$		
SS088CA	1064 J	ug/kg	26 J	ug/kg	2.5	mg/kg	99.78 J	ug/kg	38.78 J	ng/kg		
SS091CA	1223.34 J	ug/kg	51	ug/kg	58 J	mg/kg	152.2 J	ug/kg				
SS094CA	3850400 J	ug/kg	2900	ug/kg	6.5	mg/kg	10842	ug/kg	688.53 J	$n g / k g$		
SS095CA	181.34 J	ug/kg	26 J	ug/kg	430	mg/kg	25.64	ug/kg	8.36 J	ng/kg		
SS096CA	18667 J	ug/kg	580 J	ug/kg	31	mg/kg	2842.6	ug/kg	242.89 J	$n g / k g$		
SS097CA	18.355 J	ug/kg	0.85 U	ug/kg	0.48 U	mg/kg	1.19 J	ug/kg	0.33 J	ng/kg		
SS098CA	1156.03 J	ug/kg	0.76 U	ug/kg	2.1	mg/kg	51.27	ug/kg	14.80 J	ng/kg		
SS099CA	27260.65	ug/kg	15000	ug/kg	3.1	mg/kg	4516.1	ug/kg	5984.11 J	$n g / k g$		
SS100CA	3312400	ug/kg	930 J	ug/kg	3.6 J	mg/kg	66544	ug/kg	140.98 J	$n g / k g$		
SS101CA	11048200 J	ug/kg	160000 J	ug/kg	1.5	mg/kg	526150	ug/kg	914.92 J	$n g / k g$		

Notes:
$\mathrm{mg} / \mathrm{kg}$ : miligrams per kilogram $\quad \mathrm{U}=$ non-detect
ng/kg: nanograms per kilogram $J=$ estimated detect
ug/kg: micrograms per kilogram
Dioxin TEQ values in italics are new results from Vista laboratory

Table 6. Soil Results 2-6 Feet
Koppers Inc. Site, Gainesville, FL

Sample	Total PAH		PENTACHLOROPHENOL Concentration Units	ARSENIC Concentration Units	BAPTEQ		Dioxin TEQ	
	Concentration	Units			Concentration	Units	Concentration	Units
SS001DA	17.78 J	ug/kg	0.75 U ug/kg	$8.6 \mathrm{mg} / \mathrm{kg}$	1.27 J	ug/kg	0.66	ng/kg
SS003DA	460.2 J	ug/kg	2.5 J ug/kg	$5.4 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	63.76	ug/kg	4.31	ng/kg
SS005DA	1579	ug/kg	12 J ug/kg	$14 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	214.11	ug/kg	24.68	ng/kg
SS007DA	93.965 J	ug/kg	0.72 U ug/kg	0.42 U mg/kg	11.93 J	ug/kg	1.84	ng/kg
SS007DB	115.37 J	ug/kg	0.72 U ug/kg	$0.44 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	16.41 J	ug/kg	1.61	ng/kg
SS020DA	397.95 J	ug/kg	36 J ug/kg	3.8 mg/kg	52.47	ug/kg	100.52	ng/kg
SS022DA	44.81 J	ug/kg	0.75 U ug/kg	0.41 U mg/kg	1.436 J	ug/kg	1.79	ng/kg
SS024DA	6665 J	ug/kg	100 J ug/kg	$18 \mathrm{mg} / \mathrm{kg}$	960.44	ug/kg	10.16	ng/kg
SS026DA	267.83	ug/kg	8.7 J ug/kg	$0.44 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	39.47	ug/kg	10.41	ng/kg
SS028DA	3080.55 J	ug/kg	360000 ug/kg	$0.97 \mathrm{mg} / \mathrm{kg}$	126.71 J	ug/kg		
SS028DC	2715.25 J	ug/kg	180000 ug/kg	0.68 mg/kg	60.63 J	ug/kg		
SS029DA	12.99 J	ug/kg	0.79 U ug/kg	$0.73 \mathrm{mg} / \mathrm{kg}$	1.06 J	ug/kg		
SS030DA	194.67 J	ug/kg	0.73 U ug/kg	0.42 U mg/kg	27.29 J	ug/kg		
SS031DA	195.97 J	ug/kg	4.6 J ug/kg	$1.2 \mathrm{mg} / \mathrm{kg}$	25.8 J	ug/kg		
SS031DB	114.67 J	ug/kg	3.6 J ug/kg	0.41 U mg/kg	14.3 J	ug/kg		
SS035DA	109.73 J	ug/kg	0.75 U ug/kg	$0.45 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	15.1 J	ug/kg	0.81	ng/kg
SS036DA	2195	ug/kg	13 J ug/kg	0.43 U mg/kg	77.58	ug/kg		
SS038DA	50.52 J	ug/kg	12 J ug/kg	$19 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	4.19 J	ug/kg	9.95	ng/kg
SS038DB	143.15 J	ug/kg	13 J ug/kg	$120 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	17.01 J	ug/kg	4.21	ng/kg
SS039DA	24.54 J	ug/kg	10 J ug/kg	$1.4 \mathrm{mg} / \mathrm{kg}$	1.56 J	ug/kg		
SS041DA	113.05 J	ug/kg	1.5 J ug/kg	0.43 U mg/kg	7.53 J	ug/kg	9.80	ng/kg
SS045DA	390 J	ug/kg	2.5 J ug/kg	$1 \mathrm{mg} / \mathrm{kg}$	56.12	ug/kg		
SS046DA	436.45 J	ug/kg	23 J ug/kg	0.43 U mg/kg	56.84	ug/kg	74.65	ng/kg
SS047DA	7662.25 J	ug/kg	94 J ug/kg	$1.4 \mathrm{mg} / \mathrm{kg}$	1388.47	ug/kg		
SS048DA	204.47 J	ug/kg	13 J ug/kg	0.44 U mg/kg	23.95	ug/kg		
SS049DA	1010 J	ug/kg	5.6 J ug/kg	$1.7 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	85.9 J	ug/kg		
SS052DA	3089.2 J	ug/kg	48 J ug/kg	$11 \mathrm{mg} / \mathrm{kg}$	356.02	ug/kg		
SS057DA	11.74 J	ug/kg	11 J ug/kg	0.56 mg/kg	1.29 J	ug/kg	2.58	$n g / k g$
SS062DA	172.77 J	ug/kg	0.74 U ug/kg	0.77 mg/kg	21.32 J	ug/kg	1.11	ng/kg
SS064DA	315.82 J	ug/kg	14 J ug/kg	$0.75 \mathrm{mg} / \mathrm{kg}$	40.38	ug/kg		
SS066DA	83.28 J	ug/kg	0.73 UJ ug/kg	0.68 J mg/kg	5.44 J	ug/kg		
SS066DC	134.92 J	ug/kg	0.73 UJ ug/kg	$0.83 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	7.25 J	ug/kg		
SS068DA	201.57 J	ug/kg	13 J ug/kg	0.77 J mg/kg	29.07 J	ug/kg	9.01	ng/kg
SS070DA	1056.6 J	ug/kg	41 ug/kg	$1.1 \mathrm{mg} / \mathrm{kg}$	137.2	ug/kg		
SS072DA	1384.17 J	ug/kg	$43 \mathrm{ug} / \mathrm{kg}$	$0.89 \mathrm{mg} / \mathrm{kg}$	76.33	ug/kg		
SS075DA	909.9 J	ug/kg	5.1 J ug/kg	2.1 J mg/kg	125.76 J	ug/kg		
SS077DA	3085500 J	ug/kg	89 J ug/kg	$0.94 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	75380 J	ug/kg		
SS077DB	2838800 J	ug/kg	76 U ug/kg	$0.7 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	64735 J	ug/kg		
SS078DA	112.1 J	ug/kg	1.1 J ug/kg	$0.97 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	11.89 J	ug/kg		
SS080DA	404.27 J	ug/kg	0.74 U ug/kg	0.39 U mg/kg	4.75 J	ug/kg	0.40 J	ng/kg
SS082DA	1784.3	ug/kg	0.76 U ug/kg	$7.9 \mathrm{mg} / \mathrm{kg}$	50.51	ug/kg	1.64 J	ng/kg
SS084DA	49.495 J	ug/kg	0.83 U ug/kg	$0.62 \mathrm{mg} / \mathrm{kg}$	1.31 J	ug/kg		
SS086DA	20891.13 J	ug/kg	120 ug/kg	$57 \mathrm{mg} / \mathrm{kg}$	446.93 J	ug/kg	40.37	ng/kg
SS088DA	557 J	ug/kg	15 J ug/kg	$0.79 \mathrm{mg} / \mathrm{kg}$	63.09 J	ug/kg	16.23 J	ng/kg
SS091DA	165.03 J	ug/kg	9.1 J ug/kg	$5.2 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	19.63 J	ug/kg		
SS094DA	9011600 J	ug/kg	120000 J ug/kg	$1.3 \mathrm{mg} / \mathrm{kg}$	311350	ug/kg	568.03 J	$n g / k g$
SS095DA	414.5	ug/kg	$42 \mathrm{ug} / \mathrm{kg}$	$280 \mathrm{mg} / \mathrm{kg}$	46.01	ug/kg	11.25 J	ng/kg
SS096DA	6801.25	ug/kg	7.5 U ug/kg	$16 \mathrm{mg} / \mathrm{kg}$	1021.46	ug/kg	86.61	ng/kg
SS097DA	15.04 J	ug/kg	0.75 U ug/kg	0.4 U mg/kg	0.99	ug/kg	0.28 J	ng/kg
SS098DA	6148.3 J	ug/kg	7.7 U ug/kg	$0.66 \mathrm{mg} / \mathrm{kg}$	497.37	ug/kg	5.59 J	ng/kg
SS099DA	1102.12	ug/kg	68 ug/kg	$0.5 \mathrm{U} \mathrm{mg} / \mathrm{kg}$	98.44	ug/kg	23.94 J	ng/kg
SS100DA	4655800 J	ug/kg	890 U ug/kg	$0.83 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	81870	ug/kg	25.24 J	$n g / k g$
SS100DB	3621600 J	ug/kg	860 U ug/kg	$3.2 \mathrm{~J} \mathrm{mg} / \mathrm{kg}$	70793	ug/kg	50.22 J	$n g / k g$
SS101DA	12359100 J	ug/kg	150000 J ug/kg	$1.1 \mathrm{mg} / \mathrm{kg}$	589260	ug/kg	376.14 J	ng/kg

Notes:
$\mathrm{mg} / \mathrm{kg}$ : miligrams per kilogram
$\mathrm{U}=$ non-detect
$\mathrm{ng} / \mathrm{kg}$ : nanograms per kilogram
$\mathrm{J}=$ estimated detect
$\mathrm{ug} / \mathrm{kg}$ : micrograms per kilogram
Dioxin TEQ values in italics are new results from Vista laboratory

Table 7. Sediment Sample Summary
Koppers Inc. Site, Gainesville, FL

Lab Method	Compound	Number of Samples	Number of Detects	Minimum Detection	Maximum Detection	Units	Location of Maximum Detection	Minimum Reporting Limit	Maximum Reporting Limit
SVOC (SIM)	2-METHYLNAPHTHALENE	13	0					17	360
	ACENAPHTHENE	13	0					30	650
	ACENAPHTHYLENE	13	10	110	1600	ug/kg	SD004BA	29	630
	ANTHRACENE	13	13	170	2400	ug/kg	SD005AA	6.7	150
	BENZO(A)ANTHRACENE	13	13	180	7700	ug/kg	SD002AA	5.5	120
	BENZO(A)PYRENE	13	13	320	12000	ug/kg	SD002AA	12	270
	BENZO(B)FLUORANTHENE	13	13	620	17000	ug/kg	SD002AA	8.8	200
	BENZO(G,H,I)PERYLENE	13	13	360	11000	ug/kg	SD002AA	7.1	160
	BENZO(K)FLUORANTHENE	13	13	300	10000	ug/kg	SD002AA	7.1	160
	CHRYSENE	13	13	330	12000	ug/kg	SD002AA	5.3	120
	DIBENZO(A,H)ANTHRACENE	13	13	110	3100	ug/kg	SD002AA	5.6	130
	FLUORANTHENE	13	13	350	17000	ug/kg	SD002AA	6.5	150
	FLUORENE	13	0					17	360
	INDENO(1,2,3-CD)PYRENE	13	13	350	10000	ug/kg	SD002AA	9.5	210
	NAPHTHALENE	13	0					5.6	130
	PENTACHLOROPHENOL	13	12	110	1800	ug/kg	SD004BA	7.7	170
	PENTACHLOROPHENOL	13	12	110	1800	ug/kg	SD006AC	7.7	170
	PHENANTHRENE	13	13	110	6300	ug/kg	SD002AA	36	790
	PYRENE	13	13	410	16000	ug/kg	SD002AA	5.7	130
Dioxin	1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	13	13	299.355	29000	ng/kg	SD004BA	0.104	29000
	1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	13	13	2167.649	191000	ng/kg	SD004BA	1.81	191000
	1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	13	13	19.036	1790	ng/kg	SD004BA	0.593	1790
	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	13	13	7.976	732	ng/kg	SD004BA	0.095	732
	1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	13	13	15.867	1790	ng/kg	SD004BA	0.044	1790
	1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	13	13	6.714	580	ng/kg	SD004BA	0.117	580
	1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	13	13	57.074	5360	ng/kg	SD004BA	0.051	5360
	1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	10	13	0.416	174	ng/kg	SD004BA	0.063	174
	1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	13	13	37.582	3060	ng/kg	SD004BA	0.048	3060
	1,2,3,7,8-PENTACHLORODIBENZOFURAN	13	13	1.039	68.1	ng/kg	SD004BA	0.037	68.1
	1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	13	13	5.735	491	ng/kg	SD004BA	0.035	491
	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	13	13	6.707	1150	ng/kg	SD004BA	0.074	1150
	2,3,4,7,8-PENTACHLORODIBENZOFURAN	13	13	1.202	208	ng/kg	SD004BA	0.047	208
	2,3,7,8-TETRACHLORODIBENZOFURAN	11	13	0.716	44.3	ng/kg	SD004BA	0.433	44.3
	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	12	13	0.971	32.8	ng/kg	SD004BA	0.021	32.8
	OCTACHLORODIBENZOFURAN	13	13	1547.207	128797.468	ng/kg	SD006AA	0.207	108000
	OCTACHLORODIBENZO-P-DIOXIN	13	13	21217.949	2048970.2	ng/kg	SD006AA	0.389	1580000
	TOTAL HEPTACHLORINATED DIBENZOFURANS	13	13	1227.101	115000	ng/kg	SD004BA	0.104	115000
	TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	13	13	9512.174	598000	ng/kg	SD004BA	0.117	598000
	TOTAL HEXACHLORINATED DIBENZOFURANS	13	13	327.093	28700	ng/kg	SD004BA	0.095	28700
	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	13	13	819.129	57400	ng/kg	SD004BA	0.044	57400
	TOTAL PENTACHLORINATED DIBENZOFURANS	13	13	63.436	4880	ng/kg	SD004BA	0.047	4880
	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	13	13	58.86	4100	ng/kg	SD004BA	0.035	4100
	TOTAL TETRACHLORINATED DIBENZOFURANS	13	13	12.677	681	ng/kg	SD004BA	0.026	681
	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	13	13	5.934	346	ng/kg	SD004BA	0.021	346

Page 1 of 4

Table 7. Sediment Sample Summary
Koppers Inc. Site, Gainesville, FL

Lab Method	Compound	Number of Samples	Number of Detects	Minimum Detection	Maximum Detection	Units	Location of Maximum Detection	Minimum   Reporting Limit	Maximum Reporting Limit
Metals	ANTIMONY	13	11	0.43	8.6	mg/kg	SD003AA	0.34	0.8
	ARSENIC	13	13	1.7	390	mg/kg	SD005AA	0.41	0.96
	BARIUM	13	13	6.5	110	mg/kg	SD001AA	0.36	0.84
	CADMIUM	13	8	0.35	3.1	mg/kg	SD003AA	0.29	0.68
	CHROMIUM	13	13	8.5	710	mg/kg	SD004BA	0.09	0.22
	COPPER	13	13	14	320	mg/kg	SD004BA	0.3	0.7
	LEAD	13	13	6.5	450	mg/kg	SD004BA	0.13	0.3
	SELENIUM	13	3	1.5	3.1	mg/kg	SD003AA	0.85	2
	SILVER	13	0					0.38	0.87
	VANADIUM (FUME OR DUST)	13	13	1.3	28	mg/kg	SD003AA	0.91	2.1
	MERCURY	13	13	0.026	2	mg/kg	SD004BA	0.0044	0.033

Table 7. Sediment Sample Summary
Koppers Inc. Site, Gainesville, FL

Lab Method	Compound	Number of Samples	Number of Detects	Minimum Detection	Maximum Detection	Units	Location of Maximum Detection	Minimum Reporting Limit	Maximum Reporting Limit
VOC	1,1,1-TRICHLOROETHANE	13	0					0.13	0.35
	1,1,2,2-TETRACHLOROETHANE	13	0					0.069	0.2
	1,1,2-TRICHLOROETHANE	13	0					0.14	0.38
	1,1-DICHLOROETHANE	13	0					0.066	0.19
	1,1-DICHLOROETHYLENE	13	0					0.18	0.5
	1,2,4-TRICHLOROBENZENE	13	0					0.16	0.44
	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	13	0					0.51	1.5
	1,2-DIBROMOETHANE	13	0					0.059	0.17
	1,2-DICHLOROBENZENE	13	0					0.082	0.23
	1,2-DICHLOROETHANE	13	0					0.11	0.3
	1,2-DICHLOROPROPANE	13	0					0.057	0.16
	1,4-DICHLOROBENZENE	13	0					0.091	0.26
	ACETONE	13	12	3.4	140	ug/kg	SD003AA	2.7	7.3
	BENZENE	13	0					0.41	1.2
	BROMODICHLOROMETHANE	13	0					0.31	0.85
	BROMOMETHANE	13	0					0.34	0.94
	CARBON DISULFIDE	13	0					1.7	4.7
	CARBON TETRACHLORIDE	13	0					0.37	1.1
	CFC-11	13	0					0.28	0.76
	CFC-12	13	0					0.34	0.94
	CHLORINATED FLUOROCARBON (FREON 113)	13	0					0.38	1.1
	CHLOROBENZENE	13	0					0.42	1.2
	CHLORODIBROMOMETHANE	13	0					0.27	0.73
	CHLOROETHANE	13	0					0.38	1.1
	CHLOROFORM	13	0					0.36	0.99
	CHLOROMETHANE	13	0					0.47	1.4
	CIS-1,2-DICHLOROETHYLENE	13	0					0.28	0.76
	CIS-1,3-DICHLOROPROPENE	13	0					0.31	0.85
	CYCLOHEXANE	13	0					0.4	1.2
	DICHLOROMETHANE	13	0					0.41	1.2
	ETHYLBENZENE	13	0					0.44	1.3
	ISOPROPYLBENZENE	13	0					0.48	1.4
	m,p-Xylenes	13	0					0.91	2.6
	M-DICHLOROBENZENE	13	0					0.053	0.15
	METHYL ACETATE	13	0					0.2	0.56
	METHYL ETHYL KETONE	13	1	11	11	ug/kg	SD003AA	1.2	3.3
	METHYL ISOBUTYL KETONE	13	0					0.74	2.1
	METHYL N-BUTYL KETONE	13	0					1.1	3
	METHYLBENZENE	13	6	0.87	3.5	ug/kg	SD002AA	0.44	1.3
	METHYLBENZENE	13	6	0.87	3.5	ug/kg	SD003AA	0.44	1.3
	METHYLCYLOHEXANE	13	0					0.46	1.3
	O-XYLENE	13	0					0.42	1.2
	STYRENE (MONOMER)	13	0					0.45	1.3
	TERT-BUTYL METHYL ETHER	13	0					0.34	0.94
	TETRACHLOROETHYLENE	13	0					0.42	1.2
	TRANS-1,2-DICHLOROETHENE	13	0					0.4	1.2
	TRANS-1,2-DICHLOROPROPENE	13	0					0.32	0.88
	TRIBOMOMETHANE	13	0					0.41	1.2
	TRICHLOROETHYLENE	13	0					0.42	1.2
	VINYL CHLORIDE	13	0					0.25	0.7

Page 3 of 4

Table 7. Sediment Sample Summary
Koppers Inc. Site, Gainesville, FL

Lab Method	Compound	Number of Samples	Number of Detects	Minimum Detection	Maximum Detection	Units	Location of Maximum Detection	Minimum Reporting Limit	Maximum Reporting Limit
SVOC	2,4,5-TRICHLOROPHENOL	13	0					14	310
	2,4,6-TRICHLOROPHENOL	13	0					38	860
	2,4-DICHLOROPHENOL	13	0					18	410
	2,4-DIMETHYLPHENOL	13	0					20	460
	2,4-DINITROPHENOL	13	0					13	290
	2,4-DINITROTOLUENE	13	0					11	240
	2,6-DINITROTOLUENE	13	0					38	860
	2-CHLORONAPHTHALENE	13	0					17	390
	2-CHLOROPHENOL	13	0					19	430
	2-METHYLPHENOL (O-CRESOL)	13	0					13	290
	2-NITROANILINE	13	0					23	530
	2-NITROPHENOL	13	0					15	340
	3,3'-DICHLOROBENZIDINE	13	0					36	810
	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	13	0					14	310
	3-NITROANILINE	13	0					18	410
	4,6-DINITRO-2-METHYLPHENOL	13	0					9.8	230
	4-BROMOPHENYL PHENYL ETHER	13	0					11	240
	4-CHLORO-3-METHYLPHENOL	13	0					17	390
	4-CHLOROPHENYL PHENYL ETHER	13	0					23	530
	4-METHYLPHENOL (M/P-CRESOL)	13	0					28	620
	4-NITROPHENOL	13	0					18	410
	BENZYL BUTYL PHTHALATE	13	4	57	570	ug/kg	SD002AA	19	430
	BIPHENYL	13	0					160	3600
	BIS(2-CHLORETHOXY)METHANE	13	0					18	410
	BIS(2-CHLOROETHYL)ETHER	13	0					16	360
	BIS(2-CHLOROISOPROPYL) ETHER	13	0					22	500
	BIS(2-ETHYLHEXYL)PHTHALATE	13	9	50	2800	ug/kg	SD003AA	17	390
	CARBAZOLE	13	13	48	1100	ug/kg	SD002AA	17	390
	DIBENZOFURAN	13	10	16	280	ug/kg	SD004BA	14	310
	DIBENZOFURAN	13	10	16	280	ug/kg	SD005AA	14	310
	DIETHYL PHTHALATE	13	0					13	290
	DIMETHYL PHTHALATE	13	0					11	240
	DI-N-BUTYL-PHTHALATE	13	1	570	570	ug/kg	SD002AA	64	1500
	DI-N-OCTYL-PHTHALATE	13	0					16	360
	HEXACHLORO-1,3-BUTADIENE	13	0					18	410
	HEXACHLOROBENZENE	13	0					8.7	200
	HEXACHLOROCYCLOPENTADIENE	13	0					12	270
	HEXACHLOROETHANE	13	0					18	410
	NITROBENZENE	13	0					21	480
	N-NITROSO-DI-N-PROPYLAMINE	13	0					19	430
	N-NITROSODIPHENYLAMINE	13	0					12	270
	P-CHLOROANILINE	13	0					28	620
	PHENOL	13	0					17	390
	P-NITROANILINE	13	0					13	290
TOC	TOTAL ORGANIC CARBON	13	13	910	12000	mg/kg	SD003AA	35	35
$\begin{aligned} & \text { SVOC }=\text { semivolatile organic compound } \\ & \text { VOC }=\text { volatile organic compound } \\ & \mathrm{TOC}=\text { total organic carbon } \\ & \mathrm{mg} / \mathrm{kg}=\text { miligram per kilogram } \\ & \mathrm{ug} / \mathrm{kg}=\text { microgram per kilogram } \\ & \mathrm{ng} / \mathrm{kg}=\text { nanogram per kilogram } \\ & \hline \end{aligned}$									

Page 4 of 4

Table 8. Sediment Results

## Koppers Inc. Site, Gainesville, FL

Sample	Sample Depth (ft.)	Total PAH Concentration	Units	PENTACHLOROPHENOL Concentration Units			ARSENIC   Concentration Units		BAPTEQ   Concentration Units			Dioxin TEQ	
SD001AA	0-0.5	38486.5 J	ug/kg	110	J	ug/kg	2.1	$\mathrm{mg} / \mathrm{kg}$	5449.6 J	J	ug/kg	59.07 J	ng/kg
SD001AB	0-0.5	60415.5 J	ug/kg	83	U	ug/kg	1.7	$\mathrm{mg} / \mathrm{kg}$	8245.6 J	J	ug/kg	53.68 J	$\mathrm{ng} / \mathrm{kg}$
SD002AA	0-0.5	124049 J	ug/kg	380	J	ug/kg	13	$\mathrm{mg} / \mathrm{kg}$	18682		ug/kg	162.25 J	ng/kg
SD003AA	0-0.5	84550 J	ug/kg	820	J	ug/kg	160	$\mathrm{mg} / \mathrm{kg}$	13028.6		ug/kg	752.03 J	ng/kg
SD004AA	0-0.5	3758.6 J	ug/kg	140	J	ug/kg	22	$\mathrm{mg} / \mathrm{kg}$	548.33		ug/kg	292.98 J	$n g / k g$
SD004BA	0.5-2	60289.5 J	ug/kg	1800	J	ug/kg	270	$\mathrm{mg} / \mathrm{kg}$	8662		ug/kg	4601.57 J	ng/kg
SD005AA	0-0.5	40828.5 J	ug/kg	960	J	ug/kg	390	mg/kg	5758.2		ug/kg	1686.58 J	$\mathrm{ng} / \mathrm{kg}$
SD006AA	0-0.5	29212.5 J	ug/kg	1400	J	ug/kg	280	$\mathrm{mg} / \mathrm{kg}$	3661.6 J	J	ug/kg	2890.91 J	$\mathrm{ng} / \mathrm{kg}$
SD006AC	0-0.5	35692.5 J	ug/kg	1800	J	ug/kg	210	$\mathrm{mg} / \mathrm{kg}$	4983.7 J	J	ug/kg	2523.69 J	ng/kg
SD006BA	0.5-2	7164.8 J	ug/kg	200	J	ug/kg	52	$\mathrm{mg} / \mathrm{kg}$	1030.28 J	J	ug/kg	378.91 J	ng/kg
SD007AA	0-0.5	37599.5 J	ug/kg	1000	J	ug/kg	120	$\mathrm{mg} / \mathrm{kg}$	5484 J	J	ug/kg	513.56 J	ng/kg
SD008AA	0-0.5	32717.5 J	ug/kg	950	J	ug/kg	18	$\mathrm{mg} / \mathrm{kg}$	4169 J	J	ug/kg	501.02 J	$\mathrm{ng} / \mathrm{kg}$
SD009AA	0-0.5	48611 J	ug/kg	1300	J	ug/kg	31	mg/kg	6790.5 J		ug/kg	1474.06 J	ng/kg

Notes:
$\begin{array}{ll}\mathrm{mg} / \mathrm{kg}: \text { miligrams per kilogram } & \mathrm{U}=\text { non-detect } \\ \mathrm{ng} / \mathrm{kg}: \text { nanograms per kilogram } & \mathrm{J}=\text { estimated detect }\end{array}$
ug/kg: micrograms per kilogram
Dioxin TEQ values in italics are new results from Vista laboratory

## Appendix A

## Revised Data Summary

			$\begin{gathered} \text { SD001 } \\ \text { SDOOAA } \\ \text { o.0.0.feet } \\ 1212 / 2006 \end{gathered}$	$\begin{array}{\|c} \text { SD001 } \\ \text { SD001AB } \\ 0-0.5 \text { feet } \\ \text { 12/12/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SD002 } \\ \text { SD002AA } \\ \text { 0-0.5 feet } \\ \text { 12/12/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SD003 } \\ \text { SDOO3AA } \\ 0-0.5 \text { feet } \\ \text { 12/12/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SD004 } \\ \text { SD004AA } \\ 0-0.5 \text { feet } \\ \text { 12/12/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SDOO5 } \\ \text { SDOO5AA } \\ 0-0.5 \text { feet } \\ \text { 12/12/2006 } \\ \hline \end{array}$	SD006   SD006AA 12/12/2006	$\begin{array}{\|c\|c} \hline \text { SD006 } \\ \text { SD006AC } \\ 0-0.5 / \text { feet } \\ \text { 12/12/2006 } \\ \hline \end{array}$	$\begin{array}{\|c} \text { SD007 } \\ \text { SD007AA } \\ 0-0.5 \text { feet } \\ \text { 12/12/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SD008 } \\ \text { SD008AA } \\ 0-0.5 \text { feet } \\ \text { 12/12/2006 } \\ \hline \end{array}$	$\begin{array}{\|c} \text { SDO09 } \\ \text { SD009AA } \\ 0-0.5 \text { feet } \\ \text { 12/12/2006 } \\ \hline \end{array}$	$\begin{gathered} \text { SSO01 } \\ \text { SSO01AA } \\ 0-0.2 \text { feet } \\ 12.107 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSOO2 } \\ \text { SsoonA } \\ 0.0 .25+e t \\ 12105 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO02 } \\ \text { SSOO2AC } \\ 0-0.25 \text { feet } \\ 12.05 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO003 } \\ \text { SSO03AA } \\ 0-0.25 \text { feet } \\ 12 / 108 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS004 } \\ \text { SSOO4AA } \\ 0-0.25 \text { feet } \\ 12 / 105 / 2000 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO005 } \\ \text { SSOO5AA } \\ 0-0.25 \text { feet } \\ 12 / 108 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSOO6 } \\ \text { Ssoocta } \\ 0.0 .25+e t \\ 121 / 5 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO07 } \\ \text { SSOOPAA } \\ 0.0 .2 \text { feet } \\ 112 / 04 / 2006 \\ \hline \end{gathered}$
Lab Method	Analyte	Units																			
BNASIM	2-METHYLNAPHTHALENE	ugkg	${ }^{190 \mathrm{UJ}}$	${ }^{180 \mathrm{UJ}}$	${ }^{290 \mathrm{UJ}}$	${ }^{360 \mathrm{UJ}}$	19 UJ	${ }^{110 \mathrm{U}}$	${ }_{110 \mathrm{U}}^{10}$	${ }_{110 \mathrm{U}}^{110}$	85 U	790	82 U	17 U	${ }^{42 \mathrm{~J}}$	${ }^{44 \mathrm{~J}}$	18 U	76 J	${ }^{30 \mathrm{~J}}$	99	21 U
BNASIM	ACENAPHTHENE	ugkg	330 OJ	${ }^{320} \mathrm{UJ}$	${ }^{520 \mathrm{OJ}}$	${ }^{650 \mathrm{OJ}}$	33 U	200 UJ	190 U	190 U	160 O	150 U	150 U	30 U	60 U	60 U	33 U	70 U	30 U	64 J	37 U
ENASIM	${ }_{\text {A }}^{\text {ACENAPHTHYLENE }}$		$\frac{3200}{460}$	${ }^{3100} \mathrm{~J}$	$\frac{500 \cup}{1100}$	${ }^{800} 1700$	110   170	$\frac{1500}{2400}$	1100	${ }^{1300}$	$\stackrel{1200}{2300}$	8160	$\stackrel{1400}{2300}$	${ }_{1} 94$	350 780	${ }_{860}^{370}$	360 300	760	330 370	${ }_{1800}$	${ }_{180}^{58 \mathrm{~J}}$
ENASIM	BENZO(A)ANTHRACENE	ugkg	2700 J	4500 J	7700	4000	180	2200	1600	1900	2100	2400	4000	890	680	710	180	730	710	1000	84 J
ENASIM	BENZO(A)PYRENE	ugkg	3500 J	5300 J	12000	8300	320	3300	2100	2800	3200	2500	4200	770	1000	1100	310	1200	690	1300	98 J
BNASIM	BENZO(B) FLUORANTHENE	ugkg	5200 J	${ }^{7800} \mathrm{~J}$	17000	13000	620	7600	${ }^{44000 ~}$	${ }^{65000}$	${ }^{71000} \mathrm{~J}$	${ }^{50000}$	7300 J	1000	1800	1900	470	1900	1400	2500	190 J
BNASIM	BENZOO(G,H,I)PERYLENE	ugkg	$\stackrel{2500 \mathrm{~J}}{2600}$	3600 J   6000	$\stackrel{11000}{1000}$	8200	360 300	$\begin{array}{r}3300 \\ 350 \\ \hline\end{array}$	2700	3300 3100	3600 310	2200	3300	430	730	770	600   360	1200	$\begin{array}{r}750 \\ 880 \\ \hline 8\end{array}$	1800	92 J
ENASIM	BENZO(K)FLUORANTHENE	ugkg	2600 J	4000 J	10000	6100	300	3500	2900	3100	3100	2600	3600	920	1300	1400	360	1500	810	1600	160 J
BNASIM	CHRYSENE	ugkg	3600 J	${ }_{5600 \mathrm{~J}}^{1300}$	12000	7600	330	3200	2600	$\stackrel{2700}{ }$	3000	3000	4500	1200	1000	1100	${ }^{240}$	900	900	1300	${ }^{140 \mathrm{~J}}$
BNASIM	DiBENZO(A,H)ANTHRACENE	ugkg	880 J	${ }^{1300 \mathrm{~J}}$	3100	2200	${ }^{110}$	1100	710 J	${ }^{10000}$	1000	690	1100	150	230	250	110	310	210	490	23)
BNASIM	FLUORANTHENE	ugkg	6000 J	9900 J	17000	11000	350	3600	2700	3000	3000	4100	6200	1100	700	730		1100	1000	1700	140 J
BNASIM	FLUORENE	ugkg	190 U	${ }^{180 \mathrm{U}}$	$\stackrel{2900}{ }$	$\begin{array}{r}3600 \\ \hline 7500\end{array}$	19 U	$\frac{1100}{300}$	$\stackrel{110 \mathrm{U}}{2001}$	$\stackrel{110 \mathrm{U}}{31001}$	850 3300	790	82 U	17 U	33 U	34 U	${ }^{22} 3$	55 J	27 J	74	210
ENASIM	(NDENO(1,2,3-CD) PYRENE	${ }_{\text {ugkg }}$	$\frac{2500 \mathrm{~J}}{63}$	3700 J   6101	${ }_{98}^{1000}$	${ }^{7600}$	${ }^{350}$	3400 370	${ }_{35}^{2200 \mathrm{~J}}$	3100 J   35 U	${ }^{3300}$	${ }_{27}^{2100}$	${ }^{3200}$	${ }_{5}^{530}$	960 70 J	1000	${ }^{48} \mathrm{~J}$	${ }^{1490}$	45	${ }^{2100}$	$\stackrel{100 \mathrm{~J}}{30}$
ENASIM	PENTACHLOROPHENOL	ugkg	110 J	83 U	380 J	${ }_{820}$	140 J	960 J	1400 J	1800 J	1000 J	950 J	1300 J	120 J	150 J	170 J	${ }_{150}$	56 J	190 J	480 J	150 J
BNASIM	PHENANTHRENE	ugkg	2500 J	4400 J	6300	3300	110	1100	680	770	620	850	640	200	140 J	150 J	59 J	230	190	560	51 J
ENASIM	PYRENE	ugkg	5500 J	9100 J	16000	10000	410	4400	3500	3900	3900	4700	6700	1000	1100	1100	280	1100	1500	1600	160 J
E160.3	RESIDUE, TOTAL	percent	82	85	52	42	83	70	73	75	89	96	92	92	91	90	84	78	91	94	74
E1613/1668	1,2,3,4,4,6,7,8-HEPTACHLORODIBENZOFURAN	ngkg	471.503	${ }^{299.355}$	1218.161	3980.893	1720 J	7188.255 J	12890.735	12368.641	2241.287	2269.698	6956.399	95.769	552	516	${ }^{865.786}$		${ }^{1007.751}$	4940	1382.001
E1613/16688	1,2,3,4,6,7,8,-HEPTACHLORODIBENZO-P-DIOXIN	ngkg	2167.649 J	2332.96 J	4790.201 J	29952.762	12100	61111.156 J	113521.121	${ }^{118482.361}$	22430.718	${ }^{22573.616}$	68762.65	746.826	5550	5330	10366.933		${ }^{7883.233}$	${ }^{37100}$	11911.19
E1613/E1668	1, 1, 3, 4, ,7,8,9.HEPTACHLORODIBENZOFURAN		$\frac{27.425}{15295}$	${ }^{19.036}$	$\frac{87.091}{3132}$	261.249   108799	101	666.384   307713	781.058   337888	$\frac{831.528}{38101}$	$\frac{1499.562}{68959}$	154.4   63276	505.843   027618	6.065   2.742	-33.3	32	51.434   1375		66.966   2805	295 122	84.49   67726
E1613/1668		ngkg	-15.295	${ }^{7.976}$	31.32   1025	108.799   2497	41.7	307.713   77709	${ }^{3377.888}$	${ }^{381.01}$	68.959   17268	63.276   11277	207.618   220319	${ }^{2.742 \mathrm{~J}}$	11.2	10.5	13.745   3.265		28.905	122	
E1613/16168	1,2,3,4,7,8,-HEXACHLORODIBENZO-P-DIOXIN	ngkg	${ }^{15.867}$	17.049	61.845	$\stackrel{248.847}{ }$	116	778.099	627.983	${ }^{897.005}$	172.688	118.777	320.319	6.18	26	25.5	${ }^{37}$		74.532	366	81.23
E1613/1668	1,2,3,3,7,8,8.HEXACHLORODIBENZOFURAN	ngkg	10.203	6.714	30.804	90.76	35.4	272.193	272.906	308.254	${ }^{53.229}$	43.811	145.837	2.384 J	6.97	5.93	6.566		27.546	103	34.0
E1613/1668		ngkg	70.005   1091	${ }_{\text {57.074 }}$	${ }^{228.064}$	873.988   5097	344	${ }^{2296.117}$	${ }^{2916.046}$	${ }^{2744.239}$	478.148   3534	515.033	${ }^{1603.032}$	${ }^{166.72}$	$\begin{array}{r}94.7 \\ \hline 29\end{array}$	-96.2	${ }^{164.232}$		${ }^{1966.911}$	${ }_{211}$	${ }^{253.986}$
E1613/1668	1,2,3,7,8,9,-HEXACHLORODIBENZO-P-DIOXIN	ngkg	${ }^{17.582}$	40.95	${ }_{1}^{131.244}$	${ }_{568.666}$	203	${ }_{1878.327}$	${ }^{215151.293}$	${ }^{2164.638}$	${ }^{460.401}$	${ }_{357.236}$	894.758	${ }^{15.977}$	44.3	41.9	${ }^{159.479}$		${ }_{103.5555}$	34	$\stackrel{1.263}{ }$
E1613/E1668	1,2,3,7, 8-PENTACHLORODIBENZOFURAN	ngkg	${ }^{2.8983}$	${ }^{1.039 ~ J}$	${ }^{4.384 \mathrm{~J}}$	11.247 J	4.02	39.841	34.773	38.232	5.732	${ }^{6.668}$	${ }^{25.513}$	${ }^{0.312 \mathrm{~J}}$	${ }^{925} \mathrm{~J}$	. 82 J	0.525 U		2.258 J	9.44	${ }^{3.924 \mathrm{~J}}$
E1613151668	1,2,3,7,8-PENTACHLOROODBENZOO-P-DIOXIN	ngkg	${ }^{5.735 \mathrm{~J}}$	5.908	${ }^{23.991}$	${ }^{188.148}$	31.4	262.116	${ }^{275.06}$	${ }^{297.866}$	${ }^{45.834}$	${ }^{40.088}$	${ }^{110.689}$	${ }^{2.012 \mathrm{~J}}$	8.01	7.92	5.989 J		${ }^{23.769}$	119	29.11
E1613/E1668		$\frac{\text { ngikg }}{\text { nokg }}$	6.707   6.107	7.043   102 J	34.855   6.034	69.596   17717	70.7	-226.209	$\begin{array}{r}209.471 \\ \hline 5.499\end{array}$	402.492	${ }_{\text {¢ }} 76.552$	64	${ }^{121.49}$	${ }^{1.688}{ }^{\text {J }}$	11.6	10.8	${ }^{8.1743} \mathrm{~J}$		${ }^{23.235}$	194	${ }^{19.484}$
E1613161668		$\underbrace{\substack{\text { ngkg } \\ \text { ngkg }}}_{\text {ng }}$	${ }^{2.16129 \mathrm{~J}}$	${ }_{0}^{1.202 \mathrm{~J}}$	${ }_{\text {¢ }}^{6.034 \mathrm{~J}}$	${ }^{17.717} 9$	$\frac{11.7}{2.5}$	59.613   36.63	¢ ${ }_{\text {53.499 }}$	$\stackrel{60.601}{28.68}$	${ }^{9.3688}$	${ }_{1}^{6.802 \mathrm{U}}$	$\frac{26.123}{5.843}$	${ }_{0}^{0.8685}$	${ }_{1.3}^{2.76}$	$\stackrel{2.65}{1.35}$	${ }_{0}^{0.7439 \mathrm{U}}$		${ }^{3.2672 \mathrm{~J}}$	37.4 2.23	${ }^{7.5993}$
E1613/E1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	kg	0.971 J	0.489 U	2.096	7.099	2.28	20.378	18.272	20.158	3.117	1.934	5.994	0.198 U	1.08	1.11	0.394 J		1.096 J	6.43	2.089
E1613/16168	OCTACHLORODIBENZOFURAN	ngkg	2259.883	1547.207	${ }^{7043.425}$	25420.239	7070	25200.628 J	28977.468	43067.986 J	17032.908	16981.36	54657.892	458.957	3210	3070	5567.71		4225.438	19800	6975.365
E1613/11668	OCTACHLORODIBENZO.-P.DIOXIN	Rgkg	27861.099 J	21217.949 J	63809.89 J	347508.633 J	107000	358022.507 J	2048970.2 J	543262.568 J	55252.911 ${ }^{\text {J }}$	83836.084 J	98634.635 J	6956.787 J	53000	51900	${ }^{87059.257 J}$		54339.63 J	350000	${ }_{93948.363 \mathrm{~J}}$
E16131/1668	TOTAL HEPTACHLLORINATED DIBENZOFURANS	ngkg	${ }^{21599.886}$	${ }_{\text {1277.101 }}^{1251}$	${ }^{4984.087}$	${ }^{1772992.235}$	${ }^{6250 \mathrm{~J}}$	${ }^{321880.258}$	${ }^{38893.095}$	${ }^{131299.932}$	${ }^{9718.995}$	9701.59	${ }^{225959.791}$	${ }^{372.964}$	$\stackrel{2480}{23700}$	${ }^{2320}$	${ }^{4013.522}$		${ }^{36878.805}$	${ }^{193000}$	5565.629
E1613/161688	OTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	ngkg	${ }^{15028.326}$	${ }^{95122.174}$	${ }^{23119.193}$	${ }^{89041.647}$	${ }^{38000}$	86441.89	${ }^{975471.885}$	${ }^{1292393908}$	${ }^{38674.621}$	${ }^{42952.016}$	62649.412	3274.27	3370	33800	${ }^{36959.214}$		${ }^{255666.216}$	${ }^{199900}$	${ }^{39697.859}$
E16131E1668	TOTAL HEXACHLORINATED DIBENZOFURANS	ngkg	631.498	${ }^{327.093}$	1299.486	4769.573	1780 J	${ }^{1151212312}$	7476.872	${ }^{8199.636}$	1484.704	${ }^{2521.661}$	${ }^{39888.053}$	105.913	432	390 J	${ }^{619.97}$		${ }^{10264.355}$	${ }^{4860} \mathrm{~J}$	${ }^{1789.126}$
E16133/151688		${ }_{\text {ngikg }}$	${ }^{962.766}$	819.129 63.436	2580.304   266.335	${ }_{88801.578}^{88}$	${ }_{3260}^{4200}$	${ }^{28829.7116}$ 22159	${ }_{21059.855}^{2999}$	${ }_{231893.174}$	5752.868 418.301	5648.478 340.116	${ }^{14433.554} 1056.643$	$\frac{281.288}{43.76}$	2310	$\stackrel{2250}{56.3 J}$	3196.06   49.764		${ }^{2543,798} 163.551$	${ }_{\text {16100 }}^{1673}$	
E1613/161688	TOTAL PENTACHLORIINATED DIBENZO-P.-DIOXINS	nglkg	58.86	71.137	243.471	${ }^{779.834}$	253	2050.443	2012.418	2126.308	372.893	${ }^{295.654}$	765.171	26.007	105	103	149.454		${ }_{2} 215.062$	859	212.696
E16131/1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ngkg	15.456	12.677	${ }^{60.757}$	189.161	45.1	${ }^{423.346}$	${ }^{351.82}$	337.857	${ }^{61.331}$	${ }^{45.955}$	${ }^{132.492}$	${ }^{21.049}$	24.8	24.6	6.932		${ }^{27.493}$	110 J	24.10
E16131/1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	ngkg	9.214	${ }^{5.934}$	29.991	${ }^{46.249}$	30.4	183.054	143.364	152.94	25.415	20.132	${ }^{49.024}$	${ }^{8.239}$	19	21.2	2.768		${ }^{12.796}$	66.9	13.002
SW6020	Antimony	mgkg	${ }^{0.43 \mathrm{~J}}$	0.38 UJ	1.43	8.6 J	0.49J	4.75	4.2 J	3.6 J	2.05	0.35 UJ	${ }^{0.53 \mathrm{~J}}$	${ }^{0.46 \mathrm{~J}}$	0.37 UJ	0.39 J	0.39 UJ	43 UJ	${ }^{0.344}$	0.36 UJ	0.45 UJ
SW6020	ARSENIC	mgkg	2.1	1.7	13	160	22	390	280	210	120	18	${ }^{31}$	${ }^{20}$	4.15	5.9 J	6.0 J	5.8	5.0 J	17	4.2
SW6020	BARIUM	mgkg	110	${ }^{8.17}$	46	82	35	74	51	39	23	6.5	${ }^{13}$	13	11 J	15 J	42	30	16	18	6.5 E
SW6020	CAROMIUM	$\frac{\mathrm{malkg}}{\text { malkg }}$	$\frac{0.42 \mathrm{~J}}{9}$	$\frac{0.32 \mathrm{U}}{8.5}$	$\frac{1.7}{56}$	$\frac{3.1}{500}$	$\frac{0.32 \mathrm{U}}{57}$	$\frac{1.1}{570 \mathrm{~J}}$	0.81 450 J	0.63 340 J	$\frac{0.35 \mathrm{~J}}{220 \mathrm{~J}}$	$\frac{0.30 \mathrm{U}}{22 \mathrm{~J}}$	${ }_{0}^{0.29 \mathrm{U}}$	${ }_{0}^{0.29 \mathrm{U}}$	$\frac{0.32 \mathrm{U}}{4.5 \mathrm{~J}}$	$\frac{0.32 \mathrm{U}}{6.7 \mathrm{~J}}$	$\frac{0.34 \mathrm{U}}{13 \mathrm{~J}}$	${ }_{0}^{0.37 \mathrm{U}}$	$\frac{0.29 \mathrm{U}}{11 \mathrm{~J}}$	$\frac{0.31 \mathrm{U}}{20}$	$\frac{0.39 \mathrm{U}}{81}$
SW6020	COPPER	mgkg	18	16	64	260	32	310	240	180	120	14	26	6.8	5.15	7.3 J	9.15	11	6.7 J	18	5
SW6020	LEAD	mgkg	62 J	170 J	280	430	42	75	59	51	41	6.5	12	35 J	18 J	25 J	6.9 J	14	14 J	16	3.7
SW6020	SELENIUM	mgkg	1.00	0.93 U	1.5 U	3.1	0.93 U	1.9	1.10	1.10	0.93 U	0.87 U	${ }^{0.85 \mathrm{U}}$	0.85 U	0.92 U	0.92 U	0.97 U	1.10	0.85 U	0.89 U	1.14
SW6020	SILVER	mglkg	0.46 U	0.44 U	0.72 U	0.87 U	${ }^{0.44 \mathrm{U}}$	${ }^{1.53 U}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.48 \mathrm{U}}$	0.42 U	0.39 U	0.38 U	0.39 U	0.41 U	0.42 U	0.44 U	${ }^{148} \mathrm{U}^{14}$	0.38 U	0.40 U	${ }^{12.514}$
SW6020	VANADIUM (FUME OR DUST)	mglkg	6.43	4.15	20	28	12	16 J	13 J	8.6)	5.45	1.30	2.71	4.2	1.61	2.33	18	7.5	5.6	3.9	15
SW7471	MERCURY	mgkg	0.032	0.026 J	0.14	0.50	0.18	1.6	1.45	0.30 J	0.70	0.087	0.16	0.12	0.41	0.32	0.039 J	0.20	${ }^{0.066 \mathrm{~J}}$	0.095	${ }^{0.043}$
SW8260	1,1,1-TRRCHLOROETHANE	ugkg	$0.15{ }^{0}$	${ }^{0.150}$	${ }^{0.350 ~}$	$\stackrel{0.340}{ }$	${ }_{0}^{0.150}$	$\stackrel{0.25 U}{0.24}$	$\stackrel{0.210}{012}$	0.20		${ }_{0}^{0.13 \mathrm{U}}$	$0.14{ }^{0}$	${ }^{0.144}$	$0.15{ }^{0}$	$0.15{ }^{0}$	${ }^{0.150}$	0.24 U	${ }^{0.144}$	0.13 U	${ }^{0.284}$
SW8260	-1,1,2.2-IETRACHLOROETHANE		0.0810	0.083	-0.20	${ }_{0}^{0.190}$	0.080 U	O.140	0.12 U 0.231	${ }^{0.11 \mathrm{U}}$	-0.075	0.069U	0.076U	0.072 U	0.080 U	$0.079{ }^{0}$	0	0.13U	0.073 U	0.071U	0.15U
SW8260			$\stackrel{0.160}{0.077}$	$\stackrel{0.170}{0.079}$	0.38 ${ }^{0.190}$	0.37U	0.16U	$\stackrel{0.270}{0.13}$	$\stackrel{0.23 \mathrm{U}}{0.11 \mathrm{u}}$	$\frac{0.210}{0.11 \mathrm{u}}$	$\stackrel{0.15 \mathrm{U}}{0.072 \mathrm{U}}$	${ }_{0}^{0.14060}$	$\stackrel{0.150}{0.073 \mathrm{U}}$	$\stackrel{0.150}{0.069}$	$\stackrel{0.167}{0.077}$	$\stackrel{0.160}{0.075}$	$\stackrel{0.160}{0.076 \mathrm{U}}$	0.25 U 0.13 u	$\stackrel{0.159}{0.069}$	$\stackrel{0.14 \mathrm{U}}{0.068 \mathrm{U}}$	O.300
SW8260	1,1.-ICHLOROETHYLENE	ugkg	0.21 U	0.22 U	0.50 U	0.48 U	0.21 U	0.35 U	0.30 U	0.28 U	0.20 U	0.18 U	0.20 U	0.19 U	0.21 U	0.21 U	0.21 U	0.33 U	0.19 U	0.19 U	0.39 U
SW8260	1,2,4-TRICHLOROBENZENE	ugkg	$0.19{ }^{0}$	0.19 UJ	0.44 UJ	0.43 UJ	0.190	0.31 UJ	0.26 UJ	0.24 R	0.18 UJ	0.16 UJ	0.18 U	$0.17{ }^{0}$	0.19 UJ	0.18 UJ	0.18 U	0.29	$0.17{ }^{0}$	$0.17{ }^{\text {U }}$	0.34 U
SW8260	1, 12-DIBROMO-3-CHLOROPROPANE (DBCP)	$\underbrace{\substack{u g k g \\ \text { ugkg }}}_{\text {ug }}$	0.60 U 0.069 U	$\frac{0.61 \mathrm{UJ}}{0.070 \mathrm{U}}$	$\frac{1.5 \mathrm{UJ}}{0.17 \mathrm{U}}$	$\frac{1.4 \mathrm{UJ}}{0.16 \mathrm{U}}$	${ }_{0}^{0.6068}$	${ }_{0}^{0.99 \mathrm{UJ}}$	0.84UJ	0.79 R 0.090 U	0.56 UJ	0.51 UJ 0.059 U	0.57 U 0.065 U	0.54 U 0.061 U	${ }_{0}^{0.600 \mathrm{uJ}} 0$	${ }_{0}^{0.59 \mathrm{UJ}} 0$	$\stackrel{0.59 \mathrm{U}}{0.067 \mathrm{U}}$	$\frac{0.95 \mathrm{U}}{0.11 \mathrm{U}}$	0.54U	0	
SW8260	1,2-DICHLOROBENZENE	ugkg	0.096 U	0.098 UJ	0.23 UJ	0.22 UJ	0.094 U	0.16 UJ	0.14 UJ	0.13 R	0.089 UJ	0.082 UJ	0.090 U	0.085 U	0.095 UJ	0.093 UJ	0.094 U	0.15 U	0.086 U	0.084 U	0.18
SW8260	12.-DICHLOROETHANE	ugkg	0.13 U	0.13 U	0.30 U	0.29 U	0.13 U	0.21 U	0.18 U	0.16 U	0.12 U	0.11 U	0.12 U	0.11 U	0.13 U	0.12 U	0.12 U	0.20 U	0.11 U	0.11 U	0.23 U
Sw8260	1,2-DICHLOROPROPANE	ugkg	0.066 U	0.068 U	0.16 U	0.16 U	0.066 U	0.11 U	0.093 U	0.087 U	0.062 U	0.057 U	0.063 U	0.059 U	0.066 U	0.065 U	0.065 U	0.11 U	0.060 U	0.059 U	0.13 U
SW8260	1,4-4IICHLOROBENZENE	ugkg	0.11 U	0.11 UJ	0.26 UJ	0.25 UJ	0.11 U	0.18 UJ	0.15 UJ	${ }^{0.14 \mathrm{R}}$	0.099 UJ	0.091 UJ	0.10 U	0.095 U	0.11 UJ	0.11 UJ	0.11 U	$0.17{ }^{0}$	0.096 U	0.094 U	0.20 U
SW8260	ACETONE	ugkg	3.10	3.6 J	25 J	140 J	${ }^{3.8 \mathrm{~J}}$	8.55	66 J	15 J	3.43	${ }^{7.1}{ }^{1}$	${ }_{5}^{5.65}$	2.8 U	${ }^{3.10}$	3.0 U	3.0 U	4.9 U	2.8 U	2.7U	89 J
SW8260	BENZENE	ugkg	${ }^{0.48 \mathrm{U}}$	0.49 U	1.20	1.10	0.47 U	0.79 U	0.67 U	${ }^{0.63 U}$	${ }^{0.45 U}$	${ }^{0.410}$	0.45	${ }^{0.430}$	${ }^{0.480}$	${ }^{0.475}$	0.47U	${ }^{0.750}$	${ }^{0.430}$	- 0.42 U	${ }^{0.890}$
SW8260	BROMODICHLOROMETHANE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{Ogkg}}$	O.36 ${ }^{0.39 \mathrm{U}}$	0.37 U	0.85 ${ }^{0.84 \mathrm{U}}$	0.82U	0.35 U	0.59 U	0.50 ${ }^{0.50 \mathrm{U}}$	0.47 ${ }^{0.510 J}$	0.33 U 0.37 UJ	0.31 U 0.34 UJ	0.34 U   0.37 U	0.32 U 0.35 U	${ }_{0}^{0.360 ~} 0$	${ }_{0}^{0.35 \mathrm{U}^{\text {UJ }}}$	${ }_{0}^{0.395 \mathrm{UJ}}$	${ }_{0}^{0.560 \mathrm{U}}$	$\frac{0.32 \mathrm{U}}{0.36 \mathrm{UJ}}$	$\frac{0.32 \mathrm{U}}{0.35 \mathrm{UJ}}$	0.66U
SW8260	CARBON DISULFIDE	ugkg	2.00	2.00	4.71	4.50	2.00	3.30	2.8 U	2.6 U	1.90	1.74	1.90	1.8 U	2.00	1.90	2.00	3.10	1.8 U	1.8 U	3.70
SW8260	CARBON TETRACHLORIDE	ugkg	${ }^{0.43 U}$	${ }^{0.44 U^{4}}$	1.10	0.994	$\stackrel{0.43 \mathrm{U}}{ }$	${ }^{0.710 J}$	0.60 UJ	0.56 UJ	${ }^{0.40 \mathrm{UJ}}$	${ }^{0.37 \mathrm{UJ}}$	0.41 UJ	${ }^{0.38 \mathrm{U}}$	${ }_{0}^{0.43 U^{4}}$	${ }^{0.42 U^{4}}$	${ }_{0}^{0.42 \mathrm{U}}$	$\stackrel{0.68 \mathrm{U}}{0}$	0.39	${ }^{0.38 \mathrm{U}}$	0.80 ${ }^{\text {U }}$
SW8260	${ }_{\text {CFF--11 }}$	${ }_{\text {ug }}^{\substack{\text { ugkg } \\ \text { ugkg }}}$	$\stackrel{0.32 \mathrm{U}}{0.39 \mathrm{u}}$	$\stackrel{0.33 \mathrm{U}}{0.40 \mathrm{u}}$	0.76 U 0.94 U	0.74 U 0.90 U	$\stackrel{0.32 \mathrm{U}}{0.39 \mathrm{u}}$	0.53 U   0.65 JJ	${ }^{0.45 \mathrm{U}} 0$	${ }_{0}^{0.42 \mathrm{U}} 0$	${ }_{0}^{0.30 \mathrm{O}} 0$	${ }_{0}^{0.284 \mathrm{UJ}}$	0.30 U 0.37 UJ	$\stackrel{0.39 \mathrm{U}}{0.35}$	0.320 0.390	0.310 0.380	$\stackrel{0.320}{0.39}$	0.50 U 0.62 u		0.28 U 0.35 u	0.59 U   0.73 u
SW220	CHLORINATED FLUOROCARBON (FREON 113)	ugkg	${ }^{0.44 U}$	0.45 U	1.10	1.10	${ }^{0.44 \mathrm{U}}$	0.73 U	0.62 U	${ }^{0.58 \mathrm{U}}$	0.41 U	0.38 ${ }^{\text {U }}$	${ }^{0.42 \mathrm{U}}$	0.40 U	${ }^{0.44 \mathrm{U}}$	${ }^{0.43 U}$	${ }^{0.44 U}$	0.70U	0.40 U	0.39 U	${ }^{0.82 \mathrm{U}}$
N8260	CHLOROBENZENE	L9kg	0.49 U	0.50 U	1.2 U	1.2 U	0.49 U	0.81 U	0.69 U	0.64 U	0.46 U	0.42 U	0.46 U	0.44 U	0.49 U	0.48 U	0.48 U	0.77 U	0.44 U	0.43 U	0.91 U
SW8260	CHLORODIBROMOMETHANE	$\frac{\text { ugkg }}{\text { Lokg }}$	$\frac{0.31 \mathrm{U}}{0.4401}$	$\frac{0.32 \mathrm{U}}{0.45 \mathrm{UJ}}$	$\frac{0.73 \mathrm{U}}{110}$	$\frac{0.71 \mathrm{U}}{1101}$	$\frac{0.31 \mathrm{U}}{0.44 \mathrm{U}}$	$\frac{0.514}{0.73 U}$	0.43 U 0.62 U	-0.40	$\frac{0.29 \mathrm{U}}{0.41 \mathrm{u}}$	$\frac{0.27 \mathrm{U}}{0.38 \mathrm{U}}$	0.290	0.28U	0.310	0.30	$\frac{0.30 \mathrm{U}}{0.44 \mathrm{U}}$	0.490	0.28 0	0.27 U	0.57
SW8260	CHLOROFORM	uglkg	0.42 U	0.43 U	0.99 U	${ }^{0.96 \mathrm{U}}$	0.41 U	0.69 U	0.59 U	0.55 U	0.39 U	0.36 U	0.40 U	0.37 U	0.42 U	0.41 U	0.41 U	0.66 U	0.38 U	0.37 U	0.77 U
W8260	CHLOROMETHANE	ugkg	0.55 U	0.56 U	1.4 U	1.30	0.55 U	0.91 U	0.78 U	0.72 U	0.52 U	0.47 U	0.52 U	0.49 U	0.55 U	0.54 U	0.54 U	$0.87{ }^{\text {U }}$	0.50 U	0.49 U	1.10
SW8260	CIS-1,2-DICHLOROETHYLENE	ugkg	0.32 U	0.33 U	0.76 U	0.74 U	0.32 U	0.53 U	0.45 U	0.42 U	0.30 U	0.28 U	0.30 U	0.29 U	0.32 U	0.31 U	0.32 U	0.50 U	0.29 U	0.28 U	0.59 U


			$\begin{gathered} \text { sDo01 } \\ \text { sDo011A } \\ 0.0 .5 \text { feet } \\ 12112120006 \\ \hline \end{gathered}$		$\begin{array}{\|c} \text { SDOO2 } \\ \text { SDOO2AA } \\ \text { o-0.5 feet } \\ \text { 121212 } 22006 \\ \hline \end{array}$			$\begin{array}{\|c\|c\|} \hline \text { SDOO5 } \\ \text { SDOO5AA } \\ \text { o.0.5eet } \\ 121212 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SD006 } \\ \text { SD006AA } \\ 0-0.5 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$		$\begin{gathered} \text { SD007 } \\ \text { SD007AA } \\ 0-0.5 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \text { SDOO8 } \\ \text { SDooosA } \\ 0-0.5 \text { feet } \\ 1212122006 \\ \hline \end{array}$	$\begin{array}{c\|} \text { SD009 } \\ \text { SDOO9AA } \\ 0-0.5 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline \text { SS001 } \\ \text { SSo01AA } \\ 0 .-0.25 \text { feet } \\ \text { 12/107/2006 } \\ \hline \end{array}$	$\begin{gathered} \text { SS002 } \\ \text { SS002AA } \\ 0-0.25 \text { feet } \\ 12 / 105 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { SSOO2 } \\ \text { SSOO2AC } \\ \text { o-0.25 eet } \\ 12105 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c} \text { SS003 } \\ \text { SSo03AA } \\ \text { o-0.25 feet } \\ \text { 12/108/2006 } \\ \hline \end{array}$		$\begin{gathered} \text { Ss005 } \\ \text { ssoo5AA } \\ 0-0.25 \text { feet } \\ 12 / 108 / 2006 \\ \hline \end{gathered}$	SS006   0-0.25 feet 12/05/2006	$\begin{gathered} \text { SS007 } \\ \text { SSOO7AA } \\ 0-0.25 \text { feet } \\ 121 / 04 / 20006 \\ \hline \end{gathered}$
Lab Methe	Analye	Units																			
SW8260	CIIS-1,3-DICHLOROPROPENE	ugkg	0.36 U	0.37 U	0.85 U	${ }_{0} 0.82 \mathrm{U}$	0.35 U	0.59 U	0.50 U	${ }^{0.47 \mathrm{U}}$	0.33 U	${ }^{0.31 \mathrm{U}}$	0.34 U	0.32 U	0.36 U	0.35 U	0.35 U	0.56 U	0.32 U	0.32 U	0.66 U
SW8260	CYCLOHEXANE	ugkg	0.47 U	${ }^{0.48 \mathrm{U}}$	1.2 U	1.10	${ }^{0.46 U^{4}}$	0.77 UJ	${ }^{0.66 \mathrm{UJ}}$	0.61 UJ	${ }^{0.440 J}$	${ }^{0.40 ~ U ~}$	0.44 UJ	${ }^{0.42 \mathrm{U}}$	${ }^{0.46 \mathrm{U}}$	${ }^{0.46 \mathrm{U}}$	${ }^{0.464}$	$0.74{ }^{0}$	${ }^{0.42 \mathrm{U}}$	0.41 U	${ }^{0.86 \mathrm{U}^{\text {U }}}$
SW8260	DICHLOROMETHANE	ugkg	${ }^{0.48 \mathrm{U}}$	${ }^{0.493}$	1.20	1.14	$\stackrel{0.47 \mathrm{U}}{0}$	0.79 U	$\stackrel{0.67 \text { U }}{0}$	$\stackrel{0.63 \mathrm{U}}{0}$	0.45 U	$\stackrel{0.41 \mathrm{U}}{0.40}$	0.45 U	$\stackrel{0.43 \mathrm{U}}{0}$	${ }_{0}^{0.48 \mathrm{U}}$	$\xrightarrow{0.47 \mathrm{U}}$	0.47 U	$\stackrel{0.75 \mathrm{U}}{0}$	${ }^{0.43 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{ }$	${ }_{0}^{0.899}$
SW8260	ETHYLBENZENE	ugkg	0.52 U	${ }^{0.53 \mathrm{U}}$	1.30	1.2 U	0.51 U	0.85 U	${ }^{0.72 U^{4}}$	${ }^{0.674}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.44 \mathrm{U}}$	${ }^{0.499}$	${ }^{0.46 \mathrm{U}}$	${ }^{0.51 \mathrm{U}}$	${ }^{0.50 \mathrm{U}}$	${ }^{0.510}$	${ }^{0.810}$	${ }^{0.4614}$	${ }^{0.46 U^{4}}$	$0.95{ }^{1.4}$
SW8260	ISOPROPYLBENZENE	ugkg	0.57 U	0.58 UJ	$1.4 \mathrm{UJ}^{\text {d }}$	${ }_{1}^{1.30 J}$	0.56 U	0.93 UJ	0.79 UJ	0.74 R	0.53 UJ	0.48 UJ	0.53 U	0.50 U	0.56 UJ	0.55 UJ	${ }^{0.56 U}$	0.89 U	0.51 U	${ }^{0.50} \mathrm{U}$	1.10
SW8260	m,p-xylenes	ugkg	1.10	1.10	2.6 U	$\underline{2.5 U}$	1.14	1.8 U	1.50	1.4 U	$0.99 \mathrm{U}^{0}$	$0.91{ }^{\text {a }}$	1.00	$0.95{ }^{0}$	1.10	1.10	1.10	1.7 U	$0.96 \mathrm{U}^{0}$	0.94 U	2.00
SW8260	M-IICHLOROBENZENE	ugkg	0.061U	0.063 U J	0.150J	0.15 UJ	${ }^{0.0614}$	0.110	0.086 U ${ }^{\text {O }}$	0.080 R	0.057 UJ	${ }^{0.053 ~ U ~}{ }^{\text {a }}$	0.058 U	${ }^{0.055 ~ U ~}$	0.061 UJ	${ }^{0.060 ~ U ~}{ }^{\text {a }}$	0.060U	O.097 U	0.055 U	0.054U	0.12U
SW8260	METHYL ETHYL KETONE	ugkg	1.4 U	1.40	3.3 U	11 J	1.40	2.30	1.90	1.8 U	1.30	1.2 U	1.3 U	1.2 U	1.40	1.40	1.40	2.2 U	1.30	1.2 U	2.50
SW8260	METHYL LSOBUTYL KETONE	ugkg	0.87	0.89 U	2.10	2.00	-0.86 U	1.5U	1.30	1.2 U	$\stackrel{0.81 \mathrm{U}}{12 \mathrm{u}}$	$\stackrel{0.74 u^{114}}{ }$	$\stackrel{0.82 \mathrm{U}}{12 \mathrm{u}}$	$\stackrel{0.77 \mathrm{U}^{114}}{ }$	${ }^{0.866}$	$\stackrel{0.85 \mathrm{U}}{1.24}$	${ }_{0}^{0.85 \mathrm{U}}$	1.4 U	$\stackrel{0.78 \mathrm{U}}{18}$	$\stackrel{0}{0.774}$	${ }_{2}^{1.70}$
SW8260	MEETHYL N-BUTYL KETONE	ugkg	1.30	1.30	3.00	2.90	1.30	2.10	1.8 U	1.6 U	1.2 U	1.10	1.2 U	1.10	1.3 U	1.20	1.2 UJ	2.00	1.1 UJ	1.10	2.30
SW8260	METHYL EENZENE	ugkg	0.88 J	0.87 J	3.5 J	3.5 J	0.96 J	0.85 U	0.72 U	0.67 U	${ }^{0.48 \mathrm{U}}$	0.44 U	0.49 U	${ }^{0.46 \mathrm{U}}$	0.51 U	${ }^{0.50 \mathrm{U}}$	0.51 U	${ }^{2.810}$	${ }^{0.46 \mathrm{U}}$	${ }^{0.46 \mathrm{U}}$	0.95 U
SW8260	METHYLCYLOHEXANE	uglkg	0.54 U	$\stackrel{0.55}{0}$	1.30	1.30	0.54 U	0.89 UJ	0.76 UJ	$0.71{ }^{0.64}$	0.50 UJ	0.46 UJ	0.51 UJ	${ }^{0.48 \mathrm{U}}$	0.54 U	0.53 U	0.53 U	0.85	0.49 U	0.48 U	1.00
SW8260	O-XYLENE	ugkg	0.49 U	0.50 U	1.2 U	1.2 U	0.49 U	0.81 U	0.69 U	0.64 U	0.46 U	0.42 U	0.46 U	0.44 U	0.49 U	0.48 U	0.48 U	0.77 U	0.44 U	0.43 U	0.91 U
SW8260	STYRENE (MONOMER)	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} k \mathrm{~kg}}$	0.53 U 0.39 u	$\frac{0.54 \mathrm{U}}{0.40 \mathrm{U}}$	$\frac{1.3 \mathrm{U}}{0.94 \mathrm{U}}$	$\frac{1.3 \mathrm{U}}{0.90 \mathrm{U}}$	$\frac{0.52 \mathrm{U}}{0.39 \mathrm{u}}$	$\frac{0.87 \mathrm{U}}{0.65 \mathrm{U}}$	$\frac{0.74 \mathrm{U}}{0.55 \mathrm{U}}$	$\frac{0.69 \mathrm{U}}{0.51 \mathrm{u}}$	$\frac{0.49 \mathrm{U}}{0.37 \mathrm{U}}$	$\frac{0.45 \mathrm{U}}{0.34 \mathrm{U}}$	$\frac{0.50 \mathrm{U}}{0.37 \mathrm{U}}$	$\stackrel{0.47 \mathrm{U}}{0.35 \mathrm{U}}$	$\frac{0.52 \mathrm{U}}{0.39 \mathrm{u}}$	$\frac{0.51 \mathrm{U}}{0.38 \mathrm{u}}$	$\frac{0.52 \mathrm{U}}{0.39 \mathrm{u}}$	$\frac{0.83 \mathrm{U}}{0.62 \mathrm{u}}$	$\frac{0.48 \mathrm{U}}{0.36 \mathrm{U}}$	$\xrightarrow{0.47 \mathrm{U}}$	$\frac{0.98 \mathrm{U}}{0.73 \mathrm{u}}$
SW8260	TETRACHLOROETHYLENE	ugkg	0.49 U	0.50 U	1.2 U	1.20	0.49 U	0.810	0.69 U	0.64 U	0.46 U	0.42 U	0.46 U	0.44 U	0.49 U	${ }_{0}^{0.48 \mathrm{U}}$	0.48 U	0.77 U	0.44 U	0.43 U	0.91 U
SW8260	TRANS-1,1-2-DICHLOROETHENE	ugkg	0.47 U	0.48 U	1.2 U	1.14	0.46 U	0.77 U	0.66 U	0.61 U	0.44 U	0.40 U	0.44 U	0.42 U	0.46 U	0.46 U	0.46 U	0.74 U	0.42 U	0.41 U	0.86 U
SW8260	TRANS-1,2-IICHLOROPROPENE	ugkg	0.37 U	${ }^{0.38 \mathrm{U}}$	${ }^{0.88 \mathrm{U}}$	${ }^{0.85 \mathrm{U}}$	0.37 U	0.61 U	${ }^{0.52 \mathrm{U}}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.35 \mathrm{U}}$	${ }^{0.32 \mathrm{U}}$	${ }^{0.35 U}$	${ }^{0.33 \mathrm{U}}$	0.37 U	${ }^{0.36 \mathrm{U}}$	${ }_{0} 0.36 \mathrm{U}$	0.58 U	${ }^{0.33 \mathrm{U}}$	${ }^{0.33 \mathrm{U}}$	0.68 U
SW8260	TRIBCMOMETHANE	uglkg	0.48 U	0.49 U	1.24	1.14	0.47 U	$0.79{ }^{0 .}$	0.67 U	0.63 U	0.45 U	0.41 U	0.45 U	${ }^{0.434}$	0.48 U	0.47 U	0.47 U	$0.75{ }^{0}$	${ }^{0.430}$	0.42 U	0.89 U
SW8260	TRRICHLOROETHYLENE	ugkg	0.49	0.50	1.2 U 0 0.70 U	1.2U	0.49 U 0.29 u	0.81U	$\xrightarrow{0.69 \mathrm{U}}$	0.64U	0.46 U	-0.42	0.46U	0.44U	0.49	0.48 U	$\frac{0.48 \mathrm{U}}{0.29 \mathrm{U}}$	0.77 U 0.47 U	0.44 U 0.27 U	0.43 U 0.26 U	0.91U
SW8270	2,4,5-TRICHLOROPHENOL	ugkg	160 U	160 U	25 U	310 U	16 U	19 U	18 U	18 U	15 U	14 U	15 U	15 U	15 U	15 U	16 U	17 U	15 U	14 U	18 U
SW8270	2.4,6,-TRICHLOROPHENOL	ugkg	440 U	430 U	70 U	860 U	44 U	52 U	50 U	48 U	41 U	38 U	40 U	40 U	40 U	40 U	43 U	47 U	40 U	39 U	49 U
SW8270	2,4-DICHLOROPHENOL	ugkg	210 U	200 U	33 U	410 U	210	25 U	24 U	23 U	20 U	18 U	19 U	19 U	19 U	19 U	210	22 U	19 U	19 U	23 U
SW8270	2,4-DIMETYYLPHENOL	ugkg	${ }_{20}^{240}$	${ }_{230}^{230}$	37 U	${ }^{4600}$	23U	28 U	27 U	26 U	22 U	20 U	210	210	210	22 U	$\stackrel{23 U}{15}$	25 U	210	210	26 U
SW8270	2.4-DIINTROPHENOL	uglkg	150 U	150 U	24 U	2900	15 U	18 U	174	16 U	14 U	13 U	14 U	14 U	14 U	14 U	15 U	16 U	14 U	13 U	17 U
SW8270	2,4-DIINTROTOLUENE		$\frac{120 U}{440 \mathrm{U}}$	120 U 430 U	19 U	$\frac{240 U}{860}$	$\frac{12 U}{44}$	$\frac{14 U}{52 U}$	$\frac{140}{50}$	14 U	$\frac{12 U}{410}$	11 U   38	110	110	110	11 U	$\frac{12 \mathrm{U}}{43}$	$\frac{13 U}{47}$	110	110 39	14 U
SW8270	2.CHLORONAPHTHALENE	ugkg	200 U	190 U	31 U	390 U	20 U	23 U	22 U	22 U	18 U	17 U	18 U	18 U	18 U	18 U	20 U	210	18 U	18 U	22 U
SW8270	2.CHLOROPHENOL	ugkg	220 U	220 U	35 U	430 U	22 U	26 U	250	24 U	210	19 U	20 U	20 U	20 U	20 U	22 U	24 U	20 U	20 U	25 U
SW8270	2-METHYLPHENOL (O-CRESOL)	ugkg	150 U	150 U	24 U	290 U	15 U	18 U	17 U	16 U	14 U	13 U	14 U	14 U	14 U	14 U	15 U	16 U	14 U	13 U	17 U
SW8270	2-NITROANLILINE	ugkg	${ }^{2700}$	${ }^{260 \mathrm{U}}$	${ }_{4}^{43 U}$	${ }^{5300}$	${ }^{27 U}$	32 U	310	30 U	25 U	23 U	24 U	24 UJ	25 UJ	25 UJ	27 U	29 UJ	25 U	24 UJ	30 UJ
SW8270	2-NITROPHENOL	uglkg	180U	$\stackrel{1700}{ }$	$\frac{27 U}{664}$	340 U	17 U	20 U	20 U	19 U	16 U	15 U	16 U	16 U	16 U	16 U	17 U	18 U	16 U	15 U	19 U
SW8270	${ }^{\text {3,3.-DICHLOROBENZIIINE }} 3$	ugkg	420 U	400 U	66 U	810 U	41 U	49 U	47 U	46 U	39 U	36 U	37 U	37U	$\frac{38 \mathrm{UJ}}{15}$	$\frac{38 \mathrm{UJ}}{15}$	41 U	$\xrightarrow{44 \mathrm{UJ}}$	38 U	$\frac{370 J}{1701}$	46 U
SW8270	${ }^{\text {3 }}$ 3.5.5-TRIMIMETHYL-2-CYCLOHEXENE-1-ONE	$\frac{u g k g}{u g k g}$	$\frac{160 \mathrm{U}}{210 \mathrm{U}}$	${ }^{160 \mathrm{U}}$	$\frac{250}{33}$	$\frac{310 \mathrm{U}}{410 \mathrm{U}}$	$\frac{160}{210}$	$\frac{190}{25}$	$\frac{18 \mathrm{U}}{24}$	$\frac{18}{23}$	$\frac{150}{20}$	14 U	15	15	$\frac{15 \mathrm{UJ}}{19 \mathrm{U}}$	$\frac{15 \mathrm{UJ}}{19 \mathrm{U}}$	$\frac{160}{210}$	$\frac{170 J}{22 \mathrm{U}}$	150	$\frac{14 \mathrm{UJ}}{19 \mathrm{U}}$	$\frac{180}{230}$
SW8270	4,6-DINTTRO-2-METHYLPHENOL	ugkg	120 U	120 U	19 U	230 U	12 U	14 U	13 U	13 U	11 U	9.8 U	110	11 U	11 U	11 U	12 U	13 U	11 U	11 U	13 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	120 U	120 U	19 U	240 U	12 U	14 U	14 U	14 U	12 U	11 U	110	110	11 U	11 U	12 U	13 U	11 U	11 U	14 U
SW8270	4-CHLORO-3-METHYLPHENOL	ugkg	200 U	190 U	31 U	390 U	20 U	23 U	22 U	22 U	18 U	17 U	18 U	18 U	18 U	18 U	20 U	21 U	18 U	18 U	22 U
SW8270	4.CHLOROPHENYL PHENYL ETHER	ugkg	270	260 U	43 U	530 U	27 U	32 U	31 U	30 U	25 U	23 U	24 U	24 U	25 U	25 U	27 U	29 U	25 U	24 U	30 U
SW8270	4-METHYLPHENOL (MP-CRESOL)	ugkg	320 U	310 U	50 U	620 U	32 U	38 U	36 U	35 U	30 U	28 U	29 U	29 U	29 U	29 U	31 U	34 U	29 U	28 U	35 U
(ew	${ }^{\text {a-NITROPHENOL }}$ BENZYL BUTYL PHTHALATE		$\stackrel{210 \mathrm{U}}{230 \mathrm{~J}}$	$\stackrel{200 \mathrm{U}}{220 \mathrm{U}}$	33 U 570 J	410 U 430 U	22 U	$\stackrel{250}{57}$	24 U	23 U 24	20U	18 U	$\underline{190}$	$\frac{19 \mathrm{UJ}}{20 \mathrm{U}}$	$\frac{19 \mathrm{UJ}}{20 \mathrm{u}}$	$\frac{19 \mathrm{UJ}}{20 \mathrm{U}}$	22 U	$\frac{22 \mathrm{UJ}}{24 \mathrm{U}}$	$\underline{190}$	$\frac{19 \mathrm{UJ}}{20 \mathrm{U}}$	23 UJ   250   2 u
SW8270	BIPHENYL	ugkg	1900 U	1800 U	290 U	3600 U	190 U	220 U	210 U	200 U	170 U	160 U	170 U	$170 \cup$	170 U	170 U	180 U	200 U	$170 \cup$	170 U	210 U
SW8270	BIS(2.CHLORETHOXYMETHANE	ugkg	210 U	200 U	33 U	410 U	21 U	25 U	24 U	23 U	20 U	18 U	19 U	19 U	19 U	19 U	210	22 U	19 U	19 U	23 U
SW8270	BIS(2-CHLOROETHYLETHER	ugkg	190 U	180 U	29 U	360 U	19 U	22 U	21 U	20 U	17 U	16 U	17 U	17 U	17 U	17 U	18 U	20 U	17 U	17 U	21 UJ
SW8270	BIS(2-CHLOROISOPROPYL) ETHER	ugkg	260 U	250 U	410	500 U	26 U	30 U	29 U	28 U	24 U	22 U	23 U	23 UJ	24 UJ	24 UJ	25 U	27 UJ	24 U	${ }^{23 \mathrm{UJ}}$	29 U
SW8270	BIIS(2-ETHYLHEXYLPPHTHALATE	ugkg	$\frac{680 \mathrm{~J}}{50}$	190 U	2600	2800 J	50 J	2000	700	95 J	57 J	17 U	18 U	18 U	18 U	20 J	20 U	210	240	22 J	22 U
(ene270		$\frac{u g k g}{u g k g}$	550 J 1600	${ }_{1200}$	1100   160	$\frac{770 \mathrm{~J}}{310 \mathrm{U}}$	${ }_{75} 5$	510 280	${ }^{320} 150$	380   150   10	410   120	280	350   72	32 J 15 15 U	75	${ }_{23}{ }_{23}$	$\frac{30 \mathrm{~J}}{16}$	${ }_{48}^{44}$	${ }_{32 \mathrm{~J}}^{60 \mathrm{~J}}$	$\stackrel{220}{110}$	$\stackrel{34 \mathrm{~J}}{18}$
SW8270	DIETHYL PHTHALATE	ugkg	150 U	150 U	24 U	290 U	15 U	18 U	17 U	16 U	14 U	13 U	14 U	14 U	14 U	14 U	15 U	16 U	14 U	13 U	17 U
SW8270	DIMETHYL PHTHALATE	ugkg	120 U	${ }^{120} \mathrm{U}^{\text {a }}$	19 U	240 U	12 U	14 U	14 U	14 U	12 U	110	110	110	11 U	11 U	12 U	13 U	110	110	14 U
SW8270	D-N-BUTYL-PHTHALATE	$\frac{\text { ugkg }}{\text { ugkg }}$	750 100	720U	570	$\frac{1500 \mathrm{U}}{360 \mathrm{U}}$	74 U	88 U	84 U	82 U	69 U	64 U	67 U	67 U	68 U	68 U	730	79 U	68 U	66 U	830
SW8270	D-N-OCTYL-PHTHALATE	ugkg	$\frac{190 U}{210 \mathrm{U}}$	${ }_{180 \mathrm{U}}^{1800}$	29 U	360	190	22 L	210	20 U	17 U	$\frac{16 \mathrm{U}}{18 \mathrm{U}}$	17 U	17 U	17 U	17 U	$\frac{18 \mathrm{U}}{21 \mathrm{u}}$	20 U	17 U	17 U	$\stackrel{21 U}{23}$
SW8270	HEXACHLOROBENZENE	${ }_{\text {ugkg }}$	110 U	$\underline{980}$	16 U	200 U	10 U	12 U	12 U	12 U	$\stackrel{2.4 U}{ }$	${ }^{18.70}$	$\underline{19}$	$\stackrel{1}{9.10}$	9.2 U	${ }_{9} 9.30$	$\underline{9.9 U}$	11 U	$\underline{192}$	$\stackrel{1}{8.90}$	12 U
SW8270	HEXACHLOROCYCLOPENTADIENE	ugkg	140 U	130 U	22 U	270	14 U	16 U	16 U	15 U	13 U	12 U	12 U	12 U	13 U	13 U	14 U	15 U	13 U	12 U	15 U
SW8270	HEXACHLOROETHANE	ugkg	210 U	200 U	330	410 U	210	250	24 U	230	20 U	18 U	19 U	19 U	19 U	19 U	210	22 U	19 U	19 U	23 U
SW8270	NITROBENZENE	ugkg	250 U	240 U	39 U	480 U	25 U	29 U	28 U	27 U	23 U	210	22 U	22 UJ	22 U	23 U	24 U	26 U	22 U	22 U	27 U
血W8270	$\frac{\text { N-NITROSO-DI-N.PROPYLAMINE }}{\text { N-NTROSOOLIPHENYLAMINE }}$	$\frac{\mathrm{ug} k \mathrm{~kg}}{\text { ugkg }}$	$\frac{220 U}{140 \mathrm{U}}$	220 U 130 U	$\frac{350}{22 U}$	$\frac{430 \mathrm{U}}{270 \mathrm{U}}$	22 U	$\frac{26 \mathrm{U}}{16}$	$\frac{250}{16 U}$	$\frac{24 \mathrm{U}}{15}$	$\underline{210}$	$\frac{190}{12 U}$	20 U	20U	$\frac{20 \mathrm{UJ}}{13 \mathrm{U}}$	$\frac{20 \mathrm{UJ}}{13 \mathrm{U}}$	22U	$\frac{24 \mathrm{UJ}}{15 \mathrm{U}}$	$\underline{20 U}$	$\frac{20 \mathrm{UJ}}{12 \mathrm{U}}$	$\frac{25 U}{150}$
SW8270	P.CHLOROANILINE	ugkg	320 U	310 U	50 U	620 U	32 U	38 U	36 U	35 U	30 U	28 U	29 U	29 U	290	29 U	31 UJ	34 U	29 UJ	28 U	35 U
SW8270	PHENOL	ugkg	200 U	190 U	31 U	390 U	20 U	23 U	22 U	22 U	18 U	17 U	18 U	18 U	18 U	18 U	20 U	210	18 U	18 U	22 U
SW8270	$\frac{\text { P-NITROANLINE }}{\text { TOTAL ORGANIC CARBON }}$	$\frac{\mathrm{ug} \text { kg }}{\text { mqkg }}$	$\frac{150 \cup}{1970}$	150 U	24 U	290 U	15 U	$\frac{18}{3810}$	1750	16 U	14 U	13 U	14 U	14 U	14 U	14 U	15 U	16 U	14 U	13 U	17 U


				$\begin{gathered} \text { SSOO9 } \\ \text { SsoogA } \\ 0.0 .25 / \text { eet } \\ 1210512006 \end{gathered}$	$\begin{gathered} \text { SSO10 } \\ \text { SSO10AA } \\ \text { O-0.25 feet } \\ 12 / 05 / 2006 \end{gathered}$				$\begin{gathered} \text { SS012 } \\ \text { SS012AC } \\ 0-0.25 \text { feet } \\ 12 / 04 / 2006 \end{gathered}$	$\begin{gathered} \text { SSSO13 } \\ \text { SSO13A } \\ 0.0 .25 \text { feet } \\ 1210412006 \end{gathered}$	$\begin{gathered} \text { SS014 } \\ \text { SSO14AA } \\ 0-0.25 \text { feet } \\ 12 / 04 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO15 } \\ \text { SSOO15AA } \\ 0-0.25 \text { feet } \\ 12120412006 \end{gathered}$	$\begin{gathered} \text { SS016 } \\ \text { SSOO6AA } \\ 0-0.25 \text { feet } \\ 12 / 104 / 2006 \end{gathered}$		$\begin{gathered} \text { SSO18 } \\ \text { SSO18AA } \\ 0-0.25 \text { feet } \\ 12 / 104 / 2006 \end{gathered}$	$\begin{gathered} \text { SS019 } \\ \text { SSo19AA } \\ 0-0.25 \text { feet } \\ 12 / 101 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO20 } \\ \text { SSO20AA } \\ 0-0.25 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO21 } \\ \text { SSO21AA } \\ 0-0.25 \text { feet } \\ 12 / 06 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO22 } \\ \text { SSo22AA } \\ 0-0.25 \text { feet } \\ 12 / 12 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO22 } \\ \text { SSO22AB } \\ 0-0.25 \text { feet } \\ 12 / 12 / 2006 \end{gathered}$	
Lab Metrod	Analyte	Units																			
SNASIM	2-METHYLNAPHTHALENE	uglkg	32 U	${ }^{17 \mathrm{U}}$	180	170	140 J	26 J	30 J	30 J	${ }^{130}$	94	84	29 J	18 J	${ }^{24 \mathrm{~J}}$	18 U	560	1.7 U	1.7 U	${ }^{110 \mathrm{~J}}$
SNASIM	ACENAPHTHENE	$\mathrm{ug}_{\mathrm{kg}}$	574	30 U	$\underline{610}$	610	${ }_{18}^{481}$	36 U	350 460	36 U   540	290	33J	100 J	31 J	30 U	30 U	310	360 J 50	4.5J	4.9 J	${ }_{1010 \mathrm{U}}^{10}$
ENASSIM	ACENAPHTHMLENE	$\frac{\text { ugkg }}{\text { ugkg }}$	880 1200	45J	$\frac{230}{410}$	${ }_{410}^{240}$	${ }_{350}$		460	540 790	${ }^{660}$	750	1150	${ }^{640}$	2100	${ }_{150}^{76}$	260 390	$\stackrel{5500}{9700}$	$\stackrel{48}{110}$	43   110	$\xrightarrow[1100]{1700}$
BNASIM	BENZO(A)ANTHRACENE	ugkg	2100	110 J	580	620	640 J	750	760	1700	1100	750	2500	910	3300	410	440	11000	59	52	2300
ENASIM	BENZOAPAPYRENE	ugkg	2600	120 J	620	650	700 J	1100	1100	1100	1700	740	3300	920	2300	520	620	14000	76	72	1900
ENASIM	BENZO(B) FLUORANTHENE	ugkg	4700	280 J	1100	1200	1300 J	1600	1700	2200	3200	1400	5800	1800	4400	680	1400	23000	210	200	5000
ENASIM	BENZO(G,H,JPERYLENE	ugkg	2100	110 J	470	480	550 J	710	730	770	1900	830	2700	730	1200	480	470	13000	65	57	1400
ENASIM	BENZO(K) FLUORANTHENE	ugkg	3500	180 J	810	840	860 J	1400	1300	1900	2100	1200	4500	1500	3900	590	660	16000	83	72	3400
ENASIM	CHRYSENE	ugkg	3100	180 J	960	970	990 J	1100	1100	4400	1600	1000	3600	1300	4200	600	640	15000	100	88	4600
ENASIM	IIBENZO(A,H)ANTHRACENE	ugkg	${ }^{730}$	33 J	160	190	190 J	230	230	270	610	250	860	250	510	120	170	4100	24	21	460
BNASIM	LUORANTHENE	ugkg	3300	190 J	1200	1100	850	840	830	9600	1500	1500	2600	1600	5700	890	630	16000	95	83	4300
BNASIM	FLLOORENE	ugkg	32 U	170	34 U	34 U	36 J	295	32 J	35 J	35 J	40	71 J	335	38	17 U	18 U	430	4.45	4.30	82 U
BNASIM	\|iNDENO(1,2,3.CD)PYRENE	ugkg	2700	140J	590   530	610	690 J   180	850	860	${ }^{920}$	1900	970	3200	850	1600	550	510	$\begin{array}{r}15000 \\ \hline 760\end{array}$	67	59	1900
BNASIM		ugkg			${ }_{3}^{330}$	290	180 J	46		38 J	110	${ }^{98}$	100		34 J	293	5.9 C		${ }_{0}^{0.56 \mathrm{U}}$	0.56U	$\stackrel{130 \mathrm{~J}}{1600}$
ENASIM	PENTACHLOROPHENOL	ugkg	870 J	180 J	76 J	79 J	61 J	530	550	490	330 J	310 J	950 J	1300	560	160 J	730	15000 J	31 J	28 J	1600 J
ENASIM	PHENANTHRENE	ugkg	430	50 J	810	700	480	130	140	330	300	280	380	320	260	350	120	4100	3.7 U	3.70	620
ENASIM	PYRENE	ugkg	5400	240 J	1000	1000	880 J	1200	1200	8200	1600	1400	6500	1800	6600	750	910	17000	110	100	4300
E160.3	RESIDUE, TOTAL		95	92	89	90	71	76	77	77	94	94	93	93	92	91	88	75	92	91	
E1613/E1668	1,2,3,4,6,7,8,-HEPTACHLOROODIBENZOFURAN	ngkg															5180		379.158	301.594	
E1613) 11668	1, 2, 2, 4, , ,6,7,8.-HEPTACHLORODIBENZOO-P-DIOXIN	ngkg															${ }^{37100}$		${ }^{2622.508}$	${ }^{2673.258}$	
E1613/E1668	1,2,3,4, , , ,9,-HEPTACHLORODIBENZOFURAN	ngkg															289		20.77	15.658	
E1613/E1668	1, 1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	ngikg															104		15.4	$\frac{12.215}{1917}$	
E1613/16668	1, 1, 3, $, 6,7,8$-HEXACHLORODIBENZOFURAN	ngkg															${ }_{5}^{53.15}$		${ }_{9}^{2.813}$	${ }^{7.949}$	
E1613/E1668	1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	ngkg															1040		68.112	54.68	
E1613/E1668	1,2,3,7,8,9,-HEXACHLORODIBENZOFURAN	ngkg															15.5		0.802 U	0.231 U	
E1613/1668	1, 12,3,7,9,9.HEXACHLORODIBENZO-P-DIOXIN	ngikg															403   343		68.889   1.43$)$	57.122	
E1613/E1668	1,2,3,7,8.PENTACHLORODIBENZOFURAN	ngkg															3.43		${ }^{1.443 \mathrm{~J}}$	1.11 J	
E1613/E1668	1,2,3,7,8.8PENTACHLORODIBENZO-P-DIOXIN	ngkg															55.1		8.03	${ }_{6}^{6.354}$	
E1613/E1668	2, 2,4,6,7,8.8.HEXACHLORODIBENZOFURAN	$\frac{\mathrm{ng} \mathrm{k} \text { g }}{\text { nokg }}$															111		$\frac{15.889}{2.881 \mathrm{~J}}$	12.679   1.973	
E1613/E1668	2,3,7,8-TETRACHLORODIBENZOFURAN	ngkg															$\frac{11.5}{00}$		${ }_{0}^{2.8879}$ J	$\stackrel{1.593 \mathrm{U}}{ }$	
E1613/E1668	2,3,7,8,-TETRACHLORODIBENZO-P-DIOXIN	ngkg															2.32		0.251 U	0.309 U	
E1613/E1688	OCTACHLORODIBENZOFURAN	ngkg															27500		1977.085	1587.32	
E1613/E1668	OCTACHLORODIBENZO-P-PIOXIN	ngkg															351000		26076.179	26723.544	
E16131/E1668	TTOTAL HEPTACHLORINATED DIBENZOFURANS	$\frac{\mathrm{ng} \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$															25500 76900		1435.203 13920.245	${ }_{1}^{1158.502} 1$	
E1613/16688	TOTAL HEXACHLORINATED DIBENZOFURANS																${ }^{417000}$		${ }_{\text {256.144 }}$	${ }_{314.796}$	
E1613/E1668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	ngkg															6260		${ }^{1270.443}$	1009.248	
E1613\|E1668	TOTAL PENTACHLORINATED DIBENZOFURANS	ngkg															306 J   268		$\frac{74.858}{9301}$	59.226   7425	
E1613/E1668	TOTAL PENTACHLORINATED DIBENZO-P.DIOXINS	$\xrightarrow{\text { ng }} \mathrm{l}$															${ }^{268} 48.9 \mathrm{~J}$		$\stackrel{93301}{157.626}$	74.25 133.657	
E1613/E1668	TOTAL TETRACHLORINATED DIBENZO-P.DIOXINS	nglkg															49.9		31.115	${ }^{26.542}$	
SW6020	ANTIMONY	mglkg	${ }^{0.35 \mathrm{UJ}}$	0.36 UJ	3.4	${ }^{3.3}$	1.6 J	1.3 J	0.96 J	${ }^{0.61 \mathrm{~J}}$	${ }^{0.58 \mathrm{~J}}$	${ }^{0.40 \mathrm{~J}}$	0.36 UJ	0.36 UJ	0.37 UJ	${ }^{0.35 \mathrm{U}}$	1.2 J	${ }^{31}$	0.36 UJ	${ }^{2.37 \mathrm{~J}}$	0.36
SW6020	ARSENIC	mglkg	4.8	1.3	16	12	11	49 J	${ }^{33} \mathrm{~J}$	48 J	94 J	61	21	10 J	3.15	5.6 J	${ }^{35}$	1500	4.2	4.2	
(ene $\begin{aligned} & \text { SW620 } \\ & \text { SW6020 }\end{aligned}$	BARIUM	$\frac{\mathrm{mg} / \mathrm{kg}}{\mathrm{mg} \mathrm{kg}}$	6.3 0.30 U	${ }^{16} 0$	$\stackrel{60}{0.31 \mathrm{U}}$	$\stackrel{47}{0.32 \mathrm{U}}$	${ }^{170} 0$	60 J 0.36 U	$\stackrel{40 \mathrm{~J}}{0.35 \mathrm{U}}$	32 0.360	38   0.290	$\frac{19 \mathrm{E}}{0.30 \mathrm{U}}$	9.8 E 0.31 U	${ }^{11}$	${ }^{16} 0$	8.9   0.30 U   12	12   0.33 U	1.5	8.1 0.31 U	7.9 0.310	10   0.310
SW6020	CHROMUM	makg	5.8	6.2	21	16	24	44 J	29 J	63 J	70 J	81	24	13 J	5.8 J	12 J	210	2600	10	9.6	27
SW6020	COPPER	mgkg	5.6	2.8	43	35	33	47 J	31 J	48	66	58	19	18	5.8	7.8	44	1100	6.0	5.6	22
SW6020	LEAD	mglkg	6.3	14	170	140	100	46 J	31 J	20	27	15	6.0	7.7	9.4	54	${ }^{23}$	110	18	18	9.1
SW6020	SELENIUM	mgkg	0.88 U	${ }^{0.88 \mathrm{U}}$	0.90 U	0.92 U	1.2 U	1.00	1.0 U	1.10	${ }^{0.84 \mathrm{U}}$	${ }^{0.88 \mathrm{U}}$	0.89 U	0.89 U	0.91 U	${ }^{0.86 U}$	${ }^{0.950}$	1.6	0.90 U	0.91 U	0.89 U
SW6020	SILVER	mgkg	0.40 U	0.40 U	0.41 U	0.42 U	${ }^{0.53 \mathrm{U}}$	0.47 U	0.47 U	0.48 U	0.38 U	0.40 U	0.40 U	0.40 U	0.41 U	0.39 U	0.43 U	0.49 U	0.41 U	0.41 U	0.40 U
	VANADIUM (FUME OR DUST)	${ }_{\text {mglkg }}^{\text {mglkg }}$	$\frac{0.97 \mathrm{~J}}{0.097}$	3.4 0.11	$\frac{7.9}{0.36}$	$\frac{6.1}{0.31}$	$\frac{13}{0.31}$	8.01	5.5 J 0.14	$\frac{6.1}{0.16}$	3.9 0.088	$\frac{2.2}{0.096}$	$\frac{1.8}{0.24}$	$\frac{1.3}{0.29}$	$\frac{2.4}{0.31}$	$\frac{2.1}{0.054 \mathrm{~J}}$	$\frac{1.0 \cup}{0.13}$	$\frac{1.2 U}{1.7}$	$\frac{1.4}{0.054}$	$\frac{1.15}{0.054}$	$\frac{1.2 \mathrm{~J}}{0.028}$
SW8260	1,1,1,-TRICHLOROETHANE	ugkg	0.13 U	0.14 U	0.17 U	0.17 U	0.25 U	0.19 U	0.19 U	0.24 U	$0.13 \cup$	0.14 U	0.13 U	0.13 U	0.14 U	0.17 U	0.15 U	0.18 U	${ }_{0}^{0.164}$	${ }_{0}^{0.14 \mathrm{U}}$	
SW8260	1,1,2,2,-TETRACHLOROETHANE	ugkg	0.070 U	0.072 U	0.090 UJ	0.093 U	0.14 U	0.10 U	0.11 U	0.13 U	$0.071{ }^{0}$	0.073 U	0.0710	0.0710	0.074 U	0.089 U	0.079 U	0.099 U	0.084 U	0.076 U	$0.076{ }^{\text {U }}$
SW8260	1,1,2-TRICHLOROETHANE	ugkg			0.18 UJ	0.19 U	0.27 U	0.20 U	0.21 U	0.26 U		0.15 U		0.14 U	0.15 U	0.18 U	0.16 U	0.20 U	0.17 U	0.15 U	
SW8260	1,1-DICHLOROETHANE	ugkg	0.067 U	0.069 U	0.086 U	0.089 U	0.13 U	0.096 U	0.10 U	0.13 U	0.068 U	0.070 U	0.068 U	0.068 U	$0.071 u^{0}$	0.085 U	0.075 U	0.094 U	0.080 U	0.073 U	0.073 U
SW8260	1,1-DICHLOROETHYLENE	ugkg	0.18 U	$0.19{ }^{\text {O }}$	0.24 U	0.24 U	0.35 U	0.26 U	0.27 U	0.34 U	$\frac{0.19 \mathrm{U}}{0}$	0.19 U	$0.19{ }^{0}$	0.19 U	0.20	0.23U	$\frac{0.210}{018}$	0.26U	0.22 U	0.20 U	0.20 U
SW8260		${ }_{\text {ug }}^{\text {ugkg }}$	$\stackrel{0.16 \mathrm{U}}{0.52 \mathrm{u}}$	$\stackrel{0.17 \mathrm{U}}{0.54 \mathrm{u}}$	$\frac{0.210 J}{0.67 \text { UJ }}$	${ }_{0}^{0.2290 ~} 0$	$\stackrel{0.31 \mathrm{U}}{1.0 \mathrm{U}}$	0.23 0.75 JJ	$\frac{0.24 \mathrm{UJ}}{0.78 \mathrm{UJ}}$	$\frac{0.300}{0.970}$	${ }_{0}^{0.160 J} 0$	$\stackrel{0.170}{0.54 \mathrm{U}}$	$\stackrel{0.17 \mathrm{U}}{0.53 \mathrm{U}}$	$\stackrel{0.17 \mathrm{U}}{0.53 \mathrm{U}}$	$\stackrel{0.17 \mathrm{U}^{0}}{0.55}$	$\frac{0.21 \mathrm{U}}{0.66 \mathrm{U}}$	$\frac{0.18 \mathrm{U}}{0.59 \mathrm{U}}$	O.23UJ	$\frac{0.19 \mathrm{U}}{0.62 \mathrm{U}}$	$\frac{0.18 \mathrm{UJ}}{0.57 \mathrm{UJ}}$	$\stackrel{0.180}{0.57}$
SW8260	1,2-DIBROMOETHANE	ugkg	0.059 U	0.062 U	0.076 UJ	0.079 U	0.12 U	0.085 U	0.089 U	0.12 U	0.060 U	0.062 U	0.061 U	0.061 U	0.063 U	0.076 U	0.067 U	0.084 U	0.071 U	0.065 U	0.065 U
SW8260	1,2-DICHLOROBENZENE	ugkg	0.082 U	0.085 U	0.11 UJ	0.11 UJ	0.16 U	0.12 UJ	0.13 UJ	0.16 U	0.084 UJ	0.086 U	0.084 U	0.084 U	0.088 U	0.11 U	0.093 U	0.12 UJ	0.099 U	0.090 UJ	0.090 U
SW8260	12-DICHLOROETHANE	ugkg	0.11 U	0.11 U	$0.14 \mathrm{U}^{0}$	0.15 U	0.21 U	${ }^{0.16 \mathrm{U}}$	0.16 U	0.20 U	$0.11 \mathrm{U}^{\text {a }}$	0.12 U	0.11 U	0.11 U	0.12 U	0.14 U	0.12 U	0.15 U	0.13 U	0.12 U	0.12 U
SW8260	1,2-DICHLOROPROPANE	$\frac{\text { ugkg }}{\text { ugkg }}$	$\frac{0.057 U}{0.092 U}$	0.059 U	$\frac{0.074 \mathrm{U}}{0.12 \mathrm{UJ}}$	-0.076 U	$\frac{0.11 \mathrm{U}}{0.18 \mathrm{U}}$	0.082U	$\frac{0.086 \mathrm{U}}{0.14 \mathrm{UJ}}$	$\frac{0.11 \mathrm{U}}{0.18 \mathrm{U}}$	$\frac{0.058 \mathrm{U}}{0.093 \mathrm{~J}}$	0.060 ${ }^{0.096}$	0.059 U	$\frac{0.058 \mathrm{U}}{0.094 \mathrm{U}}$	0.061U	$\frac{0.073 U}{0.12 U}$	$\frac{0.065 \mathrm{U}}{0.11 \mathrm{U}}$	-	$\frac{0.069 \mathrm{U}}{0.11 \mathrm{U}}$	$\frac{0.062 \mathrm{U}}{0.10 \mathrm{UJ}}$	$\frac{0.063 \mathrm{U}}{0.10 \mathrm{U}}$
SW8260	ACETONE	ugkg	55 J	2.8 U	3.4U	${ }^{3.6 \mathrm{U}}$	5.10	$\stackrel{.8 .80}{3}$	4.0 u	5.0 U	$\stackrel{\text { 2.7U }}{ }$	$\underline{2.80}$	$\stackrel{.0 .7 U}{ }$	$\stackrel{.0 .70}{ }$	2.8 U	3.4 U	91 J	3.8 U	100 J	${ }_{10} 110 \mathrm{~J}$	2.90
SW8260	BENZENE	ugkg	${ }^{0.41 \mathrm{U}}$	0.43 U	${ }^{0.53 U}$	0.55 U	0.79 U	0.60 U	0.62 U	0.77 U	0.42 U	0.43 U	0.42 U	0.42 U	0.44 U	0.53 U	0.47 U	0.59 U	0.50 U	${ }^{0.45 U}$	0.45
SW8260	BROMODICHLOROMETHANE	ugkg	${ }^{0.31 \mathrm{U}}$	0.32 U	0.40 U	$0.41{ }^{\text {U }}$	0.59 U	0.44 U	0.46 U	0.58 U	0.31 U	0.32 U	0.32 U	0.32 U	0.33 U	0.40 U	0.35 U	0.44 U	0.37 U	0.34 U	0.34 U
SW82600	BROMOMETHANE	ugkg	0.34 UJ	0.35 UJ	0.44 UJ	0.45 JJ	0.65 JJ	0.49 U	${ }^{0.51 \mathrm{U}}$	${ }^{0.63 U}$	$\xrightarrow{0.35 \cup}$	0.36 UJ	0.35 UJ	0.35 UJ	0.36 UJ	${ }^{0.44 \mathrm{U}}$	0.39 UJ	0.48 UJ	0.41 UJ	0.37 UJ	${ }^{0.37 \mathrm{U}}$
SW8260	CARBON DISULFIIDE	$\frac{u g l k g}{u g k g}$	$\xrightarrow{1.7 \mathrm{U}} \mathrm{U}$	$\xrightarrow{1.8 \mathrm{U}}$	$\frac{2.2 U}{0.48 \mathrm{U}}$	$\frac{2.3 \mathrm{U}}{0.50 \mathrm{U}}$	$\xrightarrow{3.3 \mathrm{U}}$	$\frac{2.5 U}{0.54 \mathrm{U}}$	$\frac{2.6 U}{0.56 U}$	$\frac{3.2 \mathrm{U}}{0.69}$	1.8 U 0.38 U	$\stackrel{1.8 \mathrm{U}}{0.39 \mathrm{U}}$	1.8 U 0.38 U	1.8 U 0.38 U	$\frac{1.8 \mathrm{U}}{0.40 \mathrm{U}}$	$\xrightarrow{2.24} 0$	$\frac{2.0 U}{0.42 \mathrm{U}}$	2.4 U 0.53 U	$\frac{2.14}{0.450}$	$\frac{1.9 U}{0.410}$	$\frac{1.9 U}{0.410}$
SW8260	CFC-11	ugkg	0.28 U	0.29 U	${ }_{0}^{0.36 \mathrm{U}}$	0.37 U	${ }_{0}^{0.53 U}$	0.40 U	0.41 U	${ }^{0.52 \mathrm{U}}$	${ }_{0}^{0.28 U}$	0.29 U	${ }^{0.28 \mathrm{U}}$	${ }^{0.28 U}$	${ }^{0.30 \mathrm{U}}$	0.35 U	0.31 U	0.39 U	0.33 U	${ }_{0}^{0.30 U}$	${ }^{0.30 \mathrm{U}}$
SW8260	CFC-12	ugkg	0.34 U	0.35 U	0.44 U	0.45 U	0.65 JJ	0.49 U	${ }^{0.51 \mathrm{U}}$	0.63 U	${ }_{0}^{0.35 \mathrm{U}}$	0.36 U	0.35 U	${ }^{0.35 \mathrm{U}}$	0.36 U	0.44 U	0.39 U	0.48 U	0.41 U	0.37 U	0.37 U
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	ugkg	0.38 U	0.40 U	0.49 U	0.51 U	0.73 U	0.55 U	0.57 U	0.71 U	0.39 U	0.40 U	0.39 U	${ }^{0.394}$	0.41 U	0.49 U	0.43U	0.54 U	0.46 U	${ }^{0.42 \mathrm{U}}$	0.42
SW8260	CHLLORODIBROMOMETHANE	$\frac{\text { ugkg }}{\text { ualkg }}$	$\stackrel{0.42 \mathrm{U}}{0.27 \mathrm{U}}$	0.44	0.34 UJ	$\stackrel{0.36 \mathrm{U}}{ }$	$\stackrel{0.81 \mathrm{u}}{0.51 \mathrm{u}}$	$\stackrel{0.010}{0.380}$	$\stackrel{0.64 \mathrm{U}}{0.40}$	$\stackrel{0.50 \mathrm{U}}{0}$	$\stackrel{0.43 \mathrm{U}}{0.270}$	$\stackrel{0.450}{0.280}$	$\stackrel{0}{0.437}$	$\stackrel{0.43)}{0.27}$	$\stackrel{0.45 \mathrm{U}}{0.28 \mathrm{U}}$	$\stackrel{0.544}{0.34}$	$\stackrel{0.48 \mathrm{U}}{0.30 \mathrm{U}}$	$\stackrel{0.38 \mathrm{U}}{ }$	$\stackrel{0.51 \mathrm{u}}{0.320}$	$\stackrel{0.46 \mathrm{U}}{0.29 \mathrm{u}}$	
SW8260	CHLOROETHANE	ugkg	0.38 U	0.40 U	0.49 U	0.51 U	0.73 U	0.55 U	0.57 U	0.71 U	0.39 U	0.40 U	0.39 U	0.39 U	0.41 U	0.49 U	0.43 UJ	0.54 U	0.46 UJ	0.42 UJ	0.42 U
SW8260	CHLOROFORM	ugkg	2.0 J	0.38 U	0.47 U	0.48 U	0.69 U	0.52 U	0.54 U	0.67 U	0.37 U	0.38 U	0.37 U	${ }^{0.37 \mathrm{U}}$	0.39 U	0.46 U	${ }^{0.414}$	0.51 U	0.43 U	0.39 U	0.40 U
SW8260	CHLLOROMETHANE	ugkg	$\stackrel{0.48 \mathrm{U}}{0}$	$0.50{ }^{0.0}$	$\stackrel{0.610}{036}$	$\stackrel{0.64 \mathrm{U}}{0}$	$\stackrel{0.92 \mathrm{U}}{ }$	$\stackrel{0.69 \mathrm{U}}{0}$	$\stackrel{0.714}{ }$	$\stackrel{0.89 \mathrm{U}}{0}$	$\stackrel{0.48 \mathrm{U}}{0}$	${ }_{0}^{0.50 \mathrm{U}}$	0.49	0.49	0.51U	$\stackrel{0.610}{035}$	$\stackrel{0.544}{0314}$	${ }_{0}^{0.67]^{0}}$	$\stackrel{0.57 \mathrm{U}}{03}$	$\stackrel{0.52 \mathrm{U}}{ }$	$\stackrel{0.52 \mathrm{U}}{030}$


			$\begin{gathered} \text { SSO008 } \\ \text { SSO08AA } \\ 0-0.25 \text { feet } \\ 12 / 105 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { SSOO9 } \\ \text { SsoogAt } \\ 0-0.05 \text { feet } \\ 12105 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO10 } \\ \text { SSOO10AA } \\ \text { o-0.25 feet } \\ \text { 12/05/2006 } \\ \hline \end{gathered}$		$\begin{gathered} \text { SSO11 } \\ \text { SSOO11AA } \\ \text { o.-.25 eet } \\ 12205 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { SSO12 } \\ \text { SSO12AA } \\ \text { o-0.25 feet } \\ 121 / 104 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS012 } \\ \text { SSO12AC } \\ 0-0.25 / \text { feet } \\ 121 / 104 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSOO13 } \\ \text { SSOABA } \\ 0.0 .25+e e t \\ 1210412006 \\ \hline \end{gathered}$		$\begin{gathered} \text { SSOO15 } \\ \text { SSOA } \\ 0.0 .25 \mathrm{AFet} \\ 1210412006 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { SS016 } \\ \text { SS016AA } \\ 0.0 .25 \text { feet } \\ 12.104 / 2006 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { SSO17 } \\ \text { SSO17AA } \\ 0.0 .25 \text { feet } \\ 12104 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS018 } \\ \text { SSO18AA } \\ 0.0 .25 \text { feet } \\ 12 / 104 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SSO19 } \\ \text { SSO19AA } \\ 0.0 .25 \text { feet } \\ 122 / 01 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO20 } \\ \text { SSO20AA } \\ 0-0.25 \text { feet } \\ \text { 12/12/2006 } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { SSO21 } \\ \text { SSO21AA } \\ 0.0 .25 \text { feet } \\ 12106 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS022 } \\ \text { SSO22AA } \\ 0-0.25 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	SS022   SS022AB 0-0.25 feet $12 / 12 / 2006$ 12/12/2006	$\begin{gathered} \text { SSO23 } \\ \text { Sso23AA } \\ 0-0.25 \text { feet } \\ 12101 / 2006 \\ \hline \end{gathered}$
Lab Metho	Analye	Units																			
SW8260	CIIS-1,3-DICHLOROPROPENE	ugkg	0.31 U	0.32 U	0.40 UJ	0.41 U	0.59 U	0.44 U	0.46 U	0.58 U	${ }^{0.31 \mathrm{U}}$	0.32 U	0.32 U	0.32 U	0.33 U	0.40 U	0.35 U	0.44 U	0.37 U	0.34 U	0.34 U
SW8260	CYCLOHEXANE	ugkg	0.40 U	${ }^{0.42 \mathrm{U}}$	${ }^{0.523}$	${ }^{0.54 U^{4}}$	$0.77{ }^{0}$	${ }^{0.58 \mathrm{U}}$	${ }^{0.600}$	${ }^{0.754}$	${ }^{0.410}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.410}$	${ }^{0.410}$	${ }^{0.43 U}$	${ }^{0.52 U}$	${ }^{0.464}$	$0.57{ }^{\text {U }}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.444}$	$0.44 \mathrm{U}^{0}$
SW8260	DICHLOROMETHANE	ugkg	0.41 U	0.43 U	0.53 U	0.55 U	0.79 U	0.60 U	0.62 U	$0.77{ }^{\text {U }}$	0.42 U	0.43 U	0.42 U	0.42 U	0.44 U	${ }^{0.53 U}$	0.47 U	0.59 U	0.50 U	0.45 U	0.45 U
SW8260	ETHYLBENZENE	ugkg	0.45 U	${ }^{0.46 \mathrm{U}}$	0.57 UJ	0.60 U	${ }^{0.85 U}$	0.64 U	${ }^{0.67 \mathrm{U}}$	${ }^{0.83}{ }^{\text {U }}$	${ }^{0.45 \mathrm{U}}$	${ }^{0.47 \mathrm{U}}$	${ }^{0.46 U^{4}}$	${ }^{0.46 \mathrm{U}}$	${ }^{0.47 \mathrm{U}^{\text {U }} \text { - }}$	0.57 U	${ }^{0.500^{-5}}$	${ }^{0.63 U}$	${ }^{0.530}$	${ }^{0.499}$	${ }^{0.499}$
SW8260	ISOPROPYLBENZENE	ugkg	0.49 U	0.51 U	0.63 UJ	0.65 UJ	0.94 U	0.70 UJ	0.73 UJ	0.91 U	0.49 UJ	0.51 U	0.50 U	0.50 U	0.52 U	0.62 U	${ }^{0.55 U}$	0.69 UJ	0.58 U	0.53 UJ	0.53 U
SW8260	m,p-xylenes	ugkg	0.92 U	$0.95 \mathrm{U}^{0.054}$	1.2 UJ	1.30	1.8 U	1.40	1.4 U	1.8 U	0.93 U	0.96 U	0.94 u	0.94 U	0.98 U	1.2 U	1.10	1.34	1.10	1.00	1.00
(ewz260	M-DICHLOROBENZENE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\text { ualkg }}$	$\frac{0.053 \mathrm{U}}{0.20 \mathrm{u}}$	0.055 ${ }_{0}^{0.21 \mathrm{U}}$	${ }_{\text {0, } 0.068 \mathrm{UJ}}^{0.26 \mathrm{U}}$	$\frac{0.071 \mathrm{UJ}}{0.27 \mathrm{U}}$	0.11U	$\frac{0.076 \mathrm{UJ}}{0.29 \mathrm{U}}$	$\frac{0.079 \mathrm{UJ}}{0.30 \mathrm{U}}$	0.0.099	-0.054 UJ	$\frac{0.056 \mathrm{U}}{0.21 \mathrm{U}}$	0.054U	0.054U	-0.056 0	-0.068 ${ }_{0}^{0.26 U}$	${ }_{0}^{0.060 \mathrm{U}} 0$	-0.075 U	0.064U	-0.058 UJ	0.058 U   0.22 U
SW8260	METHYL LTHYL KETONE	ugkg	1.9 J	1.2 U	1.5 U	1.6 U	2.30	1.70	1.8 U	2.20	1.2 U	1.30	1.2 U	1.2 U	1.30	1.5 U	2.93	1.7 U	2.2 J	${ }^{3.2 \mathrm{~J}}$	1.30
SW8260	METTYL ISOBUTYL KETONE	ugkg	$\stackrel{0.75 \mathrm{U}}{114}$	${ }_{0}^{0.78 \mathrm{U}}$	0.97 UJ	$\frac{1.00}{1.5}$	1.5	1.10	1.2 U	1.4 U	$\stackrel{0.76 \mathrm{U}}{174}$	0.79	$\stackrel{0.77 \text { U }}{114}$	$\stackrel{0.77 \mathrm{U}^{114}}{ }$	- 0.80 U	$\stackrel{0.96 \mathrm{U}}{1.4}$	${ }_{0}^{0.85 \mathrm{U}}$	1.15	$\stackrel{0.90 \mathrm{U}}{ }$	$\stackrel{0.82 \mathrm{U}}{ }$	0.82 U   124
SW8260	METHYL N-BUTYL KETONE	ugkg	1.14	1.10	$1.4 \mathrm{UJ}^{\text {d }}$	1.50	2.10	1.6	1.6 U	2.00	1.14	1.2 U	1.10	1.14	1.2 U	1.4 U	1.2 UJ	1.5 U	1.3 UJ	1.2 UJ	1.2 U
SW8260	METHYL EENZENE	ugkg	0.45 U	0.46 U	0.57 UJ	0.60 U	0.85 U	${ }^{0.64 U}$	0.67 U	${ }^{2.83 U}$	${ }^{0.45 U}$	0.47 U	${ }^{0.46 \mathrm{U}}$	${ }^{0.46 \mathrm{U}}$	0.47 U	0.57 U	0.50 U	0.63 U	0.53 U	0.60 J	0.49 U
SW8260	METHYLCYLOHEXANE	ugkg	0.47 U	0.48 U	0.60 UJ	0.62 U	0.90 UJ	0.67 U	0.70 U	0.87 U	0.47 U	0.49 U	0.48 U	0.48 U	0.50 U	0.60 U	0.53 U	0.66 U	0.56 U	0.51 U	0.51 U
SW8260	${ }_{\text {O-XYLENE }}^{\text {STYRENE }}$	${ }_{\text {ug }}^{\text {ugkg }}$	-0.42U	0.44U	0.55 UJ	0.57	0.81U	0.61U	0.64U	0.79U	-0.43U	-0.45	-0.43U	0.43 U   0.47 U	-0.45	0.54U	$\xrightarrow{0.48 \mathrm{U}}$	0.60	0.51U	0.46 U   050	0.46 U   050
SW8260	TERT-BUTYL METHYL ETHER	${ }_{\text {ugkg }}$	0.34 U	0.35 U	0.44 U	0.45 U	0.65 U	0.49 U	0.51 U	0.63 U	0.35 U	${ }_{0}^{0.36 \mathrm{U}}$	0.35 U	0.35 U	0.36 U	0.44 U	0.39 U	0.48 U	0.41 U	0.37 U	0.37 U
SW8260	TETRACHLOROETHYLENE	ugkg	0.42 U	0.44 U	0.55 UJ	0.57 U	0.81 U	0.61 U	0.64 U	0.79 U	0.43 U	0.45 U	0.43 U	0.43 U	0.45 U	0.54 U	0.48 U	0.60 U	0.51 U	0.46 U	0.46 U
SW8260	TRANS-1,2-DICHLOROETHENE	ugkg	0.40 U	0.42 U	0.52 U	0.54 U	$0.77 \mathrm{U}^{0}$	0.58 U	0.60 U	0.75 U	0.41 U	0.42 U	0.41 U	0.41 U	0.43 U	0.52 U	0.46 U	0.57 U		${ }^{0.44 \mathrm{U}}$	
SW8260	TRANS-1,2-IICHLOROPROPENE	ugkg	0.32 U	${ }^{0.33 \mathrm{U}}$	0.41 UJ	${ }_{0}^{0.43 U}$	0.61 U	${ }^{0.460 ~}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.60 U}$	${ }^{0.32 \mathrm{U}}$	${ }^{0.34 U}$	0.33 U	0.33 U	0.34 U	0.41 U	${ }_{0} 0.36 \mathrm{U}$	${ }^{0.45 U}$	${ }^{0.38 \mathrm{U}}$	${ }^{0.35 \mathrm{U}}$	${ }^{0.35 \mathrm{U}}$
SW8260	TRIBCMOMETHANE	uglkg	0.41 U	${ }^{0.43 \cup}$	${ }^{0.535 \mathrm{~J}}$	0.55 U	0.79 U	0.60 U	0.62 U	$0.77{ }^{0}$	0.42	0.43	0.42U	${ }^{0.42 \mathrm{U}}$	0.44 U	${ }^{0.534}$	0.47 U	$0.59{ }^{\text {O }}$	${ }^{0.50}$	$0.45{ }^{0}$	$0.45{ }^{0}$
SW8260	TRICHLOROETHYLENE		-0.42U	0.44 U 0.27 U	0.55 U 0.33 u	0.57 $\begin{aligned} & 0.34 \mathrm{U} \\ & 0.0\end{aligned}$	0.81U	0.61U	0.64U	-0.79	0.43 U 0.26 U	0.450.27 U	0.43 U 0.26 U	0.43 U 0.26 U	0.45 U	${ }^{0.54 U}$	${ }^{0.48 \mathrm{U}}$	0.60 U	$0.51{ }^{0.5}$	${ }^{0.460}$	${ }^{0.46 U^{2}}$
SW8270	2,4,5-TRICHLOROPHENOL	ugkg	14 U	15 U	15 U	15 U	19 U	18 U	17 U	17 U	14 U	14 U	14 U	14 U	15 U	15 U	15 U	18 U	15 U	15 U	0.280
SW8270	2,4,6-TRICHLOROPHENOL	ugkg	38 U	40 U	41 U	410	51 U	48 U	47 U	48 U	39 U	40 U	41 U	48 U	40 U	40 U	40 U				
SW8270	2,4-DICHLOROPHENOL	ugkg	18 U	19 U	20 U	19 U	24 U	23 U	23 U	23 U	19 U	20 U	23 U	19 U	19 U	19 U					
SW8270	2,4-DIMETYYLPHENOL	ugkg	20 U	210	22 U	22 U	27 U	250	250	250	210	210	210	210	210	210	22 U	43 J	210	210	21 U
SW8270	2.4-DIIITROPHENOL	ugkg	130	14 U	14 U	$\frac{14 U}{114}$	17 U	16 U	16 U	16 U	13 U	130	13 U	130	13 U	14 U	14 U	16 U	14 U	14 U	14 UJ
SW8270	2,6-DIIITROTOLUENE	ualkg	38 U	40 U	41 U	410	510	48 U	47 U	48 U	39 U	40 U	41 U	48 U	40 U	40 U	40 U				
SW8270	2.CHLORONAPHTHALENE	ugkg	17 U	18 U	18 U	18 U	23 U	21 U	210	21 U	18 U	17 U	18 U	18 U	18 U	18 U	19 U	22 U	18 U	18 U	18 U
SW8270	2.CHLOROPHENOL	ugkg	19 U	20 U	210	210	26 U	24 U	24 U	24 U	20 U	210	24 U	20 U	20 U	20 U					
SW8270	2-METHYLPHENOL (O-CRESOL)	ugkg	13 U	14 U	14 U	14 U	17 U	16 U	16 U	16 U	13 U	14 U	14 U	16 U	14 U	14 U	14 U				
SW8270	2-NITROANLINE	ugkg	$\stackrel{24 \mathrm{UJ}}{15}$	$\stackrel{240 J}{160}$	250	250	320	29 uJ	29 UJ	29 UJ	$\stackrel{24 \mathrm{UJ}}{15}$	$\stackrel{24 \mathrm{UJ}}{15}$	24 UJ	24 UJ	24UJ	${ }^{250 J}$	250	30 U	${ }^{24 U}$	${ }^{25 U}$	24 UJ
SW8270	2-NTTROPHENOL	ugkg	15 U	16 U	16 U	16 U	20 U	19 U	19 U	19 U	15 U	15 U	16 U	19 U	16 U	16 U	16 U				
SW8270	3,3.5.5-TRIMERETHYLL-2.CCYCLOHEXENE-1-ONE	$\frac{\mathrm{ug} k \mathrm{l}}{\mathrm{ug} k g}$	$\frac{36 \mathrm{UJ}}{14 \mathrm{UJ}}$	$\frac{38 \mathrm{UJ}}{15 \mathrm{uj}}$	$\frac{390}{15}$	$\frac{380}{150}$	19 U	${ }_{18}{ }^{18 \mathrm{U}}$	450	${ }_{17}^{45}$	14U	14 U	$\frac{37 \mathrm{U}}{14}$	14 U	${ }^{37 \mathrm{U}}$	$\frac{38 \mathrm{U}}{15 \mathrm{uj}}$	$\frac{390}{150}$	${ }_{18}^{46 \mathrm{U}}$	150	38U	150
SW8270	3-NITROANILINE	ugkg	18 U	19 U	20 U	19 U	24 U	23 U	23 U	23 U	19 U	20 U	23 U	19 U	19 U	19 U					
SW8270	4,6-DINTROO-2-METHYLPHENOL	ugkg	9.90	110	110	110	14 U	13 U	13 U	13 U	110	10 U	110	110	110	110	110	13 U	110	110	11 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	110	11 U	11 U	110	14 U	13 U	13 U	13 U	11 U	110	110	110	11 U	110	12 U	14 U	11 U	11 U	110
SW8270	4.CHLORO-3-METHYLPHENOL	ugkg	17 U	18 U	18 U	18 U	23 U	210	21 U	21 U	18 U	17 U	18 U	18 U	18 U	18 U	19 U	22 U	18 U	18 U	18 U
SW8270	4.CHLLOROPHENYL PHENYL ETHER	ugkg	24 U	24 U	25 U	25 U	310	29 U	29 U	29 U	24 U	25 U	25 U	30 U	24 U	25 U	24 U				
SW8270	4-NITROPHENOL	ugkg	18 UJ	19 UJ	20 UJ	19 UJ	24 UJ	${ }_{23}{ }^{\text {UJ }}$	23 UJ	${ }^{23} \mathrm{UJ}$	19 UJ	${ }_{19} 19 \mathrm{UJ}$	${ }_{19} 19 \mathrm{UJ}$	19 UJ	19 UJ	${ }_{19} \mathrm{UJJ}^{2}$	20 U	${ }_{23} 3 \mathrm{UJ}$	19 U	19 U	${ }_{19} 19 \mathrm{uj}$
SW8270	BENZYL BUTYL PHTHALATE	ugkg	19 U	20 U	21 U	21 U	26 U	24 U	24 U	24 U	20 U	45 J	21 U	24 U	20 U	20 U	20 U				
SW8270	BIPHENYL	ugkg	160 U	$170{ }^{\text {U }}$	170	170	220 U	200 U	200 U	200 U	160 U	160 U	170 U	$170{ }^{\text {U }}$	170 U	$170{ }^{\text {U }}$	180 U	200 U	170 UJ	170	$170{ }^{\text {U }}$
SW8270	BIS(2-CHLORETHOXYMETHANE	ugkg	18 U	19 U	20 U	19 U	24 U	23 U	23 U	23 U	19 U	20 U	23 U	19 U	19 U	19 U					
SW8270	BiS(2-CHLOROETHYL)ETHER	ugkg	${ }_{16 \mathrm{U}}^{16}$	17 U	${ }_{2}^{17 \mathrm{U}}$	17 U	22 U	20 U	20 U	20 U	16 U	$\frac{16 \mathrm{UJ}}{23}$	17 U	17 U	17 U	17 U	18 U	20 U	17 U	17 U	17 U
SW8270	BIIS(2-CHLOROISOPROPYL ETHER	ugkg	23 UJ	23 UJ	24 UJ	24 UJ	30 UJ	28 U	28 U	28 U	230	23 U	230	23 U	23 U	24 UJ	${ }^{24 U}$	28 UJ	23 U	24 U	${ }^{236}$
SW8270	CARBAZOLE	${ }_{\text {uglkg }}$	280	18 U	${ }_{72}$	${ }_{74}{ }^{\text {J }}$	${ }_{100}$	230	${ }_{220}$	280	250	${ }^{350} \mathrm{~J}$	${ }_{150}$	${ }^{180}$	470	${ }_{51}$	${ }_{84}$	1400	18 U	18 U	$\underline{60}$
SW8270	IIBENZOFURAN	Logkg	100 J	15 U	90 J	100 J	91 J	47 J	50 J	38 J	130 J	711	39 J	43 J	23 J	30 J	75 J	300	83 J	89 J	15 U
SW8270	DIETHYL PHTHALATE	ugkg	13 U	14 U	14 U	14 U	17 U	16 U	16 U	16 U	130	13 U	13 U	13 U	13 U	14 U	14 U	16 U	14 U	14 U	14 U
SW8270	DIMETHYL PHTHALATE	$\frac{\text { ugkg }}{\text { ugk }}$	11 U	11 U	11 U	11 U	14 U	13 U	13 U	$\frac{13}{80}$	$\frac{11 \mathrm{U}}{65}$	11 U	11 U	11 U	110	$\underline{110}$	12 U	14 U	11 U	110	110
SW8270	D-N-BUTYL-PHTHALATE	ugkg	64 U	67 U	69 U	68 U	86 U	80 U	80 U	80 U	65 U	65 U	${ }^{66 \mathrm{U}}$	66 U	67 U	68 U	70 U	82 U	67 U	68 U	67 U
(eler $\begin{aligned} & \text { SW8270 } \\ & \text { SW8270 }\end{aligned}$	D-N-OCTYL-PHTHALATE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\text { ugkg }}$	16 U	17 U	${ }^{17 \mathrm{U}}$	17 U	22 U	20 U	20 U	20 U	16 U	16 U	17 U	17 U	17 U	17 U	$\frac{18 \mathrm{U}}{20 \mathrm{U}}$	20 U	17 U	17 U	
SW8270	HEXACHLOROBENZENE	ugkg	8.8 U	9.10	9.40	9.30	12 U	11 U	11 U	11 U	8.9 U	8.90	9.00	9.00	9.00	9.2 U	9.5 U	12 U	$9.1 \mathrm{UJ}^{\text {¢ }}$	9.2 U	9.10
(ew ${ }^{\text {SW8270 }}$	HEXACHLOROCYCLOPENTADIENE	ugkg	12 UJ	12 U	13 U	13 U	16 U	15 U	15 U	15 U	12 U	13 U	13 U	15 U	12 U	13 U	12 UJ				
SW8270	HEXACHLOROETHANE	$\frac{\mathrm{Lg} \text { kg }}{}$	18 U	19 U	20 U	19 U	24 U	$\frac{230}{274}$	23 U	$\frac{230}{274}$	19 U	20 U	$\frac{230}{274}$	19 U	19 U	19 U					
SW8270	N-NITROSO-DI-N.PROPYLAMINE	${ }_{\text {ugkg }}$	19 UJ	${ }_{20}{ }^{20}$	210	210	26 U	24 U	24 U	24 U	20 U	${ }_{20} 20 \mathrm{UJ}$	210	24 U	20 U	20 U	20 U				
SW8270	N-NITROSODIPHENYLAMINE	ugkg	12 U	12 U	${ }^{13} \mathrm{U}$	13 U	${ }^{16 \mathrm{U}}$	15 U	15 U	15 U	12 U	13 U	130	15 U	12 U	13 U	12 U				
SW8270	P.CHLLOROANLINE	$\frac{\text { ugkg }}{\text { ugkg }}$	$\underline{28} 17$	$\underline{29 U}$	$\frac{30 \mathrm{U}}{18}$	$\underline{18 \mathrm{U}}$	37 U 23	310	$\frac{34 \mathrm{U}}{21 \mathrm{U}}$	$\frac{34 \mathrm{U}}{21 \mathrm{U}}$	${ }_{18}^{28}$	$\underline{280}$	${ }_{18}^{28} \mathrm{U}$	${ }^{28} 18$	$\underline{29 U}$	${ }_{18}^{29} \mathbf{U}$	30U	$\frac{35}{22 U}$	$\underline{29 U}$	$\underline{29 U}$	$\underline{29 U}$
V8270	--NITROANILINE	ugkg	13 U	14 U	14 U	14 U	17 U	16 U	16 U	16 U	13 U	14 U	14 UJ	16 U	14 UJ	14 UJ	140				
sw9060	TOTAL ORGANIC CARBON	malkg																			

```
Mg/kg: miligrams per kilorram
U = non-d
ugkg: micrograms ser kilogram result from Vistal laboratory
```

			$\begin{gathered} \text { SS024 } \\ \text { SSO24AA } \\ 0 .-0.25 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO25 } \\ \text { SSO25AA } \\ 0-0.25 \text { feet } \\ 12 / 04 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ss026 } \\ \text { SS0026AA } \\ 0-0.25 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$			$\begin{array}{\|c\|} \hline \text { SSO28 } \\ \text { SSO28AB } \\ 0.0 .25 / \text { feet } \\ 12107712006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO29 } \\ \text { ssơ9AA } \\ 0.0 .25 \text { feet } \\ 122107 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO30 } \\ \text { sso30AA } \\ 0.0 .25 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO31 } \\ \text { SSOO31AA } \\ 0-0.25 \text { feet } \\ 121121212006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SS032 } \\ \text { SSO32AA } \\ 0.0 .25 \text { feet } \\ \text { 121/06/2006 } \\ \hline \end{array}$	$\begin{array}{\|c} \text { SSO33 } \\ \text { SSSO33AA } \\ 0-0.25 \text { feet } \\ 10266 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c} \text { SSO34 } \\ \text { SSOO3AAA } \\ \text { o-0.25 feet } \\ 12104 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO35 } \\ \text { Sso35AA } \\ 0-0.25 \text { feet } \\ 12 / 106 / 2000 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS036 } \\ \text { SSO36AA } \\ 0-0.25 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO36 } \\ \text { SSO36AC } \\ 0-0.25 \text { feet } \\ 12 / 1 / 6 / 2000 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO37 } \\ \text { SSO37AA } \\ 0-0.25 \text { feet } \\ 121 / 55 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO38 } \\ \text { SSOB8AA } \\ 0-0.25 \text { feet } \\ 12 / 107 / 2006 \end{gathered}$	$\begin{gathered} \text { SS038 } \\ \text { sso38AC } \\ 0-0.25 \text { feet } \\ 12 / 1 / 7 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SSO39 } \\ \text { sso39AA } \\ 0.0 .25 \text { feet } \\ 122107 / 2006 \\ \hline \end{array}$
Lab Method	Analyte	Units																			
ENASIM	2-METHYLNAPHTHALENE	$\underset{\text { ugkg }}{\substack{\text { ugkg } \\ \text { ugh }}}$	${ }_{10}^{40}$	$\frac{30 \mathrm{~J}}{44}$	$\underline{1600}$	${ }_{47}{ }^{35}$	160 U	$\underline{160 \cup}$	16 U	${ }_{21}^{51}$	$\frac{28 \mathrm{~J}}{45}$	$\stackrel{830}{150}$	${ }^{1.60}$	${ }_{30}^{24 \mathrm{U}}$	40 u	${ }_{30}^{40}$	${ }_{30}^{46}$	${ }_{170}{ }^{420}$	$\frac{340}{60}$	37 U	$\underline{174}$
ENASIM	ACENAPHTHYLENE	ugkg	100	500	2100	910	3400	3400	28 U	330	540	690	2.8 U	680	770	190	200	1700	1000	750	250
ENASIM	ANTHRACENE	ugkg	180	820	3700	1800	4700	4900	43	450	1000	1500	5.8	1600	560	270	270	3600	1800	1200	530
ENASIM	BENZO(A)ANTHRACENE	ugkg	230	700 J	3900	1800	15000	17000	36	880	950	1800	2.9 J	880	1300	390	400	4000	1900	1500	430
ENASIM	BENZO(A)PYRENE	$\frac{\text { ugkg }}{\text { ugagg }}$	$\frac{230}{670}$	$\frac{770 \mathrm{~J}}{1600 \mathrm{~J}}$	6800 13000	1800 3100	16000 22000	$\xrightarrow{177000}$	${ }_{8}^{40}$	${ }_{1100}^{1900}$	1400	1500 3300	$\frac{3.00}{5.8}$	1100	1600 1800	410	$\frac{440}{820}$	4400 9800	1900 3400	1600 2500	${ }_{880}^{480}$
ENASIM	BENZO(G,H,U)PERYLENE	ugkg	190	590 J	7600	1300	6500	6300	45	800	1100	1600	3.5 J	1100	1100	470	480	4300	2100	1900	470
BNASIM	BENZO(k)FLUORANTHENE	ugkg	240	${ }^{12000 ~}$	6100	2400	20000	19000	63	920	1300	2900	4.9	1600	1700	690	660	6600	2400	2300	730
BNASIM	CHRYSENE	ugkg	470	${ }^{11000}$	5200	2700	20000	20000	67	1100	1200	3100	3.5 J	1200	1600	620	600	5500	2500	2000	600
ENASIM	DIBENZO(A,H)ANTHRACENE	ugkg	${ }^{73} \mathrm{~J}$	190 J	2100	480	2600	3100	12 J	320 J	400	410	0.91 J	350	430	${ }^{130}$	${ }^{130}$	1600	660	530	150
BNASIM	FLUORANTHENE	ugkg	680	1400	3900	2900	18000	21000	${ }^{86}$	1300	1300	3600	4.7	1200	1300	740	750	6100	2900	2400	${ }^{730}$
ENASIM	FLUORENE	ugkg	10	41	160 U	55	170 J	190 J	16 U	29 J	47	830	1.6 U	32 J	33 U	17 U	17 U	110	46 J	37 U	17 U
BNASIM	INDENO(1, 2, 3, CD) PYRENE	ugkg	190	670		1600	8900	8900		820	1100	1700	${ }^{3.8}$	1200	${ }^{1300}$	510	520	5200	12300	2000	520
SNASIM	NAPHTHALENE	ugkg	41	39 J	${ }^{54 \mathrm{U}}$	58 100 100	${ }^{54 \mathrm{U}}$	${ }^{2200}$	5.4U	81	40	$\stackrel{48 \mathrm{~J}}{\stackrel{4}{1900}}$	0.54 U	${ }^{39}$	${ }^{63} \mathrm{~J}$	- 100	${ }_{43}^{4101}$	800	120	1300	$\begin{array}{r}5.5 \mathrm{U} \\ \hline 2701\end{array}$
ENASIM	${ }^{\text {PENTACNLOROPHENOL }}$	${ }_{\text {ug }}^{\substack{\text { ugkg } \\ \text { ugkg }}}$	${ }^{0.750}$	${ }_{310}^{810}$	${ }_{3}^{2900}{ }^{390}$	1100	${ }^{26000}$	3200 J   880	${ }_{35}^{110}$	${ }^{7.40}$	300	1900 J   380	$\frac{0.74 \mathrm{U}}{3.5}$	180	200	190	180	1700	1900	1480	2705 180
ENASIM	PYRENE	ugkg	680	1600 J	6400	3100	32000	36000	79	1600	1700	3600	5.2	1500	1600	760	770	6400	2800	2300	760
E160.3	RESIDUE, TOTAL	percen	94	83	95	65	96	96	95	95	89	91	96	92	93	91	91	94	91	83	93
E1613/E1668	1, $1,2,3,4,6,7,8$. HEPTACHLORODIBENZOFURAN		${ }^{93803.3639}$		13600 J 133000										459			$\frac{3170}{24600}$	${ }^{10400}$	${ }^{93600}$	
E1613/E1668	1, 1, 2, 4, ,7,8,9,-HEPTACHLORODIBENZOFURAN	ngkg	${ }^{49.142 \mathrm{~J}}$		789 J										26.7			183	600	545	
E1613/E1668	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	ngkg	29.689		423										14			68.8 J	319	277	
E1613/1668	1, 2, ,3,4,7,8.-HEXACHLORODIBENVO-P-DIOXIN	ngkg	${ }_{1}^{107.347}$		${ }^{346}$										25.8			229	606	577	
E16131E1668	1, 1, 2, 6, 6, , , 8.-HEXACHLCORODIBENZOFURAN	ngkg	${ }^{33.176}$		${ }_{1217} 12$										8.32			84.6	175	161	
E1613/E1688	1,2,3,7,9,9-HEXACHLORODIBENZO-P-DIOXIN	ngkg	$\stackrel{221.695}{ }$		422										${ }^{3} 4.05$			436	$\stackrel{87.6}{1160}$	1060	
E1613/E1668	1, 1, , 3,7,8.PENTACHLLORODIBENZOFURAN	ngkg	2.938 J		12.8										1.36 J			$0 \cup$	${ }^{16.5}$	${ }^{18.67}$	
E1613/E1668	1,2,3,7,8.PENTACHLORODIBENZO-P-DIOXIN	ngkg	${ }^{43.826}$		59										6.29			90	187	177	
E1613/1668	2, 2, 4, , , ,7, , -HEXACHLORODIBENZOFURAN	ngkg	${ }^{37.468}$		272										14.2			140	359	${ }^{336}$	
E1613/E1668	2,3,4, ,8.PEENACHLORODIBENZOFURAN	ngkg	3.962 J		78.8										3.93			${ }^{19.2 \mathrm{~J}}$	$\stackrel{82.7}{12 .}$	79.2	
E1613/E1668	2, $2,3,7,7$, -TETRACHLORODIBENZOFURAN	ngkg ngkg	${ }^{0.681 \mathrm{~J}} 3.618$		1.44 3.38										. 792 J .507			${ }_{9}^{0.13}$ J	${ }^{13.6 \mathrm{~J}}$	${ }^{13.47 \mathrm{~J}}$	
E1613] 16688	OCTACHLORODIBENZOFURAN	ngkg	${ }^{3762.337}$		94500										1960			13200	37700	33500	
E1613/E1668	OCTACHLORODIBENZO-P-DIOXIN	ngkg	58364.183 J		1770000										36100			267000	689000	568000	
E16131/E1688	TTOTAL HEPTACHLORINATED DIBENZOFURANS	$\xrightarrow{\text { ngkg }}$ ngkg	${ }_{2}^{288889.654}$		$\frac{80400}{667000}$										$\xrightarrow{17850}$			${ }_{7}^{177800}$	$\frac{41200}{187000}$	${ }^{37000}$	
E1613/E1668	TOTAL HEXACHLORINATED DIBENZOFURANS	ngkg	${ }_{1}^{1183.037}$		13100 J										365			3090	11100	${ }^{9650} \mathrm{~J}$	
E1613/1668	TOTAL HEXACHL ORINATED DIBENZO-P.DIIXINS	ngkg	${ }^{3200.893}$		${ }^{29200}$										1530			8480	${ }^{16600}$	14600	
	ToTAL PENTACHLORINATED DIBENZOFURANS	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$	251.423		$\frac{1000 \mathrm{~J}}{643}$										$\frac{63.7}{80}$			${ }_{945}^{495}$	1020	1000	
E1613/E1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ngkg	30.232		100 J										25.5			155	236	208	
E1613/E1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	ngkg	24.409		41.8										17.5			107	122	120	
SW6020	ANTMONY	mgkg	${ }^{0.366 \mathrm{UJ}}$	0.69 J	0.35 U	${ }_{0} 0.51 \mathrm{UJ}$	0.35 ${ }^{\text {U }}$	${ }^{0.350}$	0.35 U	0.46 J	${ }^{0.3810 \mathrm{~J}}$	200	${ }^{0.350 J}$	${ }^{0.36 \mathrm{UJ}}$	0.98 ${ }^{11}$	${ }^{2} 7$	${ }^{3.5}$	${ }^{1.55}$	7.3	6.1	1.6
SW6020	$\frac{\text { ARSENIC }}{\text { BARIUM }}$	$\frac{\mathrm{m}_{\text {g }} \mathrm{kgg}}{\text { mgkg }}$	$\frac{25}{8.1}$	79, 16	${ }_{27}{ }^{77}$	17 J	${ }^{5} 5$	$\frac{4.3}{6.1}$	$\frac{4.5}{6.7}$	$\frac{8.7}{21}$	${ }^{91}$	$\frac{36}{44}$	${ }_{9}^{52}$	$\frac{113}{13}$	${ }_{63}^{11}$	${ }^{77 \mathrm{~J}}$	${ }^{120 \mathrm{~J}}$	$\frac{120}{46}$	$\frac{430}{37}$	$\frac{330}{26}$	${ }_{17} 14$
SW6020	CADMIUM	mgkg	0.30 U	${ }_{0.35 \mathrm{U}}$	0.30 U	${ }_{0}^{0.43 \mathrm{U}}$	0.30 U	0.30 U	0.30 U	0.29 U	0.32 U	0.30 U	0.30 U	0.31 U	0.30 J	0.31 U	0.40 J	0.68	0.38 J	0.38 J	0.45 J
SW6020	CHROMUM	mgkg	34	87 J	15	26 J	8.2 J	7.7 J	11 J	15	59	${ }_{5}^{53}$	3.9	16 J	${ }^{17}$	80 J	120 J	99	690	680 J	140 J
SW6020	COPPER	mgkg	19	74	22	27	5.0 J	4.9 J	5.4 J	17	46	68 J	1.25	16	22 J	34 J	57 J	92	310	280 J	63 J
SW6020	LEAD	mgkg	5.5	12	14	9.6	10	9.6	16	24	9.9	2200	3.1	9.0	160	14	15	440	39	29	34
SW6020	SELENUM	mgkg	0.880J	1.0U	0.86U	1.3U	0.87U	0.87U	-0.88 ${ }^{0.40}$	0.830J	-0.93	0.86 U	0.87 ${ }^{0.89}$	0.900	-0.86U	0.90	0.91U	-0.87	0.89 -	1.0U	0.900
SW6020	SILVER ${ }^{\text {VANADIUM (FUME OR DUST) }}$	$\frac{\mathrm{m} \mathrm{m}_{\text {kg }}}{\text { makg }}$	0.40 U	${ }^{0.450}$	${ }^{0.390}$	0.57 U	0.39 U	0.39	0.40 U	0.38 ${ }^{2}$	0.42	${ }^{0.394}$	0.39 U	${ }^{0.41 U^{2}}$	0.39 U	0.41 ${ }^{181}$	0.41 ${ }^{\text {a }}$	0.39 U	${ }^{0.400}$	${ }^{0.460}$	0.41
SW7471	MERCURY	mgkg	${ }_{0} 0.035$	0.65	0.11	${ }_{0}^{2.44}$	${ }_{0}^{1.14 \mathrm{~J}}$	${ }^{0.9 .16}$	${ }_{0.044 \mathrm{~J}}^{0.2}$	$\frac{2.14}{0.14}$	1.39	1.1	0.035	${ }^{2.83}$	4.8	${ }_{0}^{1.045}$	3.651 0.051	${ }^{4.36}$	${ }_{0}^{0.950}$	$\stackrel{1.10 J}{0.48 \mathrm{~J}}$	${ }_{0}^{3.19}$
SW8260	1,1,1-TRRCHLOROETHANE	ugkg	$\stackrel{0.13 \mathrm{U}}{ }$	${ }^{0.200}$	${ }_{0}^{0.13 u^{0}}$	${ }_{0}^{0.264}$	$0.13{ }^{0}$	${ }^{0.13 U}$	0.14 U	0.18 U	0.14 U	${ }^{0.14 U}$	0.13 U	0.17 U	0.14 U	0.27 U	0.13 U				
SW8260	1,1,2,2, 2-ETRACHLOROETHANE	ugkg	0.070 U	${ }^{0.111}$	0.070 U	0.15 U	0.069 U	0.069 U	0.072 U	0.099 U	0.075 U	0.073 U	0.070 U	0.091 U	0.076 U	0.073 U	0.073 U	$0.074 \mathrm{U}^{0}$	0.073 U	0.15 U	0.071 U
SW8260	1, 1,1,-TRICHLOROETHANE	$\frac{\mu \mathrm{g} k \mathrm{~kg}}{10 \mathrm{~kg}}$	0.14U	$\frac{0.21 \mathrm{U}}{0.100}$	0.14U	$\frac{0.29 \mathrm{U}}{014}$	$\stackrel{0.14 \mathrm{U}}{0.066 \mathrm{U}}$	0.14U	0.15U	0.20 U 0.095 U	0.15 U 0.071 U	$\frac{0.15 \mathrm{U}}{0.070 \mathrm{U}}$	0.14 U 0.066 U	$\frac{0.18 \mathrm{U}}{0.087 \mathrm{U}}$	0.15 U 0.072 U	0.15U	0.15 U 0.070 U	0.15U	0.15 U   0.070 U     	0.29U	0.14U
SW8260	1,1--ICHLOROETHYLENE	ugkg	0	$\stackrel{0.270}{0.4}$	$\stackrel{0.18 \mathrm{U}}{0}$	${ }_{0}^{0.37 \mathrm{U}}$	0	0	0.190	${ }_{0}^{0.26 U}$	$\stackrel{0.020}{ }$	0.19 U	0.0 .18 U	${ }_{0}^{0.24 \mathrm{U}}$	0.20 U	0.19 U	0.19 U	0	0.19 U	${ }_{0}^{0.38 \mathrm{U}}$	0.0 .19 U
W8260	1,2,4-TRICHLOROBENZENE	ugkg	${ }_{0}^{0.16 U^{0}}$	$\stackrel{0.24 U}{074}$	${ }_{0}^{0.156}$	${ }_{0}^{0.33 \mathrm{UJ}}$	${ }^{0.16 U^{0}}$	${ }_{0}^{0.16 U^{-24}}$	$\stackrel{0.17 \mathrm{U}^{0.54}}{ }$	$\stackrel{0.23}{0}$	$\stackrel{0.17 \mathrm{U}^{0.54}}{ }$	$0.17{ }^{0.17 \mathrm{UJ}}$	${ }_{0}^{0.164}$	${ }_{0}^{0.214}$	${ }^{0.150 \mathrm{UJ}}$	${ }_{0}^{0.17 \mathrm{U}^{0.54}}$	$\frac{0.17 \mathrm{U}^{0.54}}{}$	0.17 UJ	${ }_{0}^{0.17)^{0}}$	$\stackrel{0.34 \mathrm{U}}{114}$	$0.17 \mathrm{U}^{0.10}$
	(1,--DIBROMOMO-3-CHLOROPROPOPANE (DBCP)	ugikg	0.52 U 0.060 U	0.78 U 0.089 u	0.52 UJ	1.1 UJ 0.13 U	${ }_{0}^{0.52 \mathrm{U}}$	0.52 U 0.059 U	0.54U	0.74 U 0.084 U	0.56 U 0.063 U	0.55 UJ	0.52 U 0.059 U	${ }_{0}^{0.677}{ }_{0}^{0.077 U}$	0.56 U J	0.54 U 0.062 U	0.54U	${ }^{0.55 \mathrm{UJ}} 0.063 \mathrm{U}$	0.55 U	$\stackrel{1.10}{0.13}$	$\frac{0.53 \mathrm{U}}{0.061 \mathrm{U}}$
SW8260	${ }^{1,2 \text {-IICHLOROBENZENE }}$	ugkg	0.083 U	${ }^{0.13 U}$	0.083 U	0.17 UJ	0.082 U	0.082 U	0.085 U	0.12 U	0.088 U	0.087 UJ	0.082 U	0.11 U	0.089 UJ	0.086 U	0.086 U	0.087 UJ	0.086 U	${ }^{0.18 \mathrm{U}}$	0.66 J
SW8260	1,2-DICHLOROETHANE	ugkg	0.11 U	0.16 U	0.11 U	0.22 U	0.11 U	0.11 U	0.11 U	0.15 U	0.12 U	${ }^{0.12 \mathrm{U}}$	0.11 U	${ }^{0.14 U}$	0.12 U	${ }^{0.12 \mathrm{U}}$	${ }^{0.114}$	0.12 U	0.12 U	0.23 U	0.11 U
血W82600	1.2-DICHLOROPROPANE	$\frac{\text { ugkg }}{\text { ugkg }}$	${ }_{0}^{0.058 U}$	$\frac{0.086 \mathrm{U}}{014 \mathrm{U}}$	-0.058 U	-0.12	0.057U	0.057 U	0.059 U	$0.081{ }^{0}$	0.061 U	${ }^{0.060 \mathrm{U}}$	0.057 U	0.074 U	${ }^{0.062 U}$	$0.060 \mathrm{U}^{0}$	0.0000	${ }^{0.061 U^{0}}$	0.060 U	0.12 U	0.058 U
Sterse	${ }_{\text {l }}^{\text {1,4-DICHLOROBENZENE }}$	${ }_{\text {ug }}^{\text {ugkg }}$	0.093 U   5.7 J	$\frac{0.140}{4.0 \mathrm{U}}$	$\frac{0.092 \mathrm{U}}{12 \mathrm{~J}}$		$\stackrel{0.0910}{2.70}$	$\stackrel{0.091 \mathrm{U}}{2.7 \mathrm{U}}$	$\stackrel{0.095 \mathrm{U}}{2.8 \mathrm{u}}$	$\frac{0.140}{6.3 \mathrm{~J}}$	0.098 U   .6 J	$\stackrel{0.097 \mathrm{UJ}}{2.8 \mathrm{U}}$	$\frac{0.092 \mathrm{U}}{2.7 \mathrm{U}}$	$\stackrel{0.12 \mathrm{U}}{3.5 \mathrm{U}}$	$\stackrel{0}{0.099 \mathrm{U}}$	$\frac{0.096 \mathrm{U}}{2.8 \mathrm{U}}$	$\stackrel{0.096 \mathrm{U}}{2.8 \mathrm{U}}$	$\frac{0.097 \mathrm{UJ}}{2.8 \mathrm{U}}$	$\stackrel{0.096 \mathrm{U}}{2.8 \mathrm{U}}$	$\stackrel{0}{0.60 \mathrm{U}}$	$\stackrel{0.094 \mathrm{U}}{2.7 \mathrm{U}}$
SW8260	BENZENE	ugkg	${ }^{0.42 \mathrm{U}}$	0.62 U	${ }^{0.42 \mathrm{U}}$	${ }^{0.85 U}$	${ }^{0.410}$	0.41 U	${ }^{0.43 \mathrm{U}}$	0.59 U	${ }^{0.44 \mathrm{U}}$	${ }^{0.44 \mathrm{U}}$	${ }^{2.414}$	0.54 U	${ }^{0.45 U}$	${ }^{0.43 U}$	0.43 U	${ }^{0.44 \mathrm{U}}$	0.43 U	0.87 U	0.42 U
SW8260	BROMODICHLOROMETHANE	ugkg	0.31 U	${ }^{0.46 \mathrm{U}}$	${ }_{0}^{0.31 \mathrm{U}}$	${ }^{0.630}$	$\stackrel{0.314}{034}$	${ }_{0}^{0.314}$	${ }_{0}^{0.323}$	$\stackrel{0.44 \mathrm{U}}{ }$	$\stackrel{0.33 \mathrm{U}}{0}$	${ }_{0}^{0.336}$	${ }_{0}^{0.31 \mathrm{U}}$	${ }^{0.40 \mathrm{U}}$	$\stackrel{0.33 \mathrm{U}}{0}$	${ }^{0.32 \mathrm{U}}$	$\stackrel{0.32 \mathrm{U}}{0.364}$	${ }_{0}^{0.334}$	${ }^{0.32 \mathrm{U}}$	$0.65{ }^{0}$	$\stackrel{0.32 \mathrm{U}}{ }$
SW8260	CARBON DISULFIDE	ugkg	1.7 U	2.6 U	1.70	3.5 U	1.7 U	1.70	1.8 U	2.4 U	1.8 U	1.8 U	1.7 U	2.2 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U	3.6 U	1.8 U
SW8260	CARBON TETRACHLORIDE	ugkg	0.38 U	0.56 U	0.37 U	0.76 U	0.37 U	0.37 U	0.38 U	0.53 U	${ }^{0.40 \mathrm{U}}$	0.39 U	${ }^{1.37 U}$	0.48 U	${ }^{0.40 \mathrm{U}}$	0.39 U	0.39 U	0.39 U	0.39 U	0.78 U	${ }^{0.38 \mathrm{U}}$
SW8260	CFC-11	ugkg	${ }^{0.284}$	${ }^{0.421 ~}$	${ }^{0.284}$	${ }^{0.57}$	${ }^{0.288}$	${ }^{0.284}$	${ }_{0}^{0.290 ~}$	${ }^{0.390}$	${ }^{0.300}$	${ }^{0.290}$	${ }^{0.284}$	${ }^{0.36 \mathrm{U}}$	${ }^{0.307}$	${ }^{0.299}$	${ }^{0.290}$	${ }^{0.299}$	${ }^{0.294}$	${ }^{0.588}$	${ }^{0.288}$
SW8260	${ }^{\text {CFC-12 }}$ CHLORINATED FLUOROCARBON ( (REOON 113)	$\frac{\mu g \mathrm{~kg}}{\text { ugkg }}$	0.34 U 0.39 u	$\frac{0.51 \mathrm{u}}{0.58 \mathrm{U}}$	$\xrightarrow{0.34 \mathrm{U}}$	$\frac{0.70 \cup}{0.78 \mathrm{u}}$	$\frac{0.34 \mathrm{JJ}}{0.38 \mathrm{U}}$	0.34 J 0.38 U	$\frac{0.35 \mathrm{uj}}{0.40 \mathrm{U}}$	$\stackrel{0.48 \mathrm{U}}{0.54 \mathrm{U}}$	$\xrightarrow{0.36 \mathrm{U}}$	0.36 U 0.40 U	$\stackrel{0.34 \mathrm{U}}{0.38 \mathrm{U}}$	$\stackrel{0.44 \mathrm{U}}{0.50 \mathrm{U}}$	0.37 U 0.41 U	0.36 U 0.40 U	$\frac{0.36 \mathrm{U}}{0.40 \mathrm{U}}$	0.36	$\frac{0.36 \mathrm{UJ}}{0.40 \mathrm{U}}$	$\frac{0.71 \mathrm{UJ}}{0.80 \mathrm{U}}$	$\frac{0.35 \mathrm{UJ}}{0.39 \mathrm{U}}$
SW8260	CHLOROBENZENE	ugkg	0.43 U	0.64 U	0.43 U	0.87 U	0.42 U	0.42 U	0.44 U	0.60 U	0.45 U	0.45 U	0.42 U	0.55 U	0.46 U	0.45 U	0.44 U	0.45 U	0.45 U	0.89 U	0.43 U
SW8260	HLORODIBROMOMETHANE	ugkg	0.27 U	0.40 U	0.27 U	0.55 U	0.27 U	0.27 U	0.28 U	0.38 U	0.29 U	0.28 U	0.27 U	0.35 U	0.29 U	0.28 U	0.28 U	0.28 U	0.28 U	0.56 U	0.27 U
SW8260	CHLOROETHANE	uglkg	0.39 U	0.58 U	0.39 UJ	0.78 U	${ }^{0.38 \mathrm{U}}$	${ }^{0.38 \mathrm{U}}$	0.40 U	0.54 U	0.41 UJ	${ }^{0.400}$	${ }^{0.38 \mathrm{U}}$	0.50 U	0.41 U	${ }^{0.40} \mathrm{U}^{\text {a }}$	${ }^{0.40 \mathrm{U}}$	0.410	${ }^{0.400}$	${ }^{0.800}$	0.39 U
SW8260	CHLOROMETHANE	$\stackrel{\text { ugkg }}{\text { ugkg }}$	$\stackrel{0.37 \mathrm{U}}{0.48 \mathrm{U}}$	$\stackrel{0.54 \mathrm{U}}{0.72 \mathrm{U}}$	$\stackrel{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\stackrel{0.74 \mathrm{U}}{0.98 \mathrm{U}}$	$\stackrel{0.36 \mathrm{U}}{0.47 \mathrm{U}}$	$\stackrel{0.36 \mathrm{U}}{0.47 \mathrm{U}}$	$\stackrel{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	${ }_{0}^{0.510}$	$\stackrel{0.39 \mathrm{U}}{0.51 \mathrm{U}}$	$\stackrel{0.38 \mathrm{U}}{0.50 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	${ }_{0}^{0.4720}$	$\stackrel{0.39 \mathrm{U}}{0.52 \mathrm{U}}$	$\stackrel{0.38 \mathrm{U}}{0.50 \mathrm{U}}$	0.38 U 0.50 U	$\frac{0.38 \mathrm{U}}{0.51 \mathrm{U}}$	$\stackrel{0.38 \mathrm{U}}{0.50 \mathrm{U}}$	$\frac{0.76 \mathrm{U}}{1.0 \mathrm{U}}$	0.37 U 0.49 U
SW8260	CIIS-1,2-DICHLOROETHYLENE	ugkg	0.28 U	0.42 U	0.28 U	0.57 U	0.28 U	0.28 U	${ }_{0}^{0.290}$	0.390	${ }_{0}^{0.30 \mathrm{U}}$	${ }_{0}^{0.290}$	${ }_{0}^{0.28 \mathrm{U}}$	${ }_{0}^{0.36 \mathrm{U}}$	${ }_{0}^{0.300}$	0.29 U	${ }_{0}^{0.290}$	0.29 U	0.29 U	0.58 U	${ }_{0}^{0.28 \mathrm{U}}$


			$\begin{array}{\|c} \text { SSO24 } \\ \text { SSO24AA } \\ 0-0.25 \text { feet } \\ 12 / 111 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO25 } \\ \text { ssones } \\ 0-0.25 \text { feet } \\ 1204 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS026 } \\ \text { SSO26AA } \\ 0-0.25 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SSO277 } \\ \text { SSO27AA } \\ 0.0 .25 \text { feet } \\ 12104 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO28 } \\ \text { SSO28AA } \\ 0.0 .25 \text { feet } \\ 1207 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { SSO288 } \\ \text { SSO28AB } \\ 0.0 .25 \text { feet } \\ 122.107 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { SSO29 } \\ \text { SSO29AA } \\ 0.0 .25 \text { feet } \\ 12 / 107 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO30 } \\ \text { SSO30AA } \\ 0.0 .25 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { SSO32 } \\ \text { SSO32AA } \\ 0.0 .25 \text { feet } \\ 12206 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO33 } \\ \text { SSO33AA } \\ 0.0 .25 \text { feet } \\ 12.106 / 2006 \\ \hline \end{gathered}$		$\begin{gathered} \text { SS035 } \\ \text { SSO35AA } \\ 0.0 .25 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SSO36 } \\ \text { SSO36AA } \\ \text { o-0.25 feet } \\ \text { 12/106/2006 } \\ \hline \end{array}$	$\begin{gathered} \text { SSO36 } \\ \text { SSO36AC } \\ 0-0.25 \text { feet } \\ \text { 12/106/2006 } \\ \hline \end{gathered}$	$\begin{array}{\|c\|c} \hline \text { SSO37 } \\ \text { SSOO37AA } \\ 0-0.25 \text { feet } \\ 1205 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO38 } \\ \text { SSO38AA } \\ 0-0.25 \text { feet } \\ 121 / 07 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c} \text { SSO38 } \\ \text { SSO38AC } \\ 0.0 .25 \text { feet } \\ 12 / 107 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO39 } \\ \text { SSO39AA } \\ 0.0 .25 \text { feet } \\ \text { 12/107/2006 } \\ \hline \end{array}$
Lab Metho	Analye	Units																			
V8260	CIIS-1,3-DICHLOROPROPENE	ugkg	0.31 U	0.46 U	0.31 U	0.63 U	0.31 U	0.31 U	0.32 U	${ }^{0.44 \mathrm{U}}$	${ }_{0}^{0.33 \mathrm{U}}$	${ }^{0.33 \mathrm{U}}$	0.31 U	0.40 U	0.33 U	0.32 U	0.32 U	${ }^{0.33 \mathrm{U}}$	0.32 U	0.65 U	${ }_{0}^{0.32 \mathrm{U}}$
SW8260	CYCLOHEXANE	ugkg	${ }^{0.410}$	${ }^{0.610}$	0.410	${ }^{0.83 \mathrm{U}^{\text {a }}}$	${ }^{0.401}$	${ }^{0.400}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.57 u^{4}}$	${ }^{0.43 U}$	${ }^{0.42 \mathrm{U}}$	0.40 U	${ }^{0.524}$	${ }^{0.44 U}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.43 U}$	${ }^{0.42 U}$	${ }^{0.855}$	${ }^{0.414}$
SW8260	DICHLOROMETHANE	ugkg	0.42 U	0.62 U	5.35	0.85 U	0.41 U	0.41 U	0.43 U	0.59 U	0.44 U	0.44 U	$0.41 \mathrm{U}^{\text {a }}$	0.54 U	0.45 U	${ }_{0}^{0.43 \mathrm{U}}$	0.43 U	0.44 U	0.43 U	0.87 U	0.42 U
SW8260	ETHYLBENZENE	ugkg	0.45 U	${ }^{0.67 \mathrm{U}}$	${ }^{0.45 \mathrm{U}}$	0.91 U	0.44 U	0.44 U	${ }^{0.46 \mathrm{U}}$	${ }^{0.630}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.47 \mathrm{U}}$	$0.44{ }^{0}$	${ }^{0.58 U^{4}}$	${ }^{0.48 \mathrm{U}}$	0.47 U	0.47 U	${ }^{0.47 \mathrm{U}^{\text {U }} \text { - }}$	${ }^{0.474}$	${ }^{0.944}$	${ }^{0.46 \mathrm{U}^{0}}$
SW8260	ISOPROPYLBENZENE	ugkg	0.49 U	0.73 U	0.49 U	1.0 UJ	0.48 U	0.48 U	0.50 U	0.69 U	0.52 U	0.51 UJ	0.49 U	0.63 U	0.53 UJ	0.51 U	0.51 U	0.52 UJ	0.51 U	1.10	0.50 U
SW8260	m,p-xylenes	ugkg	0.93 U	1.4 U	0.92 U	1.90	0.91 U	0.91 U	$0.95 \mathrm{U}^{0}$	1.4 U	0.984	0.97 U	0.92 U	1.2 U	$0.99 \mathrm{U}^{0}$	$0.96 \mathrm{U}^{0}$	$0.96{ }^{0}$	0.97 U	0.96 U	2.0 u	0.944
SW8260	M-IICHLOROBENZENE	ugkg	0.053 U	0.080 U	$0.023 \mathrm{U}^{0.0214}$	$0.11{ }^{0}$	0.053U	0.053U	0.055 U	0.075 U	0.057 U	0.056 U	0.053 U	O.069 ${ }^{0}$	0.057 UJ	0.056 U	${ }^{0.055 U}$	0.056 U	0.056 U	0.12U	0.054 U
SW8260	METHYL LTHYL KETONE	ugkg	1.2 U	1.8 U	1.20	2.40	1.2 U	1.2 U	1.20	1.70	1.30	1.30	1.2 U	1.6 U	1.3 U	1.30	1.30	1.3 U	1.3 U	2.5 U	$\frac{1.2 U}{}$
SW8260	METHYL ISOBUTYL KETONE	ugkg	0.76 U	1.2 U	0.76 U	1.6 U	0.75 U	0.74 U	0.78 U	1.10	0.80 U	0.79 U	0.75 U	0.97 U	0.81 U	0.79 U	0.78 U	0.80 U	0.79 U	1.6 U	0.77 U
SW8260	METHYL N-BUTYL KETONE	ugkg	1.10	1.6 U	1.1 UJ	2.20	1.14	1.14	1.10	1.5 U	1.2 U	1.2 U	1.10	1.4 U	1.2 U	1.2 U	1.10	1.2 U	1.2 U	2.30	1.10
SW8260	METHYL EENZENE	ugkg	0.45 U	0.67 U	0.45 U	0.91 U	0.44 U	0.44 U	${ }_{0} 0.46 \mathrm{U}$	${ }^{0.63 U}$	${ }^{0.48 \mathrm{U}}$	0.47 U	0.44 U	0.58 U	0.48 U	0.47 U	0.47 U	${ }^{0.47 ~ U ~}$	0.47 U	0.94 U	${ }^{0.46 \mathrm{U}}$
SW8260	METHYLCYLOHEXANE	ugkg	0.47 U	$0.70{ }^{0}$	0.47 U	0.96 U	0.46 U	0.46 U	${ }_{0}^{0.48 \mathrm{U}}$	${ }^{0.66 \mathrm{U}}$	0.50 U	0.49 U	0.47 U	$0.61{ }^{0.6}$	0.51 U	$0.49 \mathrm{U}^{0.5}$	0.49 U	${ }_{0}^{0.50 \mathrm{U}}$	0.49 U	0.98 U	0.48 U
SW8260	${ }_{\text {O-XYLENE }}^{\text {STYRENE }}$	ugkg	-0.43U	0.64U	- 0.43 U	0.87U	O.42U	0.42 U   0.45	0.44U	0.60U	0.45 U 0 0.49 u	-0.45	-0.42U	0.55 ${ }_{0}^{0.59}$	-0.46	O.45 $\begin{aligned} & 0.48 \\ & 0\end{aligned}$	-0.44U	0.45 U 0.48 U	0.45 U   0.484	0.89 U   096   0914	0.43 U   047 U
SW8260	TERT-BUTYL METHYL ETHER	ugkg	0.34 U	0.51 U	0.34 U	0.70 U	0.34 U	0.34 U	0.35 U	0.48 U	0.36 U	0.36 U	0.34 U	0.44 U	0.37 U	0.36 U	0.36 U	0.36 U	0.36 U	0.71 U	${ }_{0}^{0.35 \mathrm{U}}$
SW8260	TETRACHLOROETHYLENE	ugkg	0.43 U	0.64 U	0.43 U	0.87 U	0.42 U	0.42 U	0.44 U	0.60 U	0.45 U	0.45 U	0.42 U	0.55 U	0.46 U	0.45 U	0.44 U	0.45 U	0.45 U	0.89 U	0.43 U
SW8260	TRANS-1,2-DICHLOROETHENE	ugkg	0.41	${ }^{0.610}$	${ }^{0.414}$	$\stackrel{0.83 \mathrm{U}}{ }$	${ }^{0.40 \mathrm{U}}$	0.40	$\stackrel{0.42 \mathrm{U}}{ }$	${ }_{0}^{0.57]^{\text {U }}}$	$\xrightarrow{0.43 \mathrm{U}}$	$\xrightarrow{0.42 \mathrm{U}}$	0.40	${ }^{0.52}$	0.44U	$\stackrel{0.42 \mathrm{U}}{ }$	${ }^{0.42 \mathrm{U}}$	$\xrightarrow{0.43 U}$	$\stackrel{0.42 \mathrm{U}}{ }$	0.85	${ }^{0.414}$
SW8260	TRANS-1,2-DICHLOROPROPENE	ugkg	${ }^{0.32 \mathrm{U}}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.32 \mathrm{U}}$	${ }^{0.655}$	${ }^{0.32 U}$	${ }^{0.32 \mathrm{U}}$	${ }^{0.33 \mathrm{U}}$	${ }^{0.45 U}$	0.34 U	0.34 U	0.32 U	0.41 U	0.35 U	0.34 U	${ }^{0.33 U}$	0.34 U	0.34 U	0.67 U	0.33 U
Sw8260	TRIBOMOMETHANE	ugkg	0.42 U	0.62 U	0.42 U	0.85 U	0.41 U	0.41 U	0.43 U	0.59 U	0.44 U	0.44 U	0.41 U	0.54 U	0.45 U	0.43 U	0.43 U	0.44 U	0.43 U	0.87 U	0.42 U
SW8260	TRICHLOROETHYLENE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\substack{\text { ugkg }}}$	0.43 U 0.26 U	0.64 U 0.39 u	-0.43U	$\xrightarrow{0.87 \mathrm{U}}$	0.42 U 0.26 U	0.42 U 0.25 U	0.44U	0.60 U 0.36 U	0.45 U 0.27 U	0.45 U 0.27 U	0.42 U 0.26 U	0.55 U 0.33 u	0.46 U 0.28 U	0.45 U	0.44U	0.45 U 0.27 U	0.45 U 0.27 U	0.89 ${ }_{0}^{0.54 \mathrm{U}}$	0.43 U   0.26 U
SW8270	2,4,5-TRICHLOROPHENOL	ugkg	14 U	16 U	140 U	20 U	140 U	140 U	14 U	14 U	15 U	15 U	14 U	15 U	14 U	15 U	15 U	14 U	15 U	16 U	14 U
SW8270	2,4,6,-TRICHLOROPHENOL	ugkg	39 U	44 U	380 U	56 U	380 U	380 U	38 U	38 U	41 U	40 U	38 U	40 U	39 U	40 U	40 U	39 U	40 U	44 U	39 U
SW8270	2,4-DICHLOROPHENOL	ugkg	19 U	210	180 U	27 U	180 U	180 U	18 U	18 U	20 U	19 U	18 U	19 U	21 U	19 U					
SW8270	2,4-DIMETHYLPHENOL	ugkg	${ }^{210}$	${ }^{23 U}$	${ }^{2000}$	30 U	200 U	200 U	20 U	20 U	22 U	210	20 U	210	210	210	210	24 J	210	23 U	210
SW8270	2.4-DIIITROPHENOL	ugkg	13 U	15 U	$\stackrel{130 \mathrm{U}}{110}$	19 U	$\frac{130 \mathrm{U}}{110 \mathrm{u}}$	$\frac{130 \mathrm{U}}{110 \mathrm{u}}$	130	13 U	14 U	14 U	13 U	14 U	13 U	14 U	14 U	13 U	14 U	15 U	13 U
SW8270	2,6-DIIITROTOLUENE	ualkg	39 U	44 U	380 U	56 U	380 U	380 U	38 U	38 U	41 U	40 U	38 U	40 U	39 U	40 U	40 U	39 U	40 U	44 U	39 U
SW8270	2-CHLORONAPHTHALENE	ugkg	18 U	20 U	$170 \cup$	25 U	1700	1700	17 U	17 U	18 U	18 U	17 U	18 U	20 U	18 U					
SW8270	2.CHLOROPHENOL	ugkg	20 U	22 U	190 U	28 U	190 U	190 U	19 U	19 U	210	20 U	19 U	20 U	22 U	20 U					
SW8270	2-METHYLPHENOL (O-CRESOL)	ugkg	13 U	15 U	130 U	19 U	130 U	130 U	13 U	13 U	14 U	14 U	13 U	14 U	13 U	14 U	14 U	13 U	14 U	15 U	13 U
SW8270	2-NITROANLINE	ugkg	${ }^{24 U}$	$\stackrel{27 \text { UJ }}{ }$	${ }_{2}^{240 \mathrm{O}}$	34 uJ	$\stackrel{230 \mathrm{U}}{15}$	$\stackrel{2300}{150}$	$\stackrel{24 \mathrm{UJ}}{15}$	${ }_{2}^{24 U}$	25 U	${ }^{250}$	${ }^{23 U}$	24 UJ	24 U	25 U	250	${ }^{24 U}$	${ }^{25} 16$	${ }^{27} 170$	${ }^{240 J}$
SW8270	2-NTTROPHENOL	ugkg	15 U	17 U	150	22 U	${ }^{150} \mathrm{U}^{130}$	150 U	15 U	15 U	16 U	16 U	15 U	16 U	16 U	16 U	16 U	15 U	16 U	17 U	16 U
SW8270	3,3.5.5-TRIMERETHYLL-2.CCYCLOHEXENE-1-ONE	$\frac{\mathrm{ug} k \mathrm{l}}{\mathrm{ug} k g}$	${ }^{37} 14$	$\frac{410}{16 \mathrm{UJ}}$	$\frac{360 \mathrm{U}}{140 \mathrm{O}}$	${ }_{23}^{50 \mathrm{UJ}}$	${ }_{360 \mathrm{U}}^{140 \mathrm{U}}$	$\xrightarrow{360 \mathrm{U}}$	$\frac{360}{140}$	$\frac{36 \mathrm{U}}{14 \mathrm{U}}$	15	${ }^{38} 15$	14 U	37 U 15	$\frac{374}{14}$	${ }_{18} 15$	${ }_{15} 38$	$\frac{37 \mathrm{UJ}}{14 \mathrm{U}}$	38 ${ }_{15}$	$\frac{410}{16}$	14U
SW8270	3-NITROANLINE	ugkg	19 U	210	180 U	27 U	180 U	180 U	18 U	18 U	20 U	19 U	18 U	19 U	210	19 U					
SW8270	4,6-DINTROO-2-METHYLPHENOL	ugkg	10 U	12 U	99 U	15 U	98 U	98 U	9.90	9.9 U	110	110	9.8 U	110	110	110	110	10 U	110	12 U	11 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	110	12 U	110 U	16 U	110 U	110 U	11 U	11 U	12 U	110	110	11 U	12 U	110					
SW8270	4.CHLORO-3-METHYLPHENOL	ugkg	18 U	20 U	1700	25 U	$170{ }^{170}$	1700	17 U	17 U	18 U	18 U	17 U	18 U	20 U	18 U					
SW8270	4-CHLOROPHENYL PHENYL ETHER	ugkg	24 U	27 U		34 U	$\stackrel{230 \mathrm{U}}{20}$	230 U	24 U	24 U	25 U	25 U	23 U	24 U	24 U	25 U	25 U	24 U	25 U	27 U	24 U
SW8270	4-NITROPHENOL	ugkg	19 U	21 UJ	${ }_{180} 180$	27 U	${ }^{180} \mathrm{UJ}$	${ }^{180} \mathrm{UJ}$	18 UJ	18 U	20 U	19 UJ	18 U	19 U	19 UJ	19 U	19 U	19 UJ	19 uJ	${ }^{21 \mathrm{UJ}}$	${ }_{19} 19 \mathrm{UJ}$
SW8270	BENZYL BUTYL PHTHALATE	ugkg	20 U	22 U	190 U	28 U	190 U	190 U	19 U	19 U	210	20 U	19 U	20 UJ	20 U	22 U	20 U				
SW8270	BIPHENYL	ugkg	160 UJ	190 U	1600 UJ	230 U	1600 U	1600 U	160 U	160 U	170	$170{ }^{\text {U }}$	160 U	170	170 U	$170{ }^{\text {U }}$	170	160 U	170	190 U	170
血W8270	BIS(2-CHLORETHOXYMETHANE	$\frac{\text { ugkg }}{\text { Uokg }}$	19 U	210	$\frac{180 \mathrm{U}}{160}$	27 U	$\frac{180 U}{160}$	180 U	18 U	$\frac{18}{164}$	20 U	19U	18 U	19 U	19 L	19 U	19 U	19 U	19 U	21U	19 U
(e) $\begin{aligned} & \text { SW8270 } \\ & \text { SW8270 }\end{aligned}$	BIIS(2-CHLOROETHYLETYER	$\frac{\mathrm{ug} k \mathrm{~kg}}{\text { ugkg }}$	${ }_{216}{ }^{16}$	$\frac{19 \mathrm{U}}{26 \mathrm{UJ}}$	$\frac{160 \mathrm{U}}{230 \mathrm{U}}$	$\stackrel{23 \mathrm{U}}{33 \mathrm{uj}}$	$\frac{160 \mathrm{U}}{220 \mathrm{UJ}}$	${ }_{2}^{160 \mathrm{U}}$	$\frac{16 \mathrm{UJ}}{23 \mathrm{U}}$	${ }^{16 \mathrm{U}}$	$\frac{174}{240}$	$\frac{17 \mathrm{U}}{24 \mathrm{UJ}}$	$\frac{16 \mathrm{UJ}}{22 \mathrm{U}}$	${ }^{17 \mathrm{U}}{ }^{13}$	${ }^{17 \mathrm{U}} \mathbf{1 7}$	$\frac{17 \mathrm{UJ}}{24 \mathrm{U}}$	${ }^{17 \mathrm{U}} \mathrm{U}$	$\frac{16 \mathrm{U}}{23 \mathrm{UJ}}$	$\frac{17 \mathrm{U}}{24 \mathrm{UJ}}$	$\frac{19 \mathrm{U}}{26 \mathrm{UJ}}$	$\frac{17 \mathrm{U}}{23 \mathrm{UJ}}$
SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	uglkg	18 U	20 U	170 U	28 J	$170 \cup$	170 U	17 U	17 U	18 U	52 J	17 U	18 U	18 U	33 J	32 J	120 J	24 J	20 U	18 U
SW8270	CARBAZOLE	ugkg	38 J	160 J	900 J	410	700 J	600 J	17 U	830	170 J	240	17 U	200	69 J	${ }_{4}{ }^{\text {J }}$	50 J	580	310	190 J	75 J
SW8270	IIBENZOFURAN	uglkg	19 J	45 J	140 U	36 J	140 U	140 U	14 U	150 J	33 J	32 J	14 U	24 J	36 J	31 J	28 J	360	150 J	77 J	49 J
SW8270	DIETHYL PHTHALATE	ugkg	13 U	15 U	130 U	19 U	${ }^{130 \mathrm{O}}$	${ }^{130 \mathrm{O}}$	13 U	13 U	14 U	14 U	13 U	14 U	13 U	14 U	14 U	13 U	14 U	15 U	13 U
SW8270	DIMETHYL PHTHALATE	$\frac{\text { ugkg }}{\text { ugk }}$	$\frac{11 \mathrm{U}}{65}$	12 U	$\frac{1100}{650}$	16 U	$\frac{110 \mathrm{U}}{600}$	$\frac{110 \mathrm{U}}{600}$	$\underline{11 \mathrm{U}}$	11 U	12 U	11 U	11 U	11 U	11 U	$\underline{110}$	11 U	11 U	$\underline{110}$	12 U	110
SW8270	D-N-BUTYL-PHTHALATE	ugkg	65 U	74 U	$\frac{650 \mathrm{O}}{10}$	94 U	${ }^{640 \mathrm{U}}$	640 U	65 U	65 U	69 U	68 U	64 U	67 U	66 U	68 U	68 U	65 U	68 U	74 U	66 U
(ele $\begin{aligned} & \text { SW8270 } \\ & \text { SW8270 }\end{aligned}$	D-N-OCTYL-PHTHALATE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\text { ugkg }}$	16 U	${ }_{210} 19$	160 U 180 U	230   27	160 U 180 U	$\frac{160 \mathrm{U}}{180 \mathrm{U}}$	${ }_{18}^{16 \mathrm{U}}$	${ }_{18}^{16 \mathrm{U}}$	${ }^{17 \mathrm{U}} \mathrm{U}$	${ }_{19}^{170}$	${ }_{18}^{16 \mathrm{U}}$	17 U	17 U	17 U	17 U	$\frac{16 \mathrm{UJ}}{19 \mathrm{U}}$	17 U	$\frac{190}{210}$	
SW8270	HEXACHLOROBENZENE	ugkg	8.9 UJ	10 U	88 UJ	13 U	87 U	87 U	8.8 U	8.80	9.40	9.20	8.7 U	9.10	9.00	9.20	9.20	8.90	9.24	10 U	9.00
SW8270	HEXACHLOROCYCLOPENTADIENE	ugkg	12 U	14 U	120 U	17 U	120 U	120 U	12 U	12 UJ	13 U	13 U	12 U	12 U	12 U	13 U	13 U	12 U	13 U	14 U	12 U
SW8270	HEXACHLOROETHANE	ugkg	19 U	210	${ }^{180 \mathrm{U}}$	270	${ }_{180} 180$	${ }^{180 \mathrm{O}}$	18 U	18 UJ	20 U	19 U	18 U	19 U	210	19 U					
SW8270	NTTROBENZENE	$\frac{\text { ugkg }}{\text { ugkg }}$	22 U	25 U	220U	31U	$\underline{210 \mathrm{U}}$	$\underline{2100}$	22 UJ	22 U	23 U	22 U	21 U	22 U	$\frac{22 \mathrm{UJ}}{20 \mathrm{u}}$	$\frac{25 \mathrm{UJ}}{22 \mathrm{U}}$	$\frac{22 \mathrm{UJ}}{201}$				
血W8270	$\frac{\text { N-NITROSO-DI-N.PROPYLAMINE }}{\text { N-NTROSOOLIPHENYLAMINE }}$	$\frac{\mathrm{ug} k \mathrm{~kg}}{\text { ugkg }}$	20 U	$\frac{22 \mathrm{UJ}}{14 \mathrm{U}}$	$\frac{190 \mathrm{U}}{120 \mathrm{U}}$	$\frac{28 \mathrm{UJ}}{17 \mathrm{U}}$	$\frac{190 \mathrm{U}}{120 \mathrm{U}}$	$\frac{190 \mathrm{U}}{120 \mathrm{U}}$	$\frac{190}{12 U}$	$\frac{19 \mathrm{U}}{12 \mathrm{U}}$	$\underline{210}$	20U	19 L	$\underline{120}$	20 U	$\underline{20 U}$	$\underline{20 U}$	$\underline{20 U}$	20U	22U	$\frac{20 U}{12 \mathrm{U}}$
V8270	P.CHLOROANILINE	ugkg	28 U	32 U	280 U	40 U	280 U	280 U	28 U	28 U	30 U	294	28 U	29 U	28 V	29 U	29	28 U	29 U	32 U	28 U
SW8270	PHENOL	ugkg	18 U	20 U	170 U	250	170 U	170 U	17 U	17 U	18 U	18 U	17 U	18 U	20 U	18 U					
SW8270	P-NITROANILINE	ugkg	13 U	34J	130 UJ	19 U	130 U	130 U	13 U	13 U	14 U	14 U	13 U	14 U	13 U	14 U	14 U	13 U	14 U	15 U	13 U
SW9060	TOTAL ORGANIC CARBON	mgakg																			



```
U = non-d
ugkg: micrograms per kilogram reslus from Vistal laboratory
```

			$\begin{gathered} \text { SSO40 } \\ \text { SSO40AA } \\ 0.0 .25 \text { feet } \\ 12 / 101 / 2006 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SSO41 } \\ \text { SSO41AA } \\ \text { o-0.25 feet } \\ 12 / 111 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSO42 } \\ \text { SSO42AA } \\ 0.0 .25 \text { feet } \\ 12 / 101 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO43 } \\ \text { SSO43AA } \\ 0.0 .25 \text { feet } \\ \text { 12/05/2006 } \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO044 } \\ \text { SSO44AA } \\ 0.0 .25 \text { feet } \\ 121 / 05 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO45 } \\ \text { SSO45AA } \\ 0.0 .25 \text { feet } \\ 12 / 11 / 2006 \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO46 } \\ \text { SSO46AA } \\ 0-0.25 / \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline \text { SSO48 } \\ \text { SSO48AA } \\ 0-0.25 / f e e t \\ 121 / 106 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO49 } \\ \text { SSO49AA } \\ 0.0 .25 / \text { feet } \\ 121 / 09 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO50 } \\ \text { Sso50AA } \\ 0.0 .25 \text { feet } \\ 121 / 04 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO51 } \\ \text { SSO51AA } \\ 0-0.25 \text { feet } \\ 12 / 104 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO52 } \\ \text { SSo52AA } \\ 0-0.25 \text { feet } \\ 12 / 109 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO54 } \\ \text { SSO54AA } \\ 0-0.25 \text { feet } \\ 12 / 101 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO54 } \\ \text { SSO54AB } \\ 0-0.25 \text { feet } \\ 12101 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO57 } \\ \text { SSo5AA } \\ 0-0.25 \text { feet } \\ 12 / 06 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO58 } \\ \text { SSO58AA } \\ 0-0.25 \text { feet } \\ 12 / 105 / 2006 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SS059 } \\ \text { SSo59AA } \\ 0.0 .25 \text { feet } \\ 11 / 29 / 2006 \\ \hline \end{array}$
Lab Method	Analyte	Units																			
ENASIM	$\frac{\text { 2-METHYLNAPHTHALENE }}{\text { ACENAPHTHENE }}$	$\underset{\text { ugkg }}{\substack{\text { ugkg } \\ \text { ugh }}}$	${ }_{180}^{370}$	$\frac{83}{45}$	${ }_{150}^{150}$	74	${ }_{9}^{400}$	$\frac{193}{29}$	${ }_{33}^{190}$	${ }^{5.72}$	${ }_{5.3}^{5.4}$	${ }_{60}^{75}$	${ }_{30}^{39}$	${ }_{35}^{40 \mathrm{UJ}}$	${ }^{37}{ }^{37}$	${ }^{36} \mathbf{3 0}$	${ }^{380}$	${ }_{75}{ }^{45}$	$\frac{18}{29}$	${ }_{580 \mathrm{~J}}^{610 \mathrm{O}}$	${ }_{260}^{260}$
ENASIM	ACENAPHTHYLENE	ugkg	1200	680	2200	790	8800	460	710	83	91	460	210	400 J	830	1200	710	740	29 J	7000	1400
ENASIM	ANTHRACENE	ugkg	2200	1300	2900	2000	22000	1000	2100	240	280	700	390	600 J	1500	2200	1200	1300	51	15000	3300
ENASIM	BENZO(A)ANTHRACENE	ugkg	1500	830	3600	2900	9800	1100	1700	130	150	1100	410	1600 J	1200	2200	1500	1500	85	15000	3300
ENASIM	BENZO(A)PYRENE	$\frac{\text { ugkg }}{\text { ugagg }}$	1800 3900	${ }^{1200}$	4400 6400	1900 3900	${ }^{244000}$	1500 3000 J	2500 6300	$\frac{170}{340}$ J	190 430 J	950 1700	$\frac{460}{1200}$	$\frac{11000}{1800 ~}$	1600	$\stackrel{2100}{9100}$	1700 2900	1700 3200	110 160	$\frac{177000}{35000}$	2400 5800
ENASIM	BENZO(G,H,U)PERYLENE	ugkg	2800	1500	3000	1600	19000	1100	1600	120	140	940	440	830 J	1900	2000	1500	1400	100	16000	2400
BNASIM	BENZO(k)FLUORANTHENE	ugkg	2700	1200	5600	3200	20000	1500	2200	150	170	1400	570	${ }^{1700 \mathrm{~J}}$	2200	4600	2200	2100	140	27000	4600
BNASIM	CHRYSENE	ugkg	2500	1200	5300	3600	13000	1500	2200	150	170	1300	650	2000 J	1600	5700	2300	2400	140	${ }^{23000}$	4900
ENASIM	DIBENZO(A,H)ANTHRACENE	ugkg	640	440 J	1100	570	7900	430 J	650	46 J	52 J	310	${ }^{130}$	290 J	560	580	490	550	26 J	5500	870
BNASIM	FLUORANTHENE	ugkg	3300	1100	6700	8300	${ }^{13000}$	1300	1800	130	150	1600	790	2600	1800	6400	2900	3000	190	26000	200
ENASIM	FLUORENE	ugkg	990	45	110 J	95	1000	32 J	190	5.7	6.2	34 U	17 U	20 UJ	44	62	45 J	51 J	16 U	490 J	340
BNASIM	(NDENO(1,2,3-CD) PYRENE	ugkg	2900	${ }_{1}^{1300}$	$\begin{array}{r}3800 \\ \hline 100 \\ \hline\end{array}$	$\stackrel{2100}{86}$	27000	1000	1700	120	140   13	${ }_{1100}^{110}$	430	980	1900	${ }^{2100}$	1900	${ }_{1800}^{1810}$	110	20000	3200
ENASSIM		ugkg	460	$\frac{120}{10}$	${ }_{3100 \mathrm{~J}}^{190}$	${ }^{86}$	$\begin{array}{r}620 \\ 3000 \\ \hline\end{array}$	25 J	6.2 O	$\frac{0.56 \mathrm{U}}{.090}$	13	110	48	52 J	55	47	570	610	${ }^{223}$	870	310
ENASIM	${ }^{\text {PENTACNLOROPHENOL }}$	-	12500	${ }_{3}{ }^{40}$	660	830 580	$\stackrel{3000}{ }{ }^{3} 700$	120	570	${ }_{290}$	$\begin{array}{r}320 \mathrm{~J} \\ \hline 28 \\ \hline\end{array}$	320	150	340 J 210	1300 300	${ }^{12000}$	320 J   120	$\stackrel{330 \mathrm{~J}}{1200}$	$\frac{130 \mathrm{~J}}{63,}$	$\begin{array}{r}160000 \mathrm{~J} \\ 3800 \\ \hline\end{array}$	3400 1800
ENASIM	PYRENE	ugkg	3000	1400	8000	6100	12000	2000	3000	180	200	1600	820	2700 J	1900	7000	2400	2500	170	${ }_{30000}$	6900
E160.3	RESIIUE, TOTAL	percent	76	88	82	93	81	94	82	${ }^{93}$	92	90	90	78	87	97	78	77	94	89	
E1613/E1668	1, $1,2,3,4,6,7,8$. HEPTACHLORODIBENZOFURAN			${ }^{6851.683 \mathrm{~J}} 7$			188500		${ }_{14481.166}^{142655}$										${ }^{32555.043}$	${ }^{5220000} 3$	
E1613/E1668	1, 12, 3, ,7, 7,9,-HEPTACHLORODIBENZOFURAN	ngkg		290.974		58.998	1150		215.118										16.1	45300	
E1613/E1668	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	ngkg		139.501 J		28.973	460		${ }^{99.502}$										${ }^{7} .026$	15700	
E1613/1668	1, 2, ,3,4,7,8.-HEXACHLORODIBENVO-P-DIOXIN	ngkg		${ }^{3090649}$		64.92	625		100.819										${ }_{\text {14.329 }}$	$\stackrel{2400}{1020}$	
E1613/E1668	1, 1, 3, .6,7,8.-HEXACHLORODIBENZOFURAN	$\frac{\text { ngkg }}{\text { nokg }}$		$\frac{107.4 \mathrm{~J}}{1000.857}$		21.458 197.243	$\stackrel{211}{2810}$		${ }_{\text {59.381 }}^{670.5}$										$\frac{5.121 \mathrm{~J}}{5541}$	${ }_{10200 \mathrm{~J}}^{105000}$	
E1613/16668	1, 1, $, 3,7,8,9,9$ HEXACHLORODIBENZOFURAN	ngkg		${ }_{3.496 ~ J}$		${ }_{2}^{2.035 \mathrm{~J}}$	108		${ }^{3.117 \mathrm{~J}}$										${ }_{0.178 \mathrm{~J}}$	4250	
E1613/E1668	1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	ngkg		795.469		186.274	936		291.831										${ }^{42.325}$	49500	
E1613/E1668	1,2,3,7,8.PENTACHLORODIBENZOFURAN	ngkg		${ }^{13.134}$		${ }^{3.729 \mathrm{~J}}$	${ }^{27.7 \mathrm{~J}}$		${ }^{11.223}$										${ }^{0.546 \mathrm{~J}}$	1430	
E16131/E1688		$\xrightarrow{\text { ngkg }}$ ngkg		${ }_{2}^{92.7653}$		22.764   15.643	$\frac{127}{401}$		35.423   41.653										$\frac{5.159 \mathrm{~J}}{5.114 \mathrm{~J}}$	$\xrightarrow{6350}$	
E1613/E1668	2,3,4,7,8.PENTACHLORODIBENZOFURAN	ngkg		18.499		5.065 J	80.4		7.365 U										0.755 J	3300	
E1613/1668	2,3,7,8-TETRACHLORODIBENZOFURAN	ngkg		4.618		1.152 J	5.07 J		0.762 J										0.399 U	266	
E1613/E1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN			3.725		2.659	0		0.802 U										0.433 J	291	
E1613/E1668	OCTACHLORODIBENZOFURAN	ngkg		61558.538 J		3759.499	100000		9634.89 J										1284.938	2460000	
E1613/E1668	OCTACHLORODIBENZO.P-PIOXIN	ngkg		${ }^{9523880.323 \mathrm{~J}}$		${ }^{93290.894 \mathrm{~J}}$	2099000		136299.777 ${ }^{12504}$										$\frac{20890.338 \mathrm{~J}}{110386}$	${ }^{310000000 ~} 2420000$ J	
	TTOTAL LEPTACHLORINATED DIBENZOFURANS	$\xrightarrow{\text { ng } \mathrm{lkg}} \mathrm{n}$		${ }^{163000.71}$ 8927628		${ }^{32164.209}$	${ }_{139000}$		${ }^{1255047.754}$										${ }_{6870.887}^{110.86}$	${ }_{72200000}$	
E1613/E1668	TOTAL HEXACHLORINATED DIBENZOFURANS	ngkg		2805.128		999.986	15770		3011.546										241.479	558000 J	
E1613/E1688	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	ngkg		14328.771		3241.916	${ }^{72800}$		${ }^{8154.591}$										615.411	546000	
	ToTAL PENTACHLORINATED DIBENZOFURANS	$\frac{\mathrm{ng} \text { gkg }}{\text { ngkg }}$		7433.276   725.645		- 169.162	$\frac{1300 \mathrm{~J}}{1550}$		340.874 291.315										30.082 56.215	$\frac{48400 \mathrm{~J}}{24300}$	
E1613/E1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ngkg		${ }^{91.358}$		${ }^{23.332}$	106		${ }^{46.651}$										${ }^{9.186}$	${ }^{5510} \mathrm{~J}$	
E1613/E1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	ngkg		${ }^{27.439}$		13.451	73.1		10.392										9.881	1890	
SW6020	ANTIMONY	mgkg	6.6	${ }^{0.91 \mathrm{~J}}$	${ }^{0.52 \mathrm{~J}}$	0.36 UJ	${ }^{0.48 \mathrm{~J}}$	0.35 UJ	0.39 UJ	0.36 UJ	0.36 UJ	${ }^{0.93 \mathrm{~J}}$	${ }^{0.54 \mathrm{~J}}$	2.7 J	${ }^{0.50} \mathrm{~J}$	${ }^{0.60 \mathrm{~J}}$	1.7	2.0	${ }^{0.344}$	2.7 J	2.9
SW6020	ARSENIC	$\frac{m g k g}{\text { makg }}$	310 120	${ }^{37}$	${ }^{23}$	17	35	29	12	6.7	6.1	49	40	200 J	57 J	97	${ }^{265}$	${ }^{23}$	17	220	15
SW6020	BARIUM	$\frac{\mathrm{mg} / \mathrm{kg}}{\mathrm{m}_{\mathrm{l}} \mathrm{kg}}$	120	$\stackrel{28}{0.33 \mathrm{U}}$	$\stackrel{22}{0.35}$	${ }_{8}^{8.31 \mathrm{U}}$	$\stackrel{21}{0.35 \mathrm{U}}$	$\stackrel{24}{0.30 \mathrm{U}}$	${ }_{0}^{16}{ }^{16} \mathrm{U}$	${ }^{9.30 \mathrm{U}}$	${ }^{0.31 \mathrm{U}}$	${ }_{0}^{22}$	${ }_{0.31 \mathrm{U}}^{11}$	$\stackrel{24}{0.37 \mathrm{U}}$	${ }_{0}^{19} \mathbf{1 9} \mathbf{U}$	$\stackrel{16}{0.29 \mathrm{U}}$	$\begin{array}{r}85 \\ \hline 0.54 \\ \hline\end{array}$	${ }^{76}$	$\stackrel{62}{6.29 \mathrm{U}}$	${ }_{0}^{32}$	15   0.44 J
SW6020	CHROMUM	mglkg	530	61	46	22	46	7.9	${ }^{15}$	5.7	6.2	58	68 J	320 J	80 J	190 J	43 J	40	31	310	260 J
SW6020	COPPER	mgkg	250	35	28	14	55	8.8	7.2	2.2	2.7	37	33	140	510	110	54	49	11	180	130
SW6020	EAD	mgkg	270	39	12	4.9	17	8.7	5.9	5.2	5.3	14	6.7	22	19	17	150	140	800	130	14
SW6020	SELENUM	mgkg	1.10	$0.940^{0}$	1.0U	0.90 U	1.00	0.87 UJ	${ }^{0.964}$	${ }^{0.88 \mathrm{UJ}}$	0.90 UJ	$\stackrel{0.93 \mathrm{U}}{ }$	${ }^{0.900}$	1.10	0.95	${ }^{0.830}$	1.10	${ }^{1.25}$	0.85 UJ	${ }^{0.944}$	${ }^{0.860 ~}$
SW6020 SW6020	SILVAADIUM (FUME OR DUST)	$\frac{\mathrm{mgkg}}{\mathrm{m}_{\mathrm{g} k g}}$	${ }_{0.49 \mathrm{U}}^{5.8}$	$\stackrel{0.43 \mathrm{~J}}{6.2 \mathrm{~J}}$	$\frac{0.46 \mathrm{U}}{3.0 \mathrm{~J}}$	$\stackrel{0.41 \mathrm{U}}{2.7}$	$\stackrel{0.460}{2.5}$	$\stackrel{0.39 \mathrm{~J}}{2.8 \mathrm{~J}}$	$\stackrel{0.44 \mathrm{U}}{5.3}$	$\stackrel{0.40 \mathrm{~J}}{2.9 \mathrm{~J}}$	$\frac{0.41 \mathrm{U}}{3.1 \mathrm{~J}}$	$\stackrel{0.42 \mathrm{U}}{5}$	0.400 J   5.0	0.490   2.8	$\stackrel{0.430}{2.5}$	${ }_{0}^{0.38 \mathrm{OJ}}$	$\stackrel{0.48 \mathrm{U}}{12}$	${ }_{0}^{0.48 \mathrm{~J}}$	0.390   7.0	$\stackrel{0.43}{1.2}$	$\stackrel{0.39 \mathrm{U}}{0.92 \mathrm{U}}$
SW7471	MERCURY	mgkg	0.97	0.28	0.13	0.088	1.5	${ }^{2.078}$	0.64	0.069 J	${ }_{0}^{0.10 \mathrm{~J}}$	0.12	0.056	0.51	0.25	0.20	0.32	0.33	0.083	1.4	0.34
SW8260	1,1,1-TRRCHLOROETHANE	ugkg	0.19 U	0.17 U	0.27 U	0.13 U	0.20 U	0.13 U	0.15 U	0.13 U	${ }_{0}^{0.13 \mathrm{U}^{2}}$	0.14 U	${ }^{0.160 ~}$	${ }^{0.188}$	$0.15 \mathrm{U}^{0.15}$	0.14 U	0.29 U	${ }_{0}^{0.290}$	${ }^{0.14 U}$	${ }^{0.16 \mathrm{U}}$	0.13 U
	1,1,2,2,2-TETRACHLOROETHANE	ugkg	0.10 U	0.089 U	${ }^{0.150}$	0.072 U	${ }^{0.114}$	0.0710	0.081 U	0.072 U	0.072 U	0.074 U	0.083 U	0.096 U	0.082 U	0.073 U	${ }^{0.164}$	${ }^{0.16 \mathrm{U}}$	0.075 U	0.087 U	0.071 U
(ew	1, 1 I, 2--TRICHLOROETHANE	ugkg	0.20 U $0.096 \mathrm{U}^{2}$	0.18U	O.29	0.15U	$\frac{0.210}{01010}$	0.14 U 0 0	$\frac{0.16 \mathrm{U}}{0.077 \mathrm{U}}$	0.15 U 0.068 U	0.15U	$\frac{0.15 \mathrm{U}}{0.070 \mathrm{U}}$	0.17U	$\stackrel{0.19 \mathrm{U}}{0.092 \mathrm{U}}$	0.17 0	O.15U	O.310	$\frac{0.310}{0.1514}$	0.15 U	0.180	$\frac{0.14 \mathrm{U}}{0.068 \mathrm{U}}$
SW8260	1,1-DICHLOROETHYLENE	ugkg	0.26 U	${ }_{0}^{0.23 U}$	${ }_{0}^{0.38 \mathrm{U}}$	0.19 U	0.27 U	0.190	0.21 U	0.190	0.190	0.19 U	0.22 U	0.25 U	0.0 .210	0.19 U	${ }_{0}^{0.410}$	${ }_{0}^{0.41 U^{4}}$	0.020	0.0 .23 U	0.190
N8260	$1,2,4$ TRICHLOROBENZENE	ugkg	0.23 UJ	0.21 UJ	0.33 UJ	0.17 U	0.24 UJ	0.17 U	0.19 UJ	0.17 U	0.17 U	0.17 U	0.19 U	0.22 U	0.19 U	0.17 U	0.36 UJ	0.36 UJ	0.17 UJ	0.20 UJ	0.17 UJ
SW8260	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	${ }_{\text {ugikg }}^{\text {ugokg }}$	${ }_{0}^{0.750 \mathrm{UJ}}$	0.66 UJ	1.1 UJ	0.53	${ }^{0.788 \mathrm{UJ}}$	0.53	0.66 UJ	0.53 ${ }_{0}^{0.061 u}$	0.54U	0.55 ${ }^{0}$	${ }_{0}^{0.62 U}$	0.72U	0.61 u	${ }_{0}^{0.55 U}$	1.2 UJ	1.2 UJ	0.06 UJ	O. 0.65 UJ	
SW8260	1,2-DICHLOROBENZENE	ugkg	0.12 UJ	0.11 UJ	0.18 UJ	0.085 U	0.13 UJ	0.084 U	$0.095 \mathrm{UJ}^{0}$	0.085 U	0.085 U	0.087 U	0.098 U	0.12 U	0.097 U	0.087 U	0.19 UJ	0.19 UJ	0.088 UJ	0.11 UJ	0.084 U
SW8260	1,2-DICHLOROETHANE	ugkg	${ }^{0.16 \mathrm{U}}$	0.14 U	0.22 U	0.11 U	${ }^{0.16 \mathrm{U}}$	0.11 U	0.13 U	0.11 U	0.11 U	0.12 U	0.13 U	0.15 U	0.13 U	0.12 U	0.24 U	0.24 U	0.12 U	0.14 U	0.11 U
SW8260	1,2-IICHLOROPROPANE	ugkg	0.082 U	${ }^{0.073 U}$	$\stackrel{0.12 \mathrm{U}}{ }$	0.059 U	${ }^{0.086 \mathrm{U}}$	${ }^{0.058 ~ U ~}$	${ }^{0.066 U}$	0.059 U	$0.059 \mathrm{U}^{0}$	0.060 U	0.068 U	0.079 U	0.067 U	0.060 U	0.13 U	${ }_{0}^{0.13 U}$	0.061 U	0.071 U	0.058 U
Sterse	${ }_{\text {l }}^{\text {1,4-DICHLOROBENZENE }}$	${ }_{\text {ug }}^{\text {ugkg }}$	$\frac{0.14 \mathrm{UJ}}{3.8 \mathrm{U}}$	0.12   $\stackrel{5}{5.5 \mathrm{~J}}$	$\stackrel{0.190 \mathrm{~J}}{5.5 \mathrm{U}}$	$\xrightarrow{0.094 \mathrm{U}}$	$\frac{0.14 \mathrm{UJ}}{4.0 \mathrm{u}}$	0.094 U   120 J	$\frac{0.110 \mathrm{~J}}{6.9 \mathrm{~J}}$	0.094 U   0.5 J	0.095 ${ }_{\text {4.4 }}$	0.097   2.8 U	$\frac{0.11 \mathrm{U}}{3.2 \mathrm{U}}$	$\stackrel{0.130}{3.70}$	$\frac{0.110}{3.10}$	$\stackrel{0.097 \mathrm{U}}{2.8 \mathrm{U}}$		${ }_{\text {O.210 }}^{\text {32 J }}$	$\frac{0.098 \mathrm{UJ}}{2.9 \mathrm{U}}$	$\stackrel{\text { 0.12 }}{\substack{\text { O }}}$	0.094 U   2.7 U
SW8260	BENZENE	ugkg	$0.59{ }^{\text {U }}$	${ }^{0.53 \mathrm{U}}$	${ }^{0.86 \mathrm{U}}$	${ }^{0.43 \mathrm{U}}$	$0.62{ }^{0}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.43 U}$	${ }^{0.43 \mathrm{U}}$	${ }^{0.44 \mathrm{U}}$	0.49	0.57	${ }^{0.490}$	${ }^{0.44 U^{4}}$	0.92 U	${ }^{0.930}$	${ }^{0.444}$	${ }^{0.52 \mathrm{U}}$	0.42 U
血W82600	BROMODICHLOROMETHANE	ugkg	0.440	${ }^{0.390}$	$0.64 \mathrm{U}^{0}$	${ }^{0.320 ~}$	${ }^{0.47]^{4}}$	${ }^{0.324}$	${ }^{0.366}$	$\stackrel{0.32 \mathrm{U}}{ }$	${ }_{0}^{0.324}$	${ }_{0}^{0.334}$	0.37 U	${ }_{0}^{0.434}$	${ }^{0.360}$	${ }_{0}^{0.330}$	0.69 u	$0.69{ }^{0}$	${ }^{0.334}$	${ }^{0.390}$	$\stackrel{0.32 \mathrm{U}}{0}$
SW8260	CARBON DISULFIDE	ugkg	2.5 U	2.24	3.5 U	1.8 U	2.6 U	1.8 U	2.00	1.8 U	1.8 U	1.8 U	2.10	2.4 U	2.00	1.8 U	3.8 U	3.9 U	1.9 U	2.2 U	1.8 U
SW8260	CARBON TETRACHLORIDE	ugkg	0.53 U	0.47 U	0.77 U	0.38 U	0.56 U	0.38 U	0.43 U	0.38 ${ }^{\text {U }}$	0.38 U	0.39 U	0.44 U	0.51 U	0.44 U	0.39 U	0.83 U	0.84 U	0.40 U	${ }^{2.46 \mathrm{U}}$	${ }^{0.38 \mathrm{U}}$
SW8260	CFC-11	ugkg	${ }^{0.40 \mathrm{U}}$	${ }^{0.35 \mathrm{U}}$	${ }^{0.57}$	${ }^{0.29 U}$	${ }^{0.42 U}$	${ }^{0.28 \mathrm{U}}$	${ }^{0.32 \mathrm{U}}$	${ }^{0.29 \mathrm{U}}$	${ }^{0.294}$	${ }^{0.29 \mathrm{U}}$	${ }^{0.33 \mathrm{U}}$	${ }^{0.38 \mathrm{U}}$	${ }^{0.33} \mathrm{U}$	${ }^{0.29 \mathrm{U}}$	${ }^{0.62 U}$	${ }^{0.62 U}$	${ }^{0.30 \mathrm{U}}$	${ }^{0.355}$	${ }^{0.238}$
SW8260	${ }^{\text {CFC-12 }}$ CHLORINATED FLUOROCARBON ( (REOON 113)	ugikg	$\frac{0.49 \mathrm{U}}{0.55 \mathrm{U}}$	0.43 U 0.49 u	$\frac{0.70 \mathrm{U}}{0.79 \mathrm{U}}$	0.35	$\stackrel{0.51 \mathrm{u}}{0.58 \mathrm{u}}$	0.35 U 0.39 u	$\xrightarrow{0.394}$	0.35 U 0.39 u	0.35 U 0.39 u	0.36 U 0.40 U	0.41U	$\stackrel{0.47 \mathrm{U}}{0.53 \mathrm{U}}$	0.40 0	0.36 U 0.40 U	$\frac{0.76 \mathrm{U}}{0.85 \mathrm{u}}$	$\frac{0.77 \mathrm{U}}{0.86 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.41 \mathrm{U}}$	0.43U	0.35 U 0.39 u
N8260	CHLOROBENZENE	ugkg	0.61 U	0.54 U	0.88 U	0.44 U	0.64 U	0.43 U	0.49 U	0.44 U	0.44 U	0.45 U	0.51 U	0.59 U	0.50 U	0.45 U	0.95 U	0.96 U	0.46 U	0.53 U	0.43 U
N8260	LORODIBROMOMETHANE		0.38 U	0.34 U	0.55 U	0.27 U	0.40 U	0.27 U	0.31 U	0.27 U	${ }^{0.28 U}$	0.28 U	0.32 U	${ }_{0}^{0.37 \mathrm{U}^{\text {U }}}$	0.31 U	0.28 U	0.59 U	${ }^{0.60} \mathrm{U}$	0.29 U	0.33 U	${ }^{0.277}$
SW8260	CHLOROETHANE	ugkg	0.55 U	0.49 U	0.79 U	0.39 U	0.58 U	0.39 U	0.44 UJ	0.39 U	0.39 U	${ }^{0.40 \mathrm{U}}$	0.46 U	${ }^{0.53} \mathrm{U}$	${ }^{0.45)}$	${ }^{0.400}$	${ }^{0.85}$	0.86	0.41 U	${ }^{0.48 \mathrm{U}}$	${ }^{0.394}$
(1)260	CHLOROFORM	ugkg	0.52 U	${ }^{0.4614}$	0.75 U	0.37 U	0.54 U	0.37 U	0.42 U	0.37 U	0.37 U	0.38 U	0.43U	0.50 U	0.42	0.38 U	$\frac{0.810}{114}$	0.81 U	0.39 U	0.45 U	0.37 U
SW8260	CIIS-1,2-DICHLOROETHYLENE	${ }_{\text {ug }}$	$\stackrel{.690}{0.40}$	${ }_{0}^{0.615}$	${ }_{0}^{0.57 \mathrm{U}}$	$\stackrel{0.49 \mathrm{U}}{0.29}$	${ }_{0}^{0.422}$	0.48 U	${ }_{0}^{0.525}$	${ }_{0}^{0.490}$	${ }_{0}^{0.490}$	0.509	${ }_{0}^{0.53}$	$\stackrel{.668}{0.38 \mathrm{U}}$	${ }_{0}^{0.536}$	0.50	$0.1 .62{ }^{1.0}$	${ }_{0}^{1.620}$	${ }_{0}^{0.310}$	${ }_{0}^{0.655}$	${ }_{0}^{0.488}$


		Location   Sample ID Depth Sample Date	$\begin{gathered} \text { SSO40 } \\ \text { SSO40AA } \\ \text { O-0.25 feet } \\ 12 / 101 / 2006 \end{gathered}$	SS041   SS041AA 0-0.25 feet 12/11/2006	$\begin{gathered} \text { SSO42 } \\ \text { SSO42AA } \\ 0 .-0.25 \text { feet } \\ 12 / 101 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO43 } \\ \text { SSOO43A } \\ \text { O-0.25 feet } \\ 12105 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO4A } \\ \text { SSO4AAA } \\ \text { o.-.0.25 feet } \\ 12105 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO45 } \\ \text { SSO45AA } \\ 0-0.25 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO46 } \\ \text { SSO46AA } \\ 0.0 .25 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { SSO47 } \\ \text { SsoutaA } \\ 0-0.25 f \text { feet } \\ 121112006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO47 } \\ \text { SS047AC } \\ 0-0.25 \text { feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO48 } \\ \text { SSO04AA } \\ 0-0.25 \text { feet } \\ 12 / 106 / 2006 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SSO49 } \\ \text { SSOO9AA } \\ 0.0 .25 / \text { feet } \\ 1210992006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO50 } \\ \text { SSO50AA } \\ 0.0 .25 \text { feet } \\ \text { 12/104/2006 } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { SS051 } \\ \text { sson1AA } \\ 0-0.25 f \text { feet } \\ 1210412006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO52 } \\ \text { SSO52AA } \\ 0-0.25 \text { feet } \\ 12109 / 2006 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SSO54 } \\ \text { SSO54AA } \\ 0-0.25 \text { feet } \\ 12 / 101 / 2006 \end{array}$	$\begin{gathered} \text { Ss054 } \\ \text { SSo54AB } \\ 0-0.25 \text { feet } \\ 12 / 01 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS057 } \\ \text { SsoriA } \\ 0-0.25 \text { feet } \\ 12126012006 \end{gathered}$	$\begin{gathered} \text { Ss058 } \\ \text { SSo585A } \\ 0-0.25 \text { feet } \\ 12 / 05 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { SS059 } \\ \text { Ssos5AA } \\ 0-0.25 \text { feet } \\ 11 / 29912006 \\ \hline \end{array}$
Lab Metho	Analyte	Units																			
SW8260	CIS-13.3-IICHLOROPROPENE	Likg	0.44 U	0.39 U	0.64 U	${ }^{0.32 \mathrm{U}}$	0.47 U	0.32 U	0.36 U	0.32 U	0.32 U	0.33 U	${ }^{0.37 \mathrm{U}}$	${ }^{0.43 \mathrm{U}}$	${ }^{0.36 \mathrm{U}}$	0.33 U	0.69 U	0.69 U	${ }^{0.33 \mathrm{U}}$	0.39 U	0.32 U
SW8260	CYCLOHEXANE	ugkg	${ }^{0.58 \cup}$	${ }^{0.514}$	${ }^{0.836}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.610}$	${ }^{0.414}$	${ }^{0.470}$	${ }^{0.410}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.434}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.566}$	${ }^{0.47 u^{4}}$	${ }^{0.434}$	${ }^{0.900}$	0.91 U	${ }^{0.434}$	0.50	${ }^{0.414}$
SW8260	DICHLOROMETHANE	ugkg	0.59 U	${ }^{0.53} \mathrm{U}$	${ }^{0.86 \mathrm{U}}$	${ }^{0.430}$	${ }^{0.62 U^{4}}$	${ }^{0.425}$	${ }^{0.48 \mathrm{U}}$	0.43U	$\stackrel{0.43 \mathrm{U}}{0}$	0.44 U	${ }_{0}^{0.49 \mathrm{U}}$	${ }_{0}^{0.57)^{0}}$	0.49	$\stackrel{0.44 \mathrm{U}}{0}$	$\stackrel{0.92 \mathrm{U}}{ }$	$\frac{0.93 \mathrm{U}}{10}$	0.44U	$\stackrel{0.52 \mathrm{U}}{ }$	$\stackrel{0.42 \mathrm{U}}{0}$
SW8260	ETHYLBENZENE	ugkg	0.64 U	${ }^{0.57 U}$	0.92 U	${ }^{0.46 \mathrm{U}}$	${ }^{0.67 \mathrm{U}}$	0.45 U	${ }^{0.51 \mathrm{U}}$	${ }^{0.460}$	${ }^{0.46 \mathrm{U}}$	${ }^{0.47}$	${ }^{0.53}$	${ }^{0.624}$	${ }^{0.524}$	${ }^{0.47 u^{4}}$	$0.99{ }^{1.9}$	1.00	${ }^{0.48 \mathrm{U}^{\text {a }} \text { - }}$	${ }^{0.566}$	${ }^{0.455}$
SW8260	ISOPROPYLBENZENE	ugkg	0.70 UJ	0.62 UJ	1.10 UJ	0.50 U	0.74 UJ	0.50 U	0.56 UJ	0.50 U	0.50 U	0.51 U	0.58 U	0.67 U	0.57 U	0.51 U	1.1 UJ	1.1 UJ	0.52 UJ	0.61 UJ	0.50 U
SW8260	m,p-xylenes	ugkg	1.4 U	1.2 U	1.90	0.94U	$1.4 \mathrm{U}^{\text {d }}$	0.94 U	1.14	0.94 U	0.95 U	0.97 U	1.10	1.3 U	1.14	0.97 U	2.14	2.10	0.98 U	1.2 U	0.944
SW8260 SW8260	M-IICHLOROBENZENE	${ }_{\text {uglkg }}^{\text {ugakg }}$	${ }^{0.076 \mathrm{UJ}}$	$\frac{0.068 \mathrm{UJ}}{0.26 \mathrm{U}}$	$\frac{0.11 \mathrm{UJ}}{0.42 \mathrm{U}}$	0.054U	${ }^{0.080 \mathrm{UJ}}$	0.0.054 0	- ${ }_{\text {0.061 }}^{0.0 \mathrm{~J}}$	-0.054 ${ }_{0}^{0.21 \mathrm{U}}$	-0.055 ${ }_{0}^{0.21 \mathrm{U}}$	-0.056 ${ }_{0}^{0.22 \mathrm{U}}$	$\frac{0.063 \mathrm{U}}{0.24 \mathrm{U}}$	-0.073 0	O. 0.022 U	0.056 U	- 0.12 UJ	- 0.12 UJ	-0.057 UJ	$\frac{0.066 \mathrm{UJ}}{0.025}$	$\frac{0.054 \mathrm{U}}{0.21 \mathrm{U}}$
SW8260	METHYL ETHYL KETONE	ugkg	1.70	1.50	2.40	1.20	1.8 U	1.20	1.40	1.2 U	1.20	1.3 U	1.40	1.6 U	1.40	1.3 U	2.6 U	2.70	1.3 U	1.50	1.2 U
SW8260	METHYL LSOBUTYL KETONE	uglkg	1.10	$\stackrel{0.96 \text { U }}{1.4}$	1.6U	$\frac{0.77 \mathrm{U}}{114}$	1.2 U	$\stackrel{0.76 \mathrm{U}}{114}$	0.87 U	$\stackrel{0.77 \text { U }}{ }$	$\frac{0.77 \mathrm{U}}{114}$	0.79	-0.89	1.14	- 0.88 U	0.79U	$\frac{1.7 U}{24}$	$\frac{1.70}{2.7}$	$\stackrel{0}{0.80 \mathrm{U}}$	0.94U	$\stackrel{0.77 \text { U }}{114}$
SW8260	METHYL N-BUTYL KETONE	ugkg	1.6 U	1.4 U	2.20	1.10	1.6 U	1.10	1.30	1.10	1.10	1.2 U	1.3 U	1.5 U	1.3 U	1.2 U	2.40	2.4 U	1.2 U	1.4 U	1.10
SW8260	METHYLBENZENE	ugkg	0.64 U	0.57 U	0.92 U	${ }^{0.46 \mathrm{U}}$	0.67 U	0.45 U	2.6 J	0.46 U	${ }^{0.46 \mathrm{U}}$	0.47 U	0.53 U	0.62 U	0.52 U	0.47 U	0.99 U	1.00	0.48 U	0.56 U	0.45 U
SW8260	METHYLCYLOHEXANE	ugkg	0.67 U	0.59 U	0.96 U	${ }^{0.48 \mathrm{U}}$	0.70 U	0.48 U	$\stackrel{0.54 \mathrm{U}}{ }$	${ }^{0.48 \mathrm{U}}$	${ }^{0.48 \mathrm{U}}$	0.49	${ }^{0.561}$	${ }^{0.640}$	${ }^{0.550}$	${ }^{0.49 U^{0}}$	$\underline{1.14}$	1.10	$\stackrel{0.50 \mathrm{U}}{ }$	${ }^{0.58 \mathrm{U}^{0}}$	
SW8260	O-XYLENE ${ }_{\text {STYRENE (MONOMER) }}$	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{log}}$	0.61U	$\stackrel{0.54 \mathrm{U}}{0.58 \mathrm{u}}$	0.880	0.44 U 0.47 U	$\stackrel{0.64 \mathrm{U}}{0.69 \mathrm{U}}$	0.43 U 0.46 U	0.49 U 0.53 u	0.44 U 0.47 U	0.44 U 0.47 U	0.45U	0.51 u 0.54 u	0.59 U 0.63 u	0.50 U 0.53 u	$\stackrel{0.45 \mathrm{U}}{0.48 \mathrm{u}}$	$\frac{0.95 \mathrm{U}}{1.1 \mathrm{u}}$	$\frac{0.96 \mathrm{U}}{1.1 \mathrm{U}}$	0.46 U 0.49 u	0.53 U 0.57 u	$\stackrel{0.43 \mathrm{U}}{0.47 \mathrm{U}}$
SW8260	TERT-BUTYL METHYL ETHER	ugkg	0.49 U	0.43 U	0.70 U	0.35 U	0.51 U	0.35 U	0.39 U	0.35 U	0.35 U	${ }_{0} 0.36 \mathrm{U}$	0.41 U	0.47 U	0.40 U	${ }_{0}^{0.36 U}$	${ }_{0}^{0.76 \mathrm{U}}$	0.77 U	0.37 U	0.43 U	${ }_{0}^{0.350}$
SW8260	TETRACHLOROETHYLENE	ugkg	0.61 U	0.54 U	0.88 U	0.44 U	0.64 U	0.43 U	0.49 U	0.44 U	0.44 U	0.45 U	0.51 U	0.59 U	0.50 U	0.45 U	0.95 U	0.96 U	0.46 U	0.53 U	0.43 U
SW8260	TRANS-1,2-DICHLOROETHENE	ugkg	0.58 U	${ }^{0.514}$	${ }^{0.83 \mathrm{U}^{\text {a }}}$	${ }^{0.42 \mathrm{U}}$	0.61 U	${ }^{0.410}$	${ }^{0.47 \mathrm{U}^{\text {U }}}$	${ }^{0.410}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.434}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.56 \mathrm{U}}$	$\stackrel{0.47 ~}{0}$	$\stackrel{0.43 \mathrm{U}}{ }$	0.90 U	0.91 U	${ }^{0.430}$	$\xrightarrow{0.50}$	${ }^{0.410}$
SW8260	TRANS-1,2-IICHLOROPROPENE	ugkg	${ }^{0.46 \mathrm{U}}$	${ }^{0.41 \mathrm{U}}$	${ }^{0.66 U}$	${ }^{0.33 \mathrm{U}}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.33 \mathrm{U}}$	0.37 U	${ }^{0.33 U}$	${ }^{0.33 \mathrm{U}}$	${ }^{0.34 \mathrm{U}}$	${ }^{0.38 \mathrm{U}}$	${ }^{0.44 U}$	${ }^{0.37 U}$	0.34 U	0.71 U	0.72 U	${ }^{0.34 \mathrm{U}}$	${ }^{0.400 ~}$	0.33 U
SW8260	TRIBOMOMETHANE	Lgikg	0.59 u	0.53 U	${ }^{0.860}$	0.43 U	0.62 U	0.42 U	0.48 U	0.43 U	${ }^{0.43 U}$	0.44 U	0.49 U	$0.57{ }^{\text {U }}$	0.49 U	0.44 U	0.92 U	${ }^{0.934}$	0.44 U	${ }^{0.52}{ }^{\text {U }}$	
SW8260	TRICHLOROETHYLENE	Lgikg	0.61 U	0.54 U	0.88 U	0.44 U	0.64 U	0.43 U	0.49 U	0.44 U	${ }^{0.44 U}$	0.45 U	0.51 U	0.59 U	0.50 U	0.45 U	0.95 U	0.96 U	${ }^{0.464}$	0.53 U	0.43 U
SW8260	VINYL CHLORIDE	$\frac{\text { ugkg }}{\text { ugkg }}$	$\frac{0.37 \mathrm{U}}{18 \mathrm{U}}$	$\frac{0.33 \mathrm{U}}{15 \mathrm{U}}$	$\frac{0.53 \mathrm{U}}{16 \mathrm{U}}$	$\frac{0.26 \mathrm{U}}{15 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{160 \mathrm{u}}$	$\frac{0.26 \mathrm{U}}{14 \mathrm{U}}$	$\frac{0.30 \mathrm{U}}{16 \mathrm{U}}$	$\frac{0.26 \mathrm{U}}{14 \mathrm{U}}$	$\frac{0.26 \mathrm{U}}{15 \mathrm{U}}$	$\frac{0.27 \mathrm{U}}{15 \mathrm{U}}$	$\frac{0.31 \mathrm{U}}{15 \mathrm{U}}$	${ }^{0.35 \mathrm{U}}$	$\frac{0.30 \mathrm{U}}{16 \mathrm{U}}$	$\frac{0.27 \mathrm{U}}{14 \mathrm{U}}$	$\frac{0.57 \mathrm{U}}{17 \mathrm{U}}$	$\frac{0.58 \mathrm{U}}{17 \mathrm{U}}$	$\frac{0.28 \mathrm{U}}{14 \mathrm{U}}$	$\frac{0.32 \mathrm{U}}{150 \mathrm{u}}$	$\frac{0.26 \mathrm{U}}{14 \mathrm{U}}$
SW8270	2,4,6-TRICHLOROPHENOL	ugkg	48 U	410	44 U	39 U	450 U	39 U	44 U	39 U	40 U	40 U	40 U	47 U	42 U	38 U	47 U	47 U	39 U	410 U	39 U
SW8270	2.4-DICHLOROPHENOL	Lgikg	23 U	20 U	210	19 U	210 U	19 U	21 U	19 U	19 U	19 U	19 U	22 U	20 U	18 U	22 U	22 U	19 U	200 U	19 U
SW8270	2.4-DIMETHYLPHENOL	ugkg	25 U	22 U	24 U	210	240 U	210	24 U	210	210	22 U	22 U	25 U	22 U	20 U	25 U	25 U	210	220 U	210
SW8270	2.4-DIINTROPHENOL	Lgikg	16 UJ	14 U	15 UJ	13 U	150 U	13 U	15 U	13 U	14 U	14 U	14 U	16 U	14 U	13 U	16 U	16 U	13 U	${ }^{140 \mathrm{U}}$	$\frac{13 \mathrm{UJ}}{11 \mathrm{~J}}$
SW8270	2,4-DINITROTOLUENE	Lgikg	13 U	12 U	12 U	11 U	130 U	110	12 U	11 U	11 U	110	11 U	13 U	12 U	110	13 U	13 U	11 U	120 U	11 U
SW8270	2,6-DIIITROTOLUENE	Lgkg	48 U	41 U	44 U	39 U	450 U	39 U	44 U	39 U	40 U	40 U	40 U	47 U	42 U	38 U	47 U	47 U	39 U	410 U	39 U
SW8270	2.CHLORONAPHTHALENE	/kg	210	19 U	20 U	18 U	200 U	18 U	20 U	18 U	18 U	18 U	18 U	210	19 U	17 U	210	210	18 U	190 U	18 U
SW8270	2-CHLOROPHENOL	ugkg	24 U	210	22 U	20 U	230 U	20 U	22 U	20 U	20 U	20 U	20 U	24 U	210	19 U	24 U	24 U	20 U	210 U	20 U
SW8270	2-METHYLPHENOL (O-CRESOL)	Lgikg	16 U	14 U	15 U	13 U	150 U	13 U	15 U	13 U	14 U	14 U	14 U	16 U	14 U	13 U	16 U	16 U	13 U	140 U	13 U
SW8270	2 2-NTROANLIINE	ugkg	29 UJ	25 U	27 UJ	24 UJ	280 UJ	24 U	27 U	24 U	24 U	25 U	25 U	29 uJ	26 UJ	${ }^{23 U}$	29 UJ	29 UJ	${ }^{24 U}$	250 U	${ }^{24 U}$
SW8270	2-NITROPHENOL	ugkg	19 U	16 U	18 U	16 U	180 U	15 U	18 U	16 U	16 U	16 U	16 U	18 U	17 U	15 U	18 U	19 U	15 U	160 U	15 U
SW8270 SW8270	3,33-DICHLOROBENZIDINE	ugkg	45 U	39 U	42 U	37 U	$\frac{420 \mathrm{UJ}}{160}$	37 U	42 U	37 U	37 U	38 U   15	38 U 15	44 U	$\frac{40 \mathrm{U}}{16 \mathrm{UJ}}$	36 U 14 U	$\stackrel{44 \mathrm{U}}{17 \mathrm{UJ}}$	$\stackrel{44 \mathrm{U}}{17 \mathrm{UJ}}$	$\begin{array}{r}37 \mathrm{U} \\ 14 \\ \hline\end{array}$	390	37 UJ
SW8270		$\frac{u g k g}{\text { uokg }}$	18U	$\frac{150}{20}$	$\frac{160}{210}$	15 U	$\frac{160 \mathrm{UJ}}{210 \mathrm{U}}$	14 U	$\frac{160}{210}$	14 U	15 U	15 U	15	$\frac{17 \mathrm{UJ}}{22 \mathrm{U}}$	$\frac{16 \mathrm{UJ}}{20 \mathrm{U}}$	14 U	$\frac{170 J}{22 \mathrm{U}}$	$\frac{17 \mathrm{UJ}}{22 \mathrm{U}}$	14 U	$\stackrel{150 \mathrm{U}}{200 \mathrm{U}}$	$\frac{140}{190}$
SW8270	4,6-D-DINTRO-2-METHYLPHENOL	ugkg	13 V	110	12 U	110	120 U	10 U	12 U	110	110	110	11 UJ	13 U	110	${ }^{9.7} \mathbf{7}$ UJ	13 U	13 U	10 U	110 U	28 J
SW8270	4-BROMOPHENYL PHENYL ETHER	lgkg	13 U	12 U	12 U	11 U	130 U	110	12 U	110	110	11 U	11 UJ	13 U	12 U	11 UJ	13 U	13 U	110	120 U	11 U
SW8270	4-CHLORO-3-METHYLPHENOL	ugkg	21 U	19 U	20 U	18 U	200 U	18 U	20 U	18 U	18 U	18 U	18 U	21 U	19 U	17 U	21 U	21 U	18 U	190 U	18 U
SW8270	4.CHLOROPHENYL PHENYL ETHER	ugkg	29 U	25 U	27 U	24 U	280 U	24 U	27 U	24 U	24 U	25 U	25 U	29 U	26 U	230	29 U	29 U	24 U	250 O	24 U
SW8270	4-METHYLPHENOL (MP-CRESOL)	ugkg	35 U	30 U	32 U	29 U	320 U	28 U	32 U	28 U	29 U	29 U	29 U	34 U	31 U	27 U	34 U	34 U	28 U	300 U	28 U
SW8270		${ }_{\text {uga }}^{\text {ugkg }}$ ugag	$\stackrel{23 \mathrm{UJ}}{44 \mathrm{~J}}$	20 U	$\frac{21 \mathrm{UJ}}{22 \mathrm{U}}$	$\frac{19 \mathrm{UJ}}{20 \mathrm{U}}$	$\stackrel{210 \mathrm{UJ}}{230 \mathrm{U}}$	$\frac{190}{20 U}$	22 U	$\underline{190}$	$\underline{190}$	$\underline{190}$	$\underline{190}$	$\frac{22 \mathrm{UJ}}{24 \mathrm{U}}$	$\frac{20 \mathrm{UJ}}{21 \mathrm{u}}$	18 U	$\frac{22 \mathrm{UJ}}{61 \mathrm{~J}}$	$\frac{22 \mathrm{UJ}}{24 \mathrm{U}}$	$\underline{190}$	$\frac{200 \mathrm{UJ}}{210 \mathrm{u}}$	
SW8270	BIPHENYL	ugkg	200 U	180 U	190 U	$170 \cup$	1900 U	160 UJ	190 U	170 UJ	170 UJ	170 U	$170 \cup$	200 U	180 U	160 U	200 U	200 U	160 U	1700 U	170 U
SW8270	BIS(2.CHLORETHOXYMETHANE	ugkg	23 U	20 U	21 U	19 U	210 U	19 U	21 U	19 U	19 U	19 U	19 U	22 U	20 U	18 U	22 U	22 U	19 U	200 U	19 U
SW8270	BIS(2-CHLOROETHYL)ETHER	ugkg	20 U	18 UJ	19 U	17 U	190 U	16 U	19 U	17 U	17 U	17 U	17 UJ	20 U	18 U	16 UJ	1300	20 U	16 U	170	17 U
SW8270	BIS(2-CHLOROISOPROPYL) ETHER	ugkg	28 UJ	24 U	26 UJ	23 UJ	260 UJ	23 U	26 U	23 U	23 U	24 U	24 U	27 UJ	25 UJ	22 U	27 UJ	28 UJ	23 U	${ }^{240 \mathrm{UJ}}$	23 U
SW8270	BIIS(2-ETHYLHEXYL)PHTHALATE	ugkg	62 J	20 J	20 U	45 J	200 U	18 U	20 U	18 U	18 U	18 U	18 U	210	780	17 U	110 J	120 J	18 U	540 J	110 J
SW8270	CARBAZOLE	${ }_{\text {ugalkg }}^{\text {ugkg }}$	370 160 J	230   87   8	350   89   80	$\frac{120 \mathrm{~J}}{64}$	$\stackrel{1200 \mathrm{~J}}{260 \mathrm{~J}}$	220   15   15	310   44	31 J   14	32 J 15	180 J 110 J	82 J   34	$\frac{140 \mathrm{~J}}{47}$	260   50	${ }_{8210 \mathrm{~J}}$	300 220	350 250	18 U	$\stackrel{2400}{550}$	260 190
SW8270	DIETHYL PHTHALATE	ugkg	16 U	14 U	15 U	13 U	150 U	13 U	15 U	13 U	14 U	14 U	14 U	16 U	14 U	13 U	16 U	16 U	13 U	140 U	13 U
SW8270	DIMETHYL PHTHALATE	ugkg	13 U	12 U	12 U	110	130 U	110	12 U	11 U	110	110	110	13 U	12 U	11 U	13 U	13 U	110	120 U	11 U
SW8270	D-N-BUTYL-PHTHALATE	ugkg	80 U	70 U	750	66 U	750 U	65 U	750	66 U	67 U	68 U	${ }^{68 \mathrm{UJ}}$	79 U	710	63 UJ	79 U	79 U	65 U	$\frac{690}{}$	66 U
SW8270	Dil-OCTYL-PHTHALATE	${ }_{\text {uglkg }}^{\text {ugkg }}$	20 U	18 U	180 J	17 U	1900	16 U	190	17 U	17 U	17 U	$\underline{17 U}$	$\frac{20 U}{22 \mathrm{U}}$	$\frac{18}{20}$	16 U 180	20 U	20 U	16 U	170U	17 U
SW8270	HEXACHLOROBENZENE	ugkg	11 U	9.50	110	9.00	110 U	${ }_{8} 8.9 \mathrm{UJ}$	110	${ }_{9.0} \mathrm{UJ}^{1}$	${ }_{9} 9.1 \mathrm{UJ}$	9.30	${ }_{9.3} \mathrm{UJJ}^{\text {a }}$	11 U	${ }^{9.60}$	${ }_{8}^{8.6 \mathrm{UJ}}$	11 U	11 U	$\underline{8.90}$	$\underline{94 U}$	8.9 U
SW8270	HEXACHLOROCYCLOPENTADIENE	glkg	15 UJ	13 UJ	14 UJ	12 U	140 U	12 U	14 U	12 U	12 U	13 U	13 UJ	15 U	13 U	12 UJ	15 U	15 U	12 U	130 U	12 UJ
SW8270	HEXACHLOROETHANE	ugkg	230	20 U	210	19 U	210 U	19 U	210	19 U	19 U	19 U	19 U	22 U	20 U	18 U	22 U	22 U	19 U	200 U	19 U
SW8270	NITROBENZENE	ugkg	27 U	23 U	25 U	22 UJ	250 U	22U	25 U	22 U	22 U	230	23 U	26 U	24 U	21 U	26 U	26 U	22 U	230 U	22 U
SW8270	$\frac{\text { N-NITROSO-D-D-N-PROPYLAMINE }}{\text { N-NITROSOOIPHENYLAMINE }}$	$\underline{u g h k g ~}$	$\frac{24 U}{150}$	${ }_{13} 210$	$\frac{22 U}{14 \mathrm{U}}$	20U	$\frac{230 \mathrm{UJ}}{140 \mathrm{U}}$	20U	$\frac{22 U}{14}$	20 U	$\frac{20 \cup}{12 \mathrm{U}}$	$\underline{20 U}$	$\frac{20 \mathrm{U}}{13 \mathrm{UJ}}$	$\frac{24 \mathrm{UJ}}{15 \mathrm{U}}$	$\frac{21 \mathrm{UJ}}{13 \mathrm{U}}$	$\frac{19 \mathrm{U}}{12 \mathrm{UJ}}$	$\frac{24 \mathrm{UJ}}{15 \mathrm{U}}$	$\frac{24 \mathrm{UJ}}{15 \mathrm{U}}$	$\underline{20 U}$	210 U 130 U	$\frac{20 \mathrm{U}}{12 \mathrm{U}}$
SW8270	P.CHLOROANLINE	ugkg	35 U	30 U	32 U	29 U	320 U	28 U	32 U	28 U	29 U	290	290	34 U	31 U	27 U	34 U	34 U	28 U	300 U	,
SW8270	PHENOL	ugkg	210	19 U	20 U	18 U	200 U	18 U	20 U	18 U	18 U	18 U	18 U	210	19 U	17 U	210	210	18 U	190 U	18 U
SW8270	P-NITROANLINE	$\frac{\text { uglkg }}{\text { maka }}$	16 U	14 U	15 U	13 U	150 U	13 U	15 U	13 U	14 U	14 U	14 U	16 U	14 U	13 U	16 U	69 J	13 U	140 U	13 U

```
Mg/kg: miligrams per kilorram
U = non-d
ugkg: micrograms per kilogram reslus from Vistal laboratory
```

			$\begin{gathered} \text { SSO60 } \\ \text { SSO66AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO62 } \\ \text { SSO62A } \\ 0.0 .25 / e=t \\ 12010812006 \end{gathered}$	$\begin{gathered} \text { SSO64 } \\ \text { SSO64AA } \\ 0-0.25 \text { feet } \\ 12108 / 2006 \end{gathered}$	$\begin{gathered} \text { SS066 } \\ \text { SS066AA } \\ 0.0 .25 \text { feet } \\ 12108 / 2006 \end{gathered}$	$\begin{gathered} \text { SS066 } \\ \text { SSS066AB } \\ 0-0.25 \text { feet } \\ 12 / 108 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO677A } \\ \text { SSO67AA } \\ 0-0.255 \text { feet } \\ 11 / 1 / 0012006 \end{gathered}$	$\begin{gathered} \text { SSO68 } \\ \text { SS068AA } \\ 0-0.25 \text { feet } \\ 12 / 109 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO69 } \\ \text { SS069AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO70 } \\ \text { SSO70AA } \\ 0-0.25 \text { feet } \\ 12 / 12 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO70 } \\ \text { SSOT7AB } \\ 0-0.25 \text { feet } \\ 12 / 12 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO71 } \\ \text { SsoliAA } \\ 0.0 .25 f \text { feet } \\ 121012006 \end{gathered}$	$\begin{gathered} \text { SSO72 } \\ \text { Ssor2AA } \\ 0.0 .05 f \text { feet } \\ 12071 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO73 } \\ \text { Sso73AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO74 } \\ \text { ssontaf } \\ 0-0.25 \text { feet } \\ 1210412006 \end{gathered}$	$\begin{gathered} \text { SSO75 } \\ \text { SSO75AA } \\ 0-0.25 \text { feet } \\ 12109 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS076 } \\ \text { SSO76AA } \\ 0-0.25 \text { feet } \\ 12 / 105 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO77 } \\ \text { SSOT7AA } \\ \text { o-0.25f feet } \\ 12199212006 \end{gathered}$	$\begin{gathered} \text { SSO78 } \\ \text { SSO78AA } \\ 0-0.25 \text { feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{array}{\|c} \text { SSO79 } \\ \text { Ssor9AA } \\ 0-0.25 \text { feet } \\ 113002006 \\ \hline \end{array}$
Lab Method	Analyte	Units																			
SNASIM	2-METHYLNAPHTHALENE	uglkg	200	17 U	${ }^{66}$	49 J	${ }^{72 \mathrm{~J}}$	290 J	60	26 J	110	${ }^{210 \mathrm{UJ}}$	${ }^{31 \mathrm{~J}}$	170 U	390	480	400	${ }^{220}$	200	1.6 U	56 J
EMASIM	ACENAPHTHENE	${ }_{\text {uglkg }}$	150 O	57J	30 U   57	$\begin{array}{r}63 \mathrm{~J} \\ \hline\end{array}$	86 J   150	2900	160 680	29 UJ 3701	$\stackrel{950}{900}$	380 UJ   200   100	29 U	100 U   1200	2200	$\begin{array}{r}160 \\ 100 \\ \hline\end{array}$	79   80	$\begin{array}{r}\text { 280 } \\ \hline 160\end{array}$	480   600	2.8 U	57 U   960
ENASSIM	ACENAPHTHMLENE	$\frac{\text { ugkg }}{\text { ugkg }}$	1000	1700	540	380 640	450	3400 5500	680 1100	3700   900	$\stackrel{2000}{4200}$	$\xrightarrow{2100}$	$\frac{47}{87}$	$\frac{1200}{250}$	$\frac{4000}{7500}$	2900 5100	$\stackrel{1800}{2800}$	$\stackrel{1600}{2800}$	${ }_{6500}^{6500}$	${ }^{32}$	960 1300
ENASIM	BENZO(A)ANTHRACENE	ugkg	2400	1800	1400	640 J	1200 J	8100	1500	1200	5700	6100	260 J	2000	5400	8400	4600	3900	14000	83	1700
ENASIM	BENZO(A)PYRENE	ugkg	1900	1900	1300	790 J	1100 J	8300	1500	1200	6300	7600	320 J	1900	7200	9400	6100	4500	17000	100	1800
ENASIM	BENZO(B) FLUORANTHENE	ugkg	4300	5100	2600	1600	2000	17000	5900 J	2100	12000	16000	400 J	4700	14000	19000	13000 J	8700	28000 J	250 J	3500
ENASIM	BENZO(G,H,JPERYLENE	ugkg	1900	1400	1200	890	900	9200	1500	940	4200	5100	250 J	2700	7800	13000	7000	3700	10000 J	96	2200
ENASIM	BENZO(K) FLUORANTHENE	ugkg	2900	2200	1900	970 J	1500 J	12000	2300	1600	8100	7700	350 J	3300	8500	14000	3300	5500	12000	110	2400
ENASIM	CHRYSENE	ugkg	3200	2500	1900	920 J	1600 J	11000	2300	1700	8600	8500	370 J	3000	7400	12000	${ }^{6500}$	5500	22000	130	2300
ENASIM	IBENZO(A,H)ANTHRACENE	ugkg	660	500	400	280	280	2900	440	340 J	1700	1900	71 J	680	2700	3800	2000 J	1400	${ }^{42000 ~}$	${ }^{33}$	620
ENASIM	ELUORANTHENE	ugkg	4800	5400	2200	1200	1500	12000	2000	1700	7100	7500	520	4200	7600	17000	6500	5600	40000	120	2700
ENASIM	FLUORENE	ugkg	180 J	59	30 J	110 J	140	160 U	54	${ }_{17 \mathrm{~J}}$	110	210 U	16 U	170 U	310	180	89	110	520	1.6 U	33 J
BNASIM	INDENO(1,2,3,CD) PYRENE	ugkg	2400	1700	1400	720 J	1000 J	10000	1600	1100	3900	5100	310 J	2800	9200	14000	6400 J	4700	10000	94	2200
ENASIM	NAPHTHALENE	ugkg	270	5.8 U	93	86 J	130 J	440	63	41 J	170	${ }^{2200}$	33J	55 U	640	${ }^{730}$	580	290	500	${ }_{0}^{0.53}$	110
SNASIM	PENTACHLOROPHENOL	ugkg	${ }^{1000} \mathrm{~J}$	7.9 U	560	3500	510 J	${ }^{32000}$	1400 J	57 J	${ }^{37000}$	${ }^{27000}$	35 J	7100	8100	2700 J	910	${ }^{830} 0$	670 J	21 J	1800
BNASIM	PYRENE	ugkg	3900	4900	2200	${ }_{1300 \mathrm{~J}}$	${ }^{22000}$	13000	$\stackrel{2400}{ }$	${ }_{10} 800$	${ }_{12000}$	$\stackrel{95000}{ }$	430 J	$\stackrel{1400}{ }$	7500	${ }_{16000}$	${ }_{7300}$	15300	$\stackrel{5900}{41000}$	$\stackrel{3.50}{150}$	2800
E160.3	RESIDUE, TOTAL	percent	92	89	92	96	96	94	96	95	68	72	94	93	93	95	95	96	95	97	96
E1613/E1668	1,2,3,4,6,7,8,-HEPTACHLORODIBENZOFURAN	ngkg		4260		${ }^{5270 \mathrm{~J}}$	2820.665 J		3724.542		26900 J	18700						4720			
E1613/E1668	1,2,3,4,6,7,8,HEPTACHLORODIBENZO-P-DIOXIN	ngkg		39500		37300	18374.037 J		35255.709		162000	115000						30800			
E1613/E1668	1,2,3,4,7,8,9.-HEPTACHLORODIBENZOFURAN	nglkg		310		345	323.175		251.792		1750	1220						397			
E1613/E1668	1,2,2,4,7,8,-HEXACHLORODIBENZOFURAN	ngkg		${ }^{134}$		131	${ }^{126.826}$		${ }^{112.475}$		693	470						${ }^{156}$			
E1613/E1668	1,2,3,4,7,8,-HEXACHLORODIBENZO-P-DIOXIN	ngkg		382		361	266.169		241.605		1540	1050						397			
E1613/E1688	1,2,3,6,7,7.-HEXACHLORODIBENOOFURAN	${ }_{\text {nglkg }}^{\text {ng }}$		110		121	${ }_{117.731}$		${ }^{85.988}$		571	381						${ }^{133}$			
E1613/E1688	$\frac{1,2,3,6,7,8 \text { HEXACHLORODIBENZO-P-DIOXIN }}{123}$	ngkg		${ }^{1200}$		1060	84.7788		646.585		4640	3300						854			
E1613E1668	1,2,3,7,9,9-HEXACHLORODIBENZO-P-DIOXIN	${ }_{\text {ng }}^{\substack{\text { ngkg } \\ \mathrm{ngkg}}}$		660		629	${ }_{7} 736.415$		${ }_{548.881}^{2.654}$		2620	1800						603			
E1613/E1668	1,2,3,7,8.PENTACHLORODIBENZOFURAN	ngkg		18.8 J		13.4 J	16.078		9.218		59.6 J	${ }^{42.5 \mathrm{~J}}$						${ }^{14.7 J}$			
E16131E1668	1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	ngkg		132		99.6	${ }^{94.671}$		${ }^{79.705}$		430	293						126			
E1613/E1688	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	ngkg		210		248	152 J		${ }^{159.64}$		987	700						215			
E1613\|E1668	2,3,4, , 8. PENTACHLORODIBENZOFURAN	ngkg		48.5J		53.1 J	${ }^{15.693}$		${ }^{13.28}$		180	${ }^{128}$						38.6 J			
E1613/1668	2, $2,7,8$, -TETRACHLORODIBENZOFURAN	$\underbrace{\substack{\text { nokg }}}_{\text {ngkg }}$		193		4.2 J 6.59 J	4.668 4324		3.095		$\frac{11.6 \mathrm{~J}}{24.2}$	$\frac{7.62 \mathrm{~J}}{0 \mathrm{U}}$						126			
E1613151668	OCTACHLORODIBENZOFURAN	ngkg		18200		21600	10543.474 ${ }^{\text {J }}$		${ }^{375998.204}$		108000	78200						17900			
E1613/E1668	OCTACHLORODIBENZO-P-DIOXIN	ngkg		391000		358000	78219.338 J		793360.528 J		1490000	1040000						309000			
E1613\|E1668	TOTAL HEPTACHLORINATED DIBENZOFURANS	ngkg		16200		${ }^{196000}$	${ }^{15156.573}$		11889.922		98300 J	69000						15900			
E1613/E1688	TTTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	ngkg		130000		111000	44793.657		58503.211		${ }^{590000}$	424000						110000			
E1613/E1688	TOTAL HEXACHLLORINATED DIBENZOFURANS	${ }_{\text {nglkg }}$		$\stackrel{4780 \mathrm{~J}}{1400}$		${ }_{5}^{5310 \mathrm{~J}}$	${ }^{4417.899}$		${ }_{\text {1866.143 }}^{1829}$		258800 J	${ }^{178800} \mathrm{~J}$						$\frac{4300 \mathrm{~J}}{1080}$			
	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	$\frac{n g k g}{\substack{\text { nokg }}}$		${ }^{14000}$		$\frac{10200}{681 \text { J }}$	7529.221   805.232		6232.151   45266		54100 3090	38800   2180						10800			
E1613/16668	TOTAL PENTACHLORINATED DIBENZO-P-DIOXIINS	nglkg		1220		618	510.076		397.021		3100	2180 J						702			
E1613/E1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ngkg		114		89.4	106.932		52.995		440 J	319						50			
E1613/E1688	TOTAL TETRACHLORINATED DIBENZO-P.DIOXINS	nglkg		270		18.5	39.753		29.752		263	123						37.7			
SW6020	ANTIMONY	mgkg	1.9	1.4	0.99 J	${ }^{0.35 \mathrm{U}}$	1.1	2.7	1.2 J	${ }^{0.42 \mathrm{~J}}$	${ }^{0.61 \mathrm{~J}}$	${ }^{0.68 \mathrm{~J}}$	${ }^{0.35 \mathrm{U}}$	${ }^{0.77]^{3}}$	6.0	1.0 J	2.2 J	0.90 J	0.35 UJ	0.35 UJ	1.4
SW6020	ARSENIC	mgkg	2005	82	70	81 J	95 J	230 J	160	26 J	${ }^{48}$	${ }^{53}$	6.1	${ }^{63}$	180 J	110	260	120	6.4	6.9 J	140 J
SW6020	BARIUM	$\mathrm{mg}_{\mathrm{k}}^{\mathrm{kg}}$	15	48	20	${ }^{13 \mathrm{~J}}$	19 J	${ }^{31}$	${ }^{16}$	${ }^{15}$	${ }^{27}$	${ }^{29}$	24	21	41	30 E	46	20	14	12 J	10
SW6020	CADMUM	mglkg	$\frac{0.39 \mathrm{~J}}{230 \mathrm{~J}}$	0.53 ${ }^{250}$	${ }_{0}^{0.31 \mathrm{U}}$	$\frac{0.30 \mathrm{U}}{64 \mathrm{~J}}$	- ${ }^{0.30 \mathrm{U}}$	$\frac{0.30 \mathrm{U}}{3001}$	$\stackrel{0.30 \mathrm{U}}{2701}$	$\stackrel{0.300}{111}$	${ }_{0}^{0.390}$	${ }^{0.38 \mathrm{U}}$	$\frac{0.30 \mathrm{U}}{}$	0.48 J	${ }^{1.3}$	- 0.30 J	$\frac{0.40 \mathrm{~J}}{}$	$\stackrel{0.290}{230}$	$\stackrel{0.30 \mathrm{U}}{141}$	$\stackrel{0.300}{ }$	$\stackrel{0.28 \mathrm{U}}{231}$
SW6020	COPPER	$\frac{\mathrm{mg} \text { kg }}{\text { mgkg }}$	${ }^{230}$	$\frac{250}{85}$	$\frac{170}{59}$	${ }_{33} 6$	${ }^{85} 5$	210	$\frac{270}{140}$	$\frac{11.6}{}$	${ }_{4}^{51}$	5	$\frac{10}{14}$	${ }_{56}^{82}$	$\stackrel{230}{ }$	100	${ }^{440}$	${ }_{1}^{230}$	$\frac{14.7}{}$	5.6 J	$\frac{230}{} 160$
SW6020	LEAD	mgkg	12	14	7.7	9.6 J	34 J	22	16	16	23	26	64	17	190	37	46	20	6.8	4.7 J	10
SW6020	SELENIUM	mgkg	0.84 U	0.91 U	2.1	0.87 U	0.87 U	0.87 U	0.87 U	0.86 U	1.10	1.10	0.87 U	0.90 U	0.85 U	0.85 U	0.88 U	0.84 U	0.86 U	0.86 U	0.82 U
SW6020	SIIVER	mglkg	0.38 U	0.41 U	0.41U	0.39 U	0.39 U	0.39 U	0.39 UJ	0.39 U	${ }^{0.51 \mathrm{U}}$	${ }^{0.50 \mathrm{U}}$	0.39 U	0.41 U	0.38 U	0.39 U	0.40 UJ	0.38 U	0.39 UJ	0.39 U	0.37 U
SW6020	VANADIUM (FUME OR DUST)	mglkg	0.90 UJ	3.3	3.0	1.11	2.01	0.93 ${ }^{\text {U }}$	0.93 U	3.1	4.9	5.6	${ }^{6.65}$	5.4	6.3	2.7	${ }^{0.94 \mathrm{U}}$	$0.91{ }^{0.911}$	1.6	3.15	$0.88{ }^{0}$
SW7471	MERCURY	mgkg	0.20	${ }^{0.225}$	${ }^{0.13 \mathrm{~J}}$	${ }^{0.12 \mathrm{~J}}$	${ }^{0.16 \mathrm{~J}}$	${ }^{0.47 \mathrm{~J}}$	0.11	${ }^{0.056 ~ J}$	0.84	0.94	0.062	0.73	1.9	0.39	0.24	0.11	0.043	0.025 J	0.077 J
SW8260	$\frac{1.1,1 .- \text { TRICHLOROETHANE }}{11.2}$	$\frac{\text { ugkg }}{\text { ugkg }}$	$\frac{0.14 \mathrm{U}}{0.074 \mathrm{U}}$	$\stackrel{0.14 \mathrm{U}}{0.075 \mathrm{U}}$	${ }_{0}^{0.13 U}$	$\stackrel{0.13 \mathrm{U}}{0.069 \mathrm{u}}$	$\stackrel{0.13 \mathrm{U}}{0.070 \mathrm{u}}$	$\frac{0.15 \mathrm{U}}{0.080 \mathrm{U}}$	$\stackrel{0.13 \mathrm{U}}{0.070 \mathrm{U}}$	$\stackrel{0.15 \mathrm{U}}{0.082 \mathrm{U}}$	$\frac{0.28 \mathrm{U}}{0.16 \mathrm{U}}$	$\frac{0.23 U}{0.134}$	0.14U	$\stackrel{0.13 \mathrm{U}}{0.072 \mathrm{U}}$	${ }_{0}^{0.13 U}$	$\frac{0.13 \mathrm{U}}{0.070 \mathrm{u}}$	$\stackrel{0.13 \mathrm{U}}{0.070 \mathrm{u}}$	$\stackrel{0.13 \mathrm{U}}{0.069 \mathrm{u}}$	$\frac{0.13 \mathrm{U}}{0.070 \mathrm{U}}$	0.17U	$\frac{0.14 U}{0.077 U}$
SW8260	1,1,2-TRICHLOROETHANE	ugkg	0.15 U	0.15	0.15 O		${ }_{0}^{0.14 U}$	0.16 U	0.14 u	0.17 U	${ }_{0}^{0.314}$	${ }_{0}^{0.25 U}$	0.16 U	0.14 u	${ }_{0}^{0.15 U}$	0.14 U	0.14 u	0.14 u	0.14 U	0.18 U	0.16 U
SW8260	1,1-DICHLOROETHANE	ugkg	0.0710	0.0710	0.069 U	0.066 U	0.067 U	0.077 U	0.066 U	0.078 U	0.15 U	0.13 U	$0.074{ }^{0}$	0.068 U	0.069 U	0.067 U	0.067 U	0.066 U	0.067 U	0.086 U	0.074 U
SW8260	1,1.-IICHLOROETHYLENE	ugkg	0.19 U	0.20 U	0.19 U	0.18 U	0.18 U	0.21 U	0.18 U	0.22 U	0.40 U	0.33 U	0.20 U	0.19 U	0.19 U	0.18 U	0.18 U	0.18 U	0.18 U	0.24 U	0.20 U
SW8260	1,2,4-TRICHLOROBENZENE	ugkg	0.17 UJ	0.17 U	0.17 U	0.16 U	0.16 U	0.19 UJ	0.16 U	0.19 U	0.35 UJ	0.29 UJ	0.18 UJ	0.17 U	0.17 UJ	0.16 UJ	0.16 UJ	0.16 U	0.16 UJ	0.21 U	0.18 U
SW8260	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	ugkg	0.55 UJ	0.56 U	0.54 U	${ }^{0.510}$	0.52 U	0.60 UJ	0.52 U	${ }^{0.61 U}$	1.2 UJ	0.94 UJ	0.57 UJ	${ }^{0.53 U}$	0.53 UJ	0.52 UJ	0.52 UJ	${ }^{0.510}$	0.52 UJ	0.67 U	$0.57{ }^{\text {U }}$
SW8260	1,2-DIBROMOETHANE	ugkg	0.063 U	0.063 U	0.061 U	0.059 U	0.059 U	0.068 U	0.059 U	0.070 U	${ }^{0.13 U}$	${ }^{0.11 U^{4}}$	${ }^{0.066 U}$	0.061 U	0.061 U	0.059 U	${ }^{0.060 ~ U ~}$	0.059 U	0.059 U	0.076 U	0.066 U
SW8260	1,2-DICHLOROBENZENE	ugkg	0.088 U	0.088 U	0.085 U	0.081 U	0.082 U	0.0955	0.082 U	$0.097{ }^{0}$	0.12 UJ	0.15 JJ	$0.091{ }^{0}$	0.084 U	$0.085{ }^{0}$	0.082 U	0.083 UJ	0.081 U	0.082 UJ	${ }^{0.111}$	0.091 U
SW8260	12-DICHLOROETHANE	ugkg	0.12 U	0.12 U	0.11 U	0.11 U	0.11 U	0.13 U	0.11 U	${ }^{0.13 \mathrm{U}}$	0.24 U	0.20 U	0.12 U	0.11 U	$0.11 \mathrm{U}^{\text {a }}$	0.11 U	0.11 U	0.11 U	$0.11{ }^{\text {U }}$	0.14 U	0.12 U
SW8260	1,2-DICHLOROPROPANE	$\frac{\text { ugkg }}{\text { ugkg }}$	0.061U	0.061U	0.059 U	0.057U	0.057U	$\frac{0.066 \mathrm{U}}{0.11 \mathrm{UJ}}$	0.057U	$\frac{0.067 U}{0.11 U}$	0.13U	0.11U	0.063 U	$\frac{0.059 ~ U ~}{0.094 \mathrm{U}}$	$\frac{0.059 \mathrm{U}}{0.094 \mathrm{UJ}}$	${ }^{0.057 U}$	$\frac{0.058 \mathrm{U}}{0.092 \mathrm{UJ}}$	0.057U	$\frac{0.057 \mathrm{U}}{0.092 \mathrm{UJ}}$	$\frac{0.074 \mathrm{U}}{0.12 \mathrm{U}}$	$\frac{0.063 \mathrm{U}}{0.11 \mathrm{U}}$
SW8260	ACETONE	ugkg	2.8 UJ	110 J	170	2.6 U	$\underline{2.70}$	3.10	$\underline{2.70}$	3.10	${ }_{41 \mathrm{~J}}$	25 J	3.0 u	$\stackrel{.0 .70}{ }$	${ }_{2}$	$\frac{0.7 U}{}$	$\frac{0.7 \mathrm{U}}{}$	2.6 U	2.74	46 J	3.0 U
SW8260	BENZENE	ugkg	${ }^{2.44 U}$	${ }^{0.44 \mathrm{U}}$	${ }^{0.43 U}$	${ }^{2.410}$	${ }^{2.41 \mathrm{U}}$	${ }^{0.48 \mathrm{U}}$	0.41 U	0.49 U	${ }^{0.91 \mathrm{U}}$	${ }^{0.75 U}$	${ }_{0} 0.46 \mathrm{U}$	0.42 U	${ }_{0}^{2.43 U}$	0.41 U	${ }_{0}^{2.42 \mathrm{U}}$	${ }^{2.41)}$	0.41 U	${ }^{0.53 U}$	0.46
SW8260	BROMODICHLOROMETHANE	ugkg	0.33 U	0.33 U	0.32 U	0.31 U	0.31 U	0.36 U	0.31 U	0.36 U	0.68 U	0.56 U	0.34 U	0.32 U	0.32 U	0.31 U	0.31 U	0.31 U	0.31 U	0.40 U	0.34 U
SW82600	BROMOMETHANE	ugkg	${ }^{0.36 U}$	${ }^{0.36 \mathrm{U}}$	${ }_{0}^{0.35 \mathrm{U}}$	0.34 UJ	${ }^{0.34 \mathrm{UJ}}$	${ }^{0.390}$	$\stackrel{0.34 \mathrm{U}}{17}$	0.40 U	0.750 J	0.61 UJ	${ }^{0.38 \mathrm{U}}$	${ }^{0.35 \mathrm{U}}$	${ }^{0.35 \mathrm{U}}$	0.34 UJ	${ }_{0}^{0.34 \mathrm{U}}$	${ }^{0.34 \mathrm{UJ}}$	$\stackrel{0.34 U}{ }$	0.044 UJ	${ }^{0.38 \mathrm{U}}$
SW8260	CARBON DISULFIIDE	$\frac{u g l k g}{u g k g}$	$\frac{1.8 \mathrm{U}}{0.40 \mathrm{U}}$	$\frac{1.8 \mathrm{U}}{0.40 \mathrm{U}}$	1.8 U 0.38 U	$\xrightarrow{1.7 \mathrm{U}} \mathrm{O}$	$\xrightarrow{1.7 \mathrm{U}} 0$	$\frac{2.0 U}{0.43 U}$	$\xrightarrow{1.7 \mathrm{U}} 0$	$\frac{2.0 U}{0.44 \mathrm{U}}$	$\xrightarrow{3.8 \mathrm{U}}$	$\frac{3.1 \mathrm{U}}{0.67 \mathrm{U}}$	$\frac{1.9 U}{0.41 U^{\prime}}$	1.8 U 0.38 U	1.8 U 0.38 U	$\xrightarrow{1.7 \mathrm{U}} 0$	$\xrightarrow{1.7 \mathrm{U}} \mathrm{O}$	1.7 U 0.37 U	$\xrightarrow{1.74} \begin{aligned} & \text { U }\end{aligned}$	$\frac{2.2 U}{0.48 \mathrm{U}}$	$\frac{1.9 U}{0.41 \cup}$
SW8260	CFC--11	ugkg	${ }_{0}^{0.300}$	${ }_{0}^{0.300}$	${ }_{0}^{0.290}$	$\stackrel{0.27}{0 .}$	${ }_{0}^{0.284}$	$\stackrel{0.32 \mathrm{U}}{0}$	${ }_{0}^{0.288}$	$\stackrel{0.33 \mathrm{U}}{ }$	0	${ }_{0}^{0.50}$	$\frac{0.314}{}$	${ }_{0}^{0.280}$	0.29 U	$\stackrel{0.280}{0.3}$	0.28 U	${ }_{0}^{0.27 \mathrm{U}}$	${ }_{0}^{0.284}$	${ }_{0}^{0.36 \mathrm{U}}$	0.410
SW8260	CFC-12	ugkg	0.36 U	0.36 UJ	${ }_{0}^{0.35 \mathrm{U}}$	0.34 U	0.34 U	0.39 U	0.34 U	0.40 U	0.75 U	0.61 U	0.38 U	${ }^{0.35 \mathrm{UJ}}$	0.35 U	0.34 U	0.34 U	0.34 U	0.34 U	0.44 U	0.38 U
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	$\frac{\mathrm{ug} k \mathrm{~kg}}{\text { uakg }}$	0.41U	0.41 U 0.45 u	0.39 u 0.44 u	0.380.42 u   0	0.38U	0.44 U 0.49 u	$\stackrel{0.38 \mathrm{U}}{0.42 \mathrm{u}}$	$\bigcirc$	0.84 U 0.93 u	0.69 U	$042U$	0.39 U 0.44 u	0.39 U   0.444	$\xrightarrow{0.38 \mathrm{U}}$	0.39 U 0.43 u	0.38 U 0.42 U	0.38 U 0.43 U	0.49 U 0.55 u	0.42 U 0.47 U
SW8260	CHLORODIBROMOMETHANE	ugkg	0.28 U	0.29 U	0.28 U	$\xrightarrow[0.26 U]{0.4}$	0.27 U	0.314	0.27 U	0.310	0.58 U	0.48 U	0.30 U	0.27 U	0.27 U	$\stackrel{0.27 \mathrm{U}}{0.0}$	0.27 U	${ }_{0}^{0.266}$	0.27 U	0.344	0.30 U
V8260	CHLOROETHANE	ugkg	0.41 U	0.41 U	0.39 U	0.38 U	0.38 U	0.44 U	0.38 U	0.45 U	0.84 UJ	0.69 UJ	0.42 U	0.39 U	0.39 U	0.38 U	0.39 U	0.38 U	0.38 U	0.49 U	0.42 U
SW8260	CHLOROFORM	ugkg	${ }_{0}^{0.38 \mathrm{U}}$	0.39 U	0.37 U	${ }_{0}^{0.36 \mathrm{U}}$	0.36 U	${ }^{0.424}$	0.36 U	0.43 U	$0.79{ }^{19}$	0.65 U	${ }_{0}^{0.400}$	${ }^{0.37 \mathrm{U}^{0}}$	${ }^{0.37 \mathrm{U}}$	${ }^{0.364}$	${ }^{0.366}$	${ }^{0.366}$	${ }^{0.36 \mathrm{U}}$	$0.47{ }^{\text {U }}$	0.40 U   03 L
SW8260	CIIS-1,2-DICHLOROE	ugkg	$\stackrel{0.51 \mathrm{U}}{0.30 \mathrm{U}}$	${ }_{0}^{0.51 \mathrm{U}}$	$\xrightarrow[0.49 \mathrm{U}]{0.29}$	$\stackrel{0.47 \mathrm{U}}{0.27 \mathrm{U}}$	$\stackrel{0.48 \mathrm{U}}{0.28}$	$\frac{0.55 \mathrm{U}}{0.32 \mathrm{U}}$	$\stackrel{0.48 \mathrm{U}}{0.28 \mathrm{U}}$	$\stackrel{0.56 \mathrm{U}}{0.33 \mathrm{U}}$	$\frac{1.10}{1.610}$	${ }_{0}^{0.860 \mathrm{U}}$	$\stackrel{0.53 \mathrm{U}^{0.31 \mathrm{U}}}{ }$	$\stackrel{0.49 \mathrm{U}}{0.28 \mathrm{U}}$	$\stackrel{0.49}{0.29}$	$\stackrel{0.48 \mathrm{U}}{0.28 \mathrm{U}}$	$\stackrel{0.48 \mathrm{U}}{0.28 \mathrm{U}}$	${ }_{0}^{0.477}$	$\stackrel{0.48 \mathrm{U}}{0.28 \mathrm{u}}$	$\stackrel{0.620}{ }$	$\stackrel{0.53}{0.31 \mathrm{U}}$


			$\begin{gathered} \text { sso60 } \\ \text { sso60AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \end{gathered}$	$\begin{gathered} \text { sso62 } \\ \text { sso62AA } \\ 0-0.25 \text { feet } \\ 12108 / 2006 \end{gathered}$		$\begin{gathered} \text { SSO66 } \\ \text { SSO66AA } \\ 0-0.25 \text { feet } \\ 12108 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO66 } \\ \text { SSO66AB } \\ 0-0.25 \text { feet } \\ 12108 / 2006 \end{gathered}$	$\begin{gathered} \text { Sso67 } \\ \text { sso67AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO68 } \\ \text { SSo68AA } \\ 0-0.25 \text { feet } \\ 12 / 09 / 2006 \end{gathered}$	$\begin{array}{\|c} \text { SSO69 } \\ \text { Ssobent } \\ 0-0.05 \text { feet } \\ 1130012006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO70 } \\ \text { SSOT7AA } \\ 0-0.25 \text { feet } \\ 12122 / 2006 \end{gathered}$	$\begin{array}{\|c\|c\|} \text { SSO70 } \\ \text { SSOToAB } \\ 0-0.25 \text { feet } \\ \text { 12/12/2006 } \end{array}$	$\begin{gathered} \text { SS071 } \\ \text { SS071AA } \\ 0-0.25 \text { feet } \\ 12 / 101 / 2006 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SS072 } \\ \text { SSO72AA } \\ 0-0.25 \text { feet } \\ 12 / 107 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO73 } \\ \text { Ssonza } \\ 0.0 .25 \text { feet } \\ 11103 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO74 } \\ \text { SSOT4AA } \\ 0.0 .25 f e e t \\ 1210412006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO75 } \\ \text { SSO75AA } \\ 0-0.25 \text { feet } \\ 12109 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO76 } \\ \text { SSO76AA } \\ 0-0.25 \text { feet } \\ 12105 / 2006 \end{gathered}$	$\begin{gathered} \text { SSOO7 } \\ \text { Ssol7AA } \\ 0.0 .25 \text { feet } \\ 12129912006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO78 } \\ \text { SSO78AA } \\ 0-0.25 \text { feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO79 } \\ \text { SSO79AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \end{gathered}$
Lab Metrod	Analyte	Units																			
SW8260	CIS-1,3-DICHLOROPROPENE	ugkg	$\stackrel{0.33 \mathrm{U}}{0.34 \mathrm{U}}$	${ }_{0}^{0.33 \mathrm{U}}$	${ }_{0}^{0.32 \mathrm{U}}$	${ }_{0}^{0.31 \mathrm{U}}$	${ }_{0}^{0.31 \mathrm{U}}$	$\stackrel{0.36 \mathrm{U}}{0.64}$	$\stackrel{0.31 \mathrm{U}}{0}$	${ }^{0.366}$	${ }^{0.68 \mathrm{U}^{\text {O }} \text { - }}$	${ }^{0.56 \mathrm{U}^{\text {a }} \text { - }}$	${ }_{0}^{0.344}$	${ }_{0}^{0.32 \mathrm{U}}$	${ }_{0}^{0.32 \mathrm{U}}$	${ }_{0}^{0.31 \mathrm{U}}$	${ }_{0}^{0.314}$	${ }_{0}^{0.31 \mathrm{U}}$	${ }_{0}^{0.314}$	${ }_{0}^{0.40 \mathrm{U}}$	${ }_{0}^{0.344}$
SW8260	CYCLOHEXANE	$\frac{\mathrm{lagkg}}{\substack{\text { ugk } \\ \text { Lokg }}}$	$\stackrel{0.43 \mathrm{U}}{0.44 \mathrm{u}}$	$\stackrel{0.43 \mathrm{U}}{0.44 \mathrm{u}}$	$\stackrel{0.42 \mathrm{U}}{0.43 \mathrm{U}}$	$\stackrel{0.40 \mathrm{U}}{0.41 \mathrm{U}}$	${ }^{0.40 \mathrm{U}}$	0.46 U 0.48 u	$\stackrel{0.40 \mathrm{U}}{0.41 \mathrm{u}}$	0.48u	${ }^{0.88 \mathrm{U}}$	$\stackrel{0.73 U}{0.75 u}$	0.45 U 0.46 u	${ }^{0.41 u^{0}}$	0.42 U 0.43 u	$\stackrel{0.40 \mathrm{u}}{0}$	${ }_{0}^{0.41 u^{\prime}}$	0.40 U 0.41 U	${ }_{0}^{0.40 \mathrm{U}}$	${ }_{0}^{0.52 \mathrm{U}}$	0.45 U 0.46 u
SW8260	ETHYLBENZENE	ugkg	$\stackrel{0.47 \mathrm{U}}{0.4}$	$\stackrel{0.48 \mathrm{U}}{0.48}$	$\stackrel{0.430}{0.46}$	$\stackrel{0.410}{0.44 \mathrm{U}}$	$\stackrel{0.450}{0.450}$	$\stackrel{0.480}{0.51 \mathrm{U}}$	$\stackrel{0.410}{0.44 \mathrm{U}}$	$\stackrel{0.520}{ }$	$\stackrel{0.980}{0.9}$	$\stackrel{0.710}{0.810}$	$\stackrel{0.490}{0}$	$\stackrel{0.46 \mathrm{U}}{0}$	$\stackrel{0.436}{0.46}$	$\stackrel{0.450}{0.450}$	$\stackrel{0.450}{0.45}$	$\stackrel{0.444}{0.40}$	$\stackrel{0.450}{0.45}$	${ }_{0}^{0.574}$	$\stackrel{0.490}{ }$
SW8260	SOPROPYLBENZENE	ugkg	0.52 U	0.52 U	0.50 U	0.48 U	0.49 U	0.56 UJ	0.49 U	$0.57{ }^{\text {U }}$	1.10 J	0.88 UJ	0.54 UJ	0.50 U	0.50 UJ	0.49 UJ	0.49 UJ	0.48 U	0.49 UJ	0.63 U	0.54 U
SW8260	m.p.-xylenes	ugkg	0.98 U	0.98 U	0.95 U	0.91 U	0.92 U	1.14	0.92 U	1.10	2.10	1.7 U	1.10	0.94 U	0.94 U	0.92 U	0.92 U	0.91 U	0.92 U	1.2 U	1.10
SW8260	M-IICHLOROBENZENE	ugkg	0.056 U	0.057 U	0.055 U	0.052 U	0.053 U	0.061 UJ	0.053 U	0.062 U	0.12 UJ	0.096 UJ	0.059 UJ	0.054 U	0.054 UJ	0.053 UJ	0.053 UJ	0.052 U	0.053 UJ	0.068 U	0.059
SW8260	METHYL ACETATE	ugkg	${ }^{0.22 U ~}$	${ }^{0.22 U ~}$	${ }^{0.214}$	0.20 U	0.20	0.23 UJ	0.20 U	0.24 UJ	${ }^{0.44 U^{2}}$	${ }^{0.37 \mathrm{U}}$	${ }^{0.23 U}$	${ }^{0.214}$	${ }^{0.21 U}$	0.20 U	${ }^{0.21 \mathrm{U}}$	0.20	0.20 U	${ }^{0.26 U}$	0.23 UJ
SW8260	METHYL ETHYL KETONE	ugkg	1.30	1.3 U	1.2 U	1.2 U	1.2 U	1.4 U	1.2 U	1.40	2.60	2.10	1.3 U	1.2 U	1.5 U	1.30					
SW8260	METTYL LSOBUTYL KETONE	ugkg	0.80 U	${ }^{0.80 \mathrm{U}}$	$0.77{ }^{116}$	$\stackrel{0.74 \mathrm{U}^{110}}{ }$	$\stackrel{0}{0.75 \mathrm{U}}$	${ }^{0.86 \mathrm{U}}$	$\stackrel{0.75 \mathrm{U}}{114}$	${ }^{0.88 \mathrm{U}^{134}}$	$\underline{1.7 U}$	1.40	${ }^{0.83}{ }^{124}$	$\stackrel{.77 \mathrm{U}^{114}}{ }$	$0.77{ }^{114}$	${ }^{0.754}$	$\stackrel{0}{0.76 \mathrm{U}^{116}}$	${ }^{0.744}$	$\stackrel{0.754}{114}$	$\stackrel{.974}{ }$	${ }^{0.83}$
SW8260	METHYL N-BUTYL LETONE	ugkg	1.2 U	1.2 U	1.10	1.1 UJ	1.1 UJ	1.30	1.10	1.30	2.44	2.00	1.2 U	1.14	1.10	1.14	1.14	1.10	1.14	1.4 U	1.2 U
SW8260	METHYLBENZENE	ugkg	0.47 U	0.48 U	0.46 U	0.44 U	${ }^{1.450}$	0.51 J	0.44 U	0.52 U	2.45	${ }^{0.81 \mathrm{U}}$	0.49 U	${ }^{0.46 U}$	${ }^{0.46 \mathrm{U}}$	${ }^{\text {0.45 }}$ U	${ }^{\text {0.45 }}$	0.44 U	${ }^{\text {O.45 }}$ U	$0.57 \mathrm{U}^{0}$	0.45
SW8260	METHYLCYLOHEXANE	ugkg	0.50 U	0.50 U	0.48 U	0.46 U	0.47 U	0.54 U	0.47 U	0.55 U	${ }^{1.10}$	${ }^{0.84 U}$	0.52 U	${ }^{0.48 \mathrm{U}}$	0.48 U	0.47 U	0.47 U	0.46 U	0.47 U	0.60 U	${ }^{0.522}$
SW8260	O-XYLENE	ugkg	${ }^{0.450}$	${ }^{0.45 \mathrm{U}}$	${ }^{0.44 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.426}$	0.49 U	${ }^{0.425}$	${ }^{0.50}{ }^{\text {U }}$	${ }^{1.930}$	$0.77{ }^{0.70}$	0.47 U	${ }^{0.44 U^{4}}$	${ }^{0.44 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.43 \mathrm{U}}$	${ }^{0.425}$	${ }^{0.430}$	${ }^{0.550}$	${ }^{0.47 \mathrm{U}^{\text {U }}}$
SW8260	STYRENE (MONOMER)	$\frac{\mathrm{ug} k \mathrm{~kg}}{\text { Lokg }}$	$\frac{0.48 \mathrm{U}}{0.364}$	0.49 U	$\frac{0.47 \mathrm{U}}{0.354}$	$\frac{0.45 \mathrm{U}}{0.34 \mathrm{U}}$	0.46 U	0.52 U	0.45 U	0.54U	1.0 U	$\frac{0.82 \mathrm{U}}{0.614}$	$\frac{0.50 \mathrm{U}}{088}$	0.47	0.47 U	0.46 U	$\frac{0.46 \mathrm{U}}{0.34 \mathrm{U}}$	0.45 U	0.46 U	0.59	0.50
SW8260	TERT-BUTYL METHYL ETHER	ugikg	${ }^{0.36 \mathrm{U}}$	${ }^{0.36 \mathrm{U}}$	${ }^{0.35 \mathrm{U}}$	${ }^{0.34 U}$	${ }^{0.34 U}$	0.39 U	${ }^{0.34 U}$	${ }^{0.40 \mathrm{U}}$	${ }^{0.754}$	${ }^{0.610}$	${ }^{0.384}$	${ }^{0.35 u^{0}}$	${ }^{0.3514}$	$\stackrel{0.34 \mathrm{U}}{ }$	${ }^{0.34 U}$	${ }^{0.34 U}$	$\stackrel{0.34 \mathrm{U}}{ }$	${ }^{0.444}$	${ }^{0.384}$
SW8260	TETRACHLOROETHYLENE	ugkg	0.45 U	0.45 U	0.44 U	0.42 U	0.42 U	0.49 U	0.42 U	0.50 U	0.93 U	0.77 U	0.47 U	0.44 U	$0.71{ }^{0.71}$	$\stackrel{0.42 \mathrm{U}}{ }$	0.43 U	0.42 U	0.43 U	0.55 U	0.47 U
SW8260	TRANS-1,2-IICHLOROETHENE	$\xrightarrow{\text { ugkg }}$	$\stackrel{0.43 \mathrm{U}}{0.34 \mathrm{U}}$	$\stackrel{0.43 \mathrm{U}}{0.34 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{0.33 \mathrm{U}}$	$\stackrel{0.40 \mathrm{U}}{0.32 \mathrm{U}}$	$\stackrel{0.40 \mathrm{U}}{0.32 \mathrm{U}}$	$\stackrel{0.46 \mathrm{U}}{0.37 \mathrm{U}}$	$\stackrel{0.40 \mathrm{U}}{0.32 \mathrm{U}}$	$\stackrel{0.48 \mathrm{U}}{0.38 \mathrm{U}}$	$\stackrel{0.88 \mathrm{U}}{0.70 \mathrm{U}}$	$\stackrel{0.73 \mathrm{U}}{0.58 \mathrm{U}}$	$\xrightarrow{0.45 \mathrm{U}}$	0.41 U 0.33 u	$\stackrel{0.42 \mathrm{U}}{0.33 \mathrm{U}}$	$\stackrel{0.40 \mathrm{U}}{0.32 \mathrm{U}}$	$\stackrel{0.41 \mathrm{U}}{0.32 \mathrm{U}}$	$\stackrel{0.40 \mathrm{U}}{0.32 \mathrm{U}}$	$\stackrel{0.40 \mathrm{U}}{0.32 \mathrm{U}}$	$\xrightarrow{0.52 U}$	0.45 U 0.35 U
SW8260	TRIBOMOMETHANE	ugkg	0.44 U	0.44 U	0.43 U	0.41 U	0.41 U	0.48 U	0.41	0.49 U	0.91 U	0.75 U	0.46 U	0.42 U	0.43 U	0.41 U	0.42 U	0.41 U	0.41 U	0.53 U	0.46 U
SW8260	TRICHLOROETHYLENE	ugkg	0.45 U	0.45 U	0.44 U	0.42 U	0.42 U	0.49 U	0.42 U	0.50 U	0.93 U	0.77 U	0.47 U	0.44 U	0.44 U	0.42 U	0.43 U	0.42 U	0.43 U	$0.55{ }^{\text {U }}$	0.47 U
SW8260	VINYL CHLORIDE	ugkg	0.27 U	0.27 U	0.26 U	0.25 U	0.26 U	0.30 U	0.26 U	0.30 U	${ }^{0.56 U}$	${ }^{0.46 ~ U ~}$	0.28 U	0.26 U	0.26 U	0.26 U	${ }^{0.260 ~}$	0.25	0.26 U	${ }^{0.33 U}$	0.28 U
SW8270	2,4,5-TRICHLOROPHENOL	ugkg	15 U	15 U	15 U	14 U	20 U	19 U	14 U	14 U	15 U	14 U	14 U	14 U	140 U	14 U	14 U				
SW8270	2,4,6-TRICHLOROPHENOL	ugkg	40 U	410	40 U	38 U	38 U	39 U	38 U	38 U	53 U	50 U	39 U	39 U	39 U	38 U	38 U	38 U	380 U	38 U	38 U
SW8270	$\frac{\text { 2.4-DICHLOROPHENOL }}{24.0 \text { IMETHYTPHENOL }}$	ugkg	19 U	$\frac{20 \mathrm{U}}{22}$	19 U	18 U	18 U	$\frac{190}{214}$	18 U	$\frac{18 \mathrm{U}}{210}$	250	24 U	$\frac{190}{214}$	$\frac{190}{214}$	$\frac{190}{87}$	$\frac{18}{22 J}$	$\frac{18}{20}$	$\frac{180}{20 U}$	${ }^{180 \mathrm{U}}$	180	$\frac{18 \mathrm{U}}{20}$
SW8270	4-DIINTROPHENOL	ugkg	14 UJ	14 U	14 U	13	18 U	17 U	13 U		131	13 U	13 U	13 U	130 U	13 U	13				
W8270	2,4-DIINTROTOLUENE	ugkg	11 U	12 U	11 U	11 U	11 U	110	11 U	11 U	15 U	14 U	110	11 U	110	11 U	11 U	11 U	110 U	11 U	11 U
SW8270	2,6-DINITROTOLUENE	ugkg	40 U	410	40 U	38 U	38 U	39 U	38 U	38 U	53 U	50 U	39 U	39 U	39 U	38 U	38 U	38 U	380 U	38 U	38 U
SW8270	2-CHLORONAPHTHALENE	ugkg	18 U	18 U	18 U	17 U	17 U	18 U	17 U	17 U	24 U	23 U	18 U	18 U	18 U	17 U	17 U	17 U	170	17 U	17 U
SW8270	2-METHYPPHENOL (O-CRESOL)	$\frac{\text { ugkg }}{\text { ugikg }}$	20 U	14 U	$\underline{20 U}$	19 U	19	$\underline{130}$	19 l	19 U	$\frac{270}{18}$	$\underline{170}$	20 U	$\underline{130}$	$\underline{130}$	19 U	19 U	19 U	$\stackrel{1900}{130}$	19 l	19 U
SW8270	2-NITROANLINE	ugkg	24 U	25 U	24 U	230	23 U	24 UJ	23 U	24 UJ	33 U	310	24 UJ	24 U	24 U	24 UJ	24 U	${ }^{23} \mathrm{UJ}$	${ }_{200} 40$	24 U	${ }_{23} 23 \mathrm{UJ}$
SW8270	2-NITROPHENOL	ugkg	16 U	16 U	16 U	15 U	210	20 U	15 U	16 U	16 U	15 U	15 U	15 U	${ }^{150}{ }^{30}$	15 U	15 U				
	3,3-DICHLOROBENZIDINE	ugkg		39 U	37 U	36 U		37 U	36 U	36 U	50 U	48 U	37 U			36 O	${ }^{360}$	36 U	${ }_{3600}$	36 O	
SW8270	3.,5,-TRIMEETHYL-2-CYCLOHEXENE-1-ONE	ugkg	15 U	150	150	14 U	14 U	$\frac{140}{190}$	14U	$\frac{140}{184}$	25	19 U	140	$\frac{140}{19}$	150	140	14 U	14 U	140	14 U	$\frac{140}{184}$
SW8270	${ }^{\text {4,-6-DINITRO-2-METHYLPHENOL }}$	${ }_{\text {ug }}^{\text {ugkg }}$	${ }_{11} 19 \mathrm{UJ}$	110	11 U	${ }_{9}^{18.8}$	${ }_{9.8 \mathrm{U}}^{18}$	10 UJ	${ }_{9}^{18.8}$	${ }_{10} 10 \mathrm{UJ}$	14 U	14 U	10 U	11 U	${ }_{11} 11 \mathrm{~J}$	9.90	9.9 UJ	9.8 U	${ }^{\text {1890 }}$	$\stackrel{9}{9.9}$	${ }_{9.8 \mathrm{UJ}}$
SW8270	4-BROMOPHENYL PHENYLETHER	ugkg	110	12 U	11 U	11 U	11 U	11 U	110	11 U	15 U	14 U	11 U	11 U	11 U	110	11 UJ	11 U	110 U	110	11 U
SW8270	4-CHLORO-3-METHYLPHENOL	ugkg	18 U	18 U	18 U	17 U	17 U	18 U	17 U	17 U	${ }^{24 U}$	23 U	18 U	18 U	18 U	17 U	17 U	17 U	170 U	17	17 U
SW8270	4.CHLOROPHENYL PHENYL ETHER	ugkg	24 U	25 U	24 U	23 U	230	24 U	23 U	24 U	33 U	310	24 U	${ }^{23}$	240 U	24 U	230				
SW8270	4-METHYLPHENOL (MP-CRESOL)	ugkg	29 U	30 ${ }_{\text {U }}^{20}$	$\frac{29 U}{1941}$	$\frac{28 \mathrm{U}}{18}$	$\frac{28 \mathrm{U}}{18 \mathrm{u}}$	$\frac{28}{19}$	28 U	$\frac{28 \mathrm{U}}{18 \mathrm{u}}$	$\frac{39 \mathrm{U}}{25}$	37U	$\frac{28 \mathrm{U}}{19}$	28U	58J	$\frac{28 \mathrm{U}}{18 \mathrm{ul}}$	$\frac{28 \mathrm{U}}{181}$	$\frac{27 U}{1841}$	$\frac{280 \mathrm{U}}{180 \mathrm{u}}$	28 U	28U
SW8270	4 -NITROPPENOL	ugkg	190	20 UJ	19 UJ	18 U	18 U	190	18 U	18 U	250	${ }^{24} 5$	1905	19 u	20u	18 U		18 U	${ }_{1000}^{1800}$	18 U	U
SW8270	BENZY L BUTYL PHIHALATE	$\frac{\mathrm{ug} k g}{\mathrm{ugkg}}$	${ }_{170} 20$	${ }_{170} 210$	${ }_{170} 200$	160 U	160 U	${ }_{100} 160$	160 U	1900	$\stackrel{270}{230}$	$\stackrel{250}{210}$	${ }_{160} 100$	${ }_{170} 20$	${ }_{170} 20$	1900	1900	${ }_{160} 190$	${ }_{1600} 190$	160 U	${ }_{160}^{22 \mathrm{U}}$
SW8270	BIS(2-CHLORETHOXYMETHANE	ugkg	19 U	20 U	19 U	18 U	18 U	19 U	18 U	18 U	25 U	24 U	19 U	19 U	19 U	18 U	18 U	18 U	180 U	18 U	18 U
SW8270	BIS(2-CHLOROETHYLETHER	ugkg	17 U	17 U	17 U	16 U	16 U	16 UJ	16 U	16 UJ	23 U	210	16 U	${ }^{17 \mathrm{U}}$	17 U	16 UJ	16 UJ	16 U	160 UJ	16 U	16 U
SW8270	BIS(2-CHLOROISOPROPYL) ETHER	ugkg	23 U	24 UJ	23 UJ	22 U	22 U	23 U	22 U	23 U	31 U	30 U	23 UJ	23 UJ	23 U	23 U	23 U	22 UJ	230 U	23 U	
SW8270	BIS2-ETHYLHEXYL)PHTHALATE	ugkg	72 J	18 U	18 U	56 J	170	18 U	170	${ }^{17}$	44 J	${ }^{230}$	18 U	96 J	210	40 J	170	170	1700	17 U	29 J
SW8270	CARBAZOLE	ugkg	${ }^{120}$ J	320	210	${ }^{180} \mathrm{~J}$	210	840	300	97 J	1000	1200	24 J	360	1500	850	850	390	1300 J	17 U	260
SW8270	DIBENZOFURAN	$\frac{\text { uglkg }}{\text { Likg }}$	120	93J	98J	$\frac{170 \mathrm{~J}}{13 \mathrm{U}}$	180 J 13 U	130 J 134	$\begin{array}{r}93 \mathrm{~J} \\ 13 \mathrm{U} \\ \hline\end{array}$	14 U	86J	93J	14 U	250   134   1	510   13   1	290 134	330   134	100 J	330 J   1300	14 U	$\frac{41 \mathrm{~J}}{13}$
(ew8270	DiETHYL PHTHALATE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\mathrm{ug} k g}$	14 U	14 U	14 U	13 U 11 U	13 U 110	13 U   110	13 U 11 U	13 U 110	18 U	17 U	13 U   110	13 U   110	13 U 11 U	13 U 110	13U	13 U 11 U	130 U 110 U	13U	13 U 110
SW8270	DI-N-BUTYL-PHTHALATE	ugkg	67 U	69 U	67 U	64 U	64 U	65 U	64 U	65 U	90 U	85 U	65 U	66 U	66 U	64 U	65 UJ	64 U	650 U	65 U	64 U
SW8270	DI-N-OCTYL-PHTHALATE	ugkg	17 U	17 U	17 U	16 U	23 U	210	16 U	17 U	17 U	16 U	16 U	16 U	160 U	16 U	20 J				
SW8270	HEXACHLORO-1,3-BUTADIENE	Likg	19 U	20 U	19 U	18 U	18 U	19 U	18 U	18 U	25 U	24 U	19 U	19 U	19 U	18 U	18 U	18 U	180 U	18 U	U
SW8270	HEXACHLOROBENZENE	ugkg	9.10	9.40	9.10	8.70	8.70	8.9 U	8.70	8.8 U	13 U	12 U	8.90	9.00	9.00	8.8 U	${ }^{8.8 \mathrm{UJ}}$	8.7 U	88 U	8.8 U	8.70
SW8270	HEXACHLLOROCYCLOPENTADIENE	$\frac{\text { ugkg }}{\text { ugkg }}$	$\frac{12 \mathrm{UJ}}{12 \mathrm{U}}$	13U	12 U	12 U	12 U	$\frac{12 \mathrm{UJ}}{12 \mathrm{U}}$	$\frac{12 \mathrm{UJ}}{18 \mathrm{Ul}}$	$\frac{12 \mathrm{UJ}}{18 \mathrm{U}}$	$\frac{17 U}{254}$	$\frac{16 U}{24 U}$	$\frac{12 \mathrm{UJ}}{19 \mathrm{U}}$	12 U	12 UJ	12 U	$\frac{12 \mathrm{UJ}}{18 \mathrm{u}}$	12 U	$\frac{120 ~ U J}{180}$	$\frac{12 U}{184}$	$\frac{12 \mathrm{UJ}}{18 \mathrm{u}}$
SW8270	HEXACHLOROETHANE		190	230	19 U	${ }_{210}$	$\frac{180}{210}$	190	$\frac{18 \mathrm{UJ}}{21 \mathrm{U}}$	${ }_{22}{ }^{120}$	$\frac{250}{30}$	${ }_{28}^{280}$	19 U	19 U	19 O	$\frac{180}{210}$	$\underline{180}$	180	$\stackrel{1800}{220}$	${ }_{18}^{180}$	$\frac{180}{210}$
SW8270	N-NITROSO-DI-N.PROPYLAMINE	ugkg	20 U	210	20 U	19 U	19 U	20 U	19 U	19 U	27 U	25 U	20 U	20 U	20 U	19 U	19 U	19 UJ	190 U	19 U	19 U
(ew $\begin{aligned} & \text { SW8270 } \\ & \text { SW8270 }\end{aligned}$	P-CHILOROANHLINE		129	${ }_{30}^{13 \mathrm{U}}$	$\underline{129}$	${ }_{28}^{12 \mathrm{UJ}}$	${ }^{12 \mathrm{U}}$	${ }_{28} 12 \mathrm{U}$	${ }_{28}{ }^{12}$	$\frac{120}{28}$	170	${ }_{37}^{160}$	${ }_{28}^{120}$	${ }_{28}^{120}$	$\underline{120}$	$\frac{120}{28}$	${ }_{128}^{12 \mathrm{U}}$	127	$\stackrel{1200}{280 \mathrm{U}}$	128	120
SW8270	PHENOL	ugkg	18 U	18 U	18 U	17 U	17 U	18 U	17 U	17 U	24 U	23 V	18 U	18 U	18 U	17 U	17 U	17 U	$170 \cup$	17 U	17 U
SW8270	P-NITROANILINE	ugkg	14 U	14 U	14 U	13 U	18 U	17 U	13 U	130 U	13 U	13 U									
	TOTAL ORGANIC CARBON																				

```
Mg/kg: miligrams per kilorram
 U = non-d
Lowioxin values in italics are new results from Vista laboratory
```

			$\begin{gathered} \text { SSO80 } \\ \text { sso80AA } \\ 0-0.25 \text { feet } \\ \text { 12106/2006 } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { SS081 } \\ \text { SsosiAA } \\ 0-0.25 f \text { feet } \\ 1201212006 \\ \hline \end{array}$	$\begin{array}{\|c} \text { SS082 } \\ \text { Ssos2AA } \\ 0.0 .25 f f e e t ~ \\ 1210712006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSO83 } \\ \text { SSo83AA } \\ 0.0 .25 \text { feet } \\ 12201 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO84 } \\ \text { sso84AA } \\ 0-0.25 \text { feet } \\ 12 / 10812006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSO85 } \\ \text { SSO85AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO86 } \\ \text { sso86AA } \\ 0.0 .25 \text { feet } \\ 12 / 109 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SS087 } \\ \text { Sso87AA } \\ 0-0.25 / \text { feet } \\ 111 / 30 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS088 } \\ \text { SSO88AA } \\ 0-0.25 \text { feet } \\ 12 / 109 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SSO899 } \\ \text { SSo89AA } \\ 0.0 .25 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c} \text { sso90 } \\ \text { SSSOOPAA } \\ 0-0.25 \text { feet } \\ 11 / 3012006 \\ \hline \end{array}$		$\begin{gathered} \text { SS092 } \\ \text { SSO092AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2000 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS093 } \\ \text { SSOO93AA } \\ 0-0.25 \text { feet } \\ 12 / 101 / 2000 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SS094 } \\ \text { sso94AAA } \\ 0.0 .25 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { SS094 } \\ \text { SSOO4AB } \\ 0-0.25 \text { feet } \\ 12 / 11 / 20066 \\ \hline \end{array}$	$\begin{gathered} \text { SS095 } \\ \text { SSO95AA } \\ 0-0.25 \text { feet } \\ 12 / 106 / 2000 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS096 } \\ \text { SSOO96A } \\ 0-0.25 \text { feet } \\ 12 / 107 / 2000 \end{gathered}$	$\begin{gathered} \text { Ss097 } \\ \text { sso97AA } \\ 0-0.25 \text { feet } \\ 12 / 107 / 2006 \\ \hline \end{gathered}$
Lab Method	Analyte	Units																			
ENASIM	2-METHYLNAPHTHALENE	$\underset{\text { ugkg }}{\substack{\text { ugkg } \\ \text { ugh }}}$	${ }_{31}^{58}$	$\stackrel{220}{160}$	$\frac{130}{160}$	$\frac{160}{69}$	${ }_{12}^{25}$	${ }_{1200}^{120}$	${ }_{23}^{59}$	${ }_{28}^{42 \mathrm{UJ}}$	$\frac{210}{76}$	${ }_{340}^{390}$	${ }^{270 \mathrm{~J}}$	$\frac{360}{150}$	${ }_{310 \mathrm{O}}^{290}$	${ }_{59}^{69}$	${ }_{30}^{40}$	$\frac{315}{}{ }^{39}$	${ }^{8400}$	${ }_{5200 \mathrm{~J}}$	${ }_{30}^{17 \mathrm{U}}$
ENASIM	ACENAPHTHYLENE	ugkg	160	950	1300	440	25	1000	530	410 J	1400	5700	3400	2700	2300	840	320	300	2100	8600	97
ENASIM	ANTHRACENE	ugkg	430	1500	2600	840	50	2200	860	700	2000	12000	9500	3400	3700	1800	690	650	4600	${ }^{11000}$	110
ENASIM	BENZO(A)ANTHRACENE	ugkg	420	2400	2300	930	63	1700	980	${ }^{1500} \mathrm{~J}$	4200	11000	3700	4400	4900	1800	770	620	3100	23000	70
ENASIM	BENZO(A)PYRENE	ugkg	500	2800	4400	910	58	1900	1000	${ }^{11000 ~}$	5200	9800	4800	5700	5900	1900	790	610	5200	26000	220
ENASIM	BENZO(B) FLUORANTHENE	ugkg	800	5200	8000	1800	120	3700	2000	${ }^{2300 \mathrm{~J}}$	${ }^{12000}$	21000	9200	${ }_{13000}^{1300}$	11000	3800	2000 J	${ }^{14000}$	8700	${ }^{41000}$	320
ENASIM	BENZO(G,H.)P PR PRLENE	$\frac{\text { ugkg }}{\text { ugkg }}$	350	2800 4500	2200 4700	1100	$\stackrel{41}{97}$	2100	1100 1500	$\frac{1100 \mathrm{~J}}{1000 \mathrm{~J}}$	$\frac{2600}{5700}$	9000 14000	5300 6900	5300 6900	6300 8100	2000	730   920   20	660 730	6500 7200	${ }^{19000}$	180
BNASIM	BENZO(K)FLUORANTHENE	ugikg	5	4500	4700	1500	97	2700	1500 1500	$\stackrel{1900 \mathrm{~J}}{ }$	5700 5900	$\stackrel{14000}{1500}$	6900 5700	6900 7500	8100	2600	920	$\begin{array}{r}730 \\ 830 \\ \hline\end{array}$	$\begin{array}{r}7200 \\ \hline 800\end{array}$	377000   2700	280
ENASIM	CHRYSENE	$\frac{\text { ugkg }}{\text { ugaga }}$	650 110	$\frac{4100}{880}$	4200 790	1300 330	${ }_{1}^{97}$	$\frac{2400}{640}$	$\frac{1500}{}$	$\frac{2100 \mathrm{~J}}{340 \mathrm{~J}}$	5900 910	$\frac{15000}{3100}$	$\frac{5700}{1400}$	7500 1800	7200 2000	$\frac{2600}{630}$	1000 250	${ }^{830}$	${ }^{4800}$	$\frac{27700}{6600}$	$\frac{260}{50}$
BNASIM	FLUORANTHENE	ugkg	770	5100	5900	1800	140	2800	1800	${ }^{3200}$	6300	${ }^{20000}$	6500	5900	7100	2800	${ }_{10} 1100$	970	4100	${ }^{24000}$	300
ENASIM	FLUORENE	ugkg	17 U	85 U	130	51 J	9.3	120 J	20 J	16 UJ	67	460	260 J	140	1700	56 J	32 J	27 J	160 J	300 J	17 U
BNASIM	INDENO(1,2,3-CD) PYRENE	ugkg	420	3200	2600	1200	5	2400	1100	${ }^{1300 \mathrm{~J}}$	4700	11000	6000	5100	7200	2300	710	620	7300	22000	210
BNASIM	NAPHTHALENE	ugkg	${ }^{83}$	330	5.8 U	270	61	170	78	65 J	310	510	360 J	520	390	85	66 J	38 J	780	400	
BNASIM	PENTACHLOROPHENOL	ugikg	150 J 230	140J	910	$\begin{array}{r}660 \mathrm{~J} \\ \hline 500\end{array}$	72	260	8500	590	2400 J	8600 3300	2500 J	${ }^{81000}$	$\stackrel{4100}{100}$	830	$\begin{array}{r}1800 \\ \hline 150\end{array}$	170	15000 1600	9000 1700	180
ENASIM	PHENANTHRENE	uglkg	230	710	890	500	59	440	270	450	980	3300 1000	1200	1600	1400	430	150	140	1600	1700	81
ENASIM	PYRENE	$\frac{\text { ugkg }}{\text { percent }}$	$\frac{760}{90}$	$\frac{4900}{89}$	$\frac{6100}{89}$	179	$\frac{120}{93}$	$\frac{2800}{95}$	$\stackrel{1800}{95}$	$\frac{3000 \mathrm{~J}}{}{ }^{97}$	7200 90	$\frac{19000}{93}$	$\frac{6900}{89}$	7900	$\frac{7900}{89}$	3000 92	$\frac{1300}{94}$	1000	$\frac{4100}{86}$	$\frac{44000}{87}$	$\frac{290}{91}$
E1613/E1668	, ,2,3,4,6,6,7,8-HEPTACHLORODIBENZOFURAN	nglkg	403.423	1410	4870		247.929		8160		16500					6560	1215.129	1523.875	38200	41100	379.49
E1613/E1688	1,2,3,4,6,7,8,HEPTACHLORODIBENZO-P-DIOXII	ngkg	4081.925	14300	49900		2217.059 J		73400		147000					52800	11169.318	12502.678	252000	299000	${ }^{2563.907 \mathrm{~J}}$
E1613/E1668	1,2,3,4,7, ,9,-HEPTACHLORODIBENZOFURAN	ngkg	21.199	99.3	354		14.528		${ }^{621}$		1360					584	${ }^{63.449}$	${ }^{69.533}$	2270	2690	23.79
E1613F1668	1, 1, 2, 4, ,7,8.4-HEXACHLORODIBENZOFURAN	ngkg	-10.355	$\frac{44.7 \mathrm{~J}}{171}$	$\frac{158}{203}$		5.949		$\begin{array}{r}296 \\ \hline 020 \\ \hline\end{array}$		516					$\begin{array}{r}250 \\ \hline 59 \\ \hline\end{array}$	$\begin{array}{r}33.01 \\ \hline 12178 \\ \hline 12\end{array}$	38.65   106203   1	$\begin{array}{r}1460 \\ \hline 150\end{array}$	1070	82
E1613/E1668   E1613/E1668	1, $1,2,3,4,7$, -HEXACHLORODIBENZO-P--DIOXIN	ngkg	25.341 J	171	203		24.17		$\frac{903}{209}$		1360   120					597   182	$\frac{112.178}{28.618}$	106.203	1560 530	$\begin{array}{r}2540 \\ \hline 734\end{array}$	${ }^{18.213}$
E1613/E1668	1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	ngkg	75.966 J	366	847		50.892		2110		${ }^{4500}$					1430	${ }_{252.134}^{20.18}$	${ }^{280.697}$	7230	${ }_{9280}$	${ }^{16.6605}$
E1613\|E1668	1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	ngkg	0.168 U	11.6 J	35 J		${ }^{0.332 \mathrm{~J}}$		68.4		146					85.3	${ }^{0.843 \mathrm{U}}$	${ }^{3} 7.795 \mathrm{U}$	251	263	0.414 J
E1613/E1668	1,2,3,7,8,9,-HEXACHLORODIBENZO-P-DIOXIN	ngkg	${ }^{43.482}$	283	${ }^{336}$		${ }^{60.067}$		1490		2090					${ }^{836}$	260.014	272.524	3100		
E1613/E1668	1,2,3,7,8.PENTACHLORODIBENZOFURAN	ngkg	1.02 J	$0 \cup$	10.3 J		${ }^{0.87 \mathrm{~J}}$		${ }^{28.4 \mathrm{~J}}$		53.8J					25.7J	${ }^{3.234 \mathrm{~J}}$	${ }^{3.515}$	${ }^{60.6 \mathrm{~J}}$	79.5	1.134 J
E1613/E1668	12, 2, ,7,8.PENTACHLORODIBENZO-P-DIOXIN	nglkg	8.069	62.4 J   6.9 ]	46.3 J   135		9.009		$\frac{310}{417}$		$\frac{445}{827}$					$\begin{array}{r}188 \\ \hline 358 \\ \hline\end{array}$	36.879   6224	37.762   6.238	$\begin{array}{r}507 \\ 100 \\ \hline 100\end{array}$	739	\% 5.774 J
E1613/1668	2, 2, 4, ,6,7, , , -HEXACHLORODIBENZOFURAN	ngkg	${ }_{\text {¢ }}^{6.521}$	$\frac{64.9 \mathrm{~J}}{15}$	${ }^{1355}$		4.624 U		${ }_{4}^{417}$		${ }^{827}$					$\begin{array}{r}358 \\ 355 \\ \hline\end{array}$	-62.246	62.393   509	1100	1430	${ }^{8.1118}$
E1613/E1668	2.3.4,7,8.PENTACHLORODIBENZOFURAN	ngkg	${ }^{1.7977 \text { J }}$	15 J	${ }^{35.6 \mathrm{~J}}$		${ }^{1.14814}$		80.2		161					83.5   5.11	5.042	5.021	191	278	$\frac{3.247 \mathrm{~J}}{0.071 \mathrm{U}}$
		$\underbrace{\substack{\text { ngkg } \\ \text { nokg }}}_{\text {ng }}$	${ }_{0}^{0.647 \mathrm{~J}}$	OU	${ }_{5.42 \mathrm{~J}}$		${ }_{0}^{3.4771}$		${ }_{26.6}^{16 \mathrm{~J}}$		$\frac{23.3}{41.2}$					${ }_{\text {L }}{ }_{1717}$	${ }_{2}^{0.787}$	${ }^{0.965}$	$\stackrel{44.7}{44.7}$	33.7   9.7	${ }_{0}^{0.971 \mathrm{~J}^{\text {J }}}$
E1613] 16688	OCTACHLORODIBENZOFURAN	ngkg	2308.291	5790	27200		1210.878		29800		78200					28800	${ }^{7795.11}$	${ }^{87288.224}$	148000	161000	1686.372
E1613/E1668	OCTACHLORODIBENZO-P-DIOXIN	ngkg	39638.913	129000	649000		${ }^{22319.19 \mathrm{~J}}$		828000		1690000					526000	14968.634 J	25970.353 J	2440000	2750000	22685.558 J
E1613/E1668	TOTAL HEPTACHLORINATED DIBENZOFURANS	ngkg	1584.14	5410	22800 J		908.407		30300		${ }^{65800}$					25600	4574.967	${ }^{4846.508}$	160000	182000	${ }^{1319.579}$
E16131E1688	TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	ngkg	178867.044	58500	328000		${ }^{9447.533}$		222000		582000					214000	${ }^{36196.429}$	${ }^{37966.146}$	${ }^{665000}$	${ }^{669000}$	${ }^{8462.151}$
E16131/E1668	ToTAL HEXACHLORINATED DIBENZOFUR ANS	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} k g}$	${ }^{3555.742}$ 1486.951	1530 6900	4800   17800		${ }^{236.26}{ }^{997.105}$		${ }^{95300}$		$\frac{17900}{48200}$					${ }^{6960} 17100$	${ }_{4}^{13822.667}{ }_{4}$	${ }^{1438.116} 4{ }^{\text {522.216 }}$	$\frac{39700 \mathrm{~J}}{47300}$	$\frac{38600 \mathrm{~J}}{59300}$	306.808 789.596
E1613/1668	TOTAL PENTACHLORINATED DIBENZOFURANS	ngkg	83.37	226	458		${ }_{50} 50.349$		1250		2950					11300	339.686	269.544	3960 J	${ }_{5580}$	69.799
E1613/E1668	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	kg	${ }^{138.831}$	704	681		${ }^{90.518}$		1930		2610					851	224.908	303.622	2700	3360	${ }^{78.483}$
E1613/E1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ngkg	32.094	34.6	102		14.864		191		348					104	33.988	37.239	467 J	620 J	${ }^{26.161}$
E1613/E1688	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	$\frac{\text { ngkg }}{\text { mokg }}$	${ }_{\text {22.394 }}^{0.43 \mathrm{~J}}$	$\frac{81.3}{0.3}$	$\frac{78.1}{0.41 \mathrm{~J}}$		5.79 0.36 UJ		${ }^{188}$		${ }_{\text {235 }}^{0.965}$					73.5 0.3 J	$\frac{19.259}{0.36 \mathrm{UJ}}$	- 22.753	285 160	253   11	$\frac{14.949}{0.374}$
	${ }^{\text {Antimony }}$ ARSENIC		0.43 J	${ }^{0.63 \mathrm{~J}} 19$	${ }^{0.41 \mathrm{~J}}$	$\frac{1.15}{46 \mathrm{~J}}$	$\frac{0.36 \mathrm{UJ}}{4.4}$	${ }^{0.86 \mathrm{~J}}$	0.56 J   49	$\frac{0.35 \mathrm{U}}{17 \mathrm{~J}}$	0.96 J 120	${ }_{12.1}^{1700}$	${ }_{120}^{1.8}$	$\frac{4.5 \mathrm{~J}}{600}$	${ }_{130}^{2.0}$	$\frac{0.63 \mathrm{~J}}{57 \mathrm{~J}}$	0.36 UJ   30   0	-	160 3600	11   450	0.37U   2.7
SW6020	BARIUM	mgkg	34	32	25	15	16	30	15	6.4	28	32	23	58	22	14	8.7 J	6.3 J	27	37	27
SW6020	CADMIUM	mglkg	${ }_{0}^{0.31 \mathrm{U}}$	${ }^{0.30 \mathrm{U}}$	0.32 U	${ }^{0.36 \mathrm{U}}$	${ }^{0.36 \mathrm{~J}}$	0.30 U	${ }^{0.30 \mathrm{U}}$	${ }^{0.30 \mathrm{U}}$	0.36 J	0.29U	${ }^{0.33 \mathrm{U}}$	0.80	${ }^{0.35 \mathrm{~J}}$	${ }^{0.30 \mathrm{U}}$	0.310	${ }^{0.30 \mathrm{U}}$	1.3	0.76	0.46 J
SW6020	CHROMIUM	ngkg		19 J	14	62 J	17	210	83 J	34 J	190 J	260 J	180 J	880	230 J	87 J	39	35	3700	650 J	5.1
SW6020	COPPER	mgkg	15	18	13	43	4.7	120	44	17	110	160	120	490	130	46	${ }^{23}$	20	2200	510 J	24
县W6020	LEAD	$\frac{\text { mglkg }}{\text { makg }}$	${ }^{160}$	$\stackrel{20}{0.87 \mathrm{U}}$	18   0.930	$\frac{16}{1.00}$	$\frac{3.0}{}$	15   088   10	11	4.3   0.864	32   0.914   0	$\begin{array}{r}41 \\ 083 \\ \hline\end{array}$	30   0.944	$\frac{88}{125}$	$\begin{array}{r}29 \\ 0.944 \\ \hline\end{array}$	${ }^{11}$	${ }^{3.7}$	${ }^{3.3}$	65   0.94 UJ	78	180 J
SW6020	SELENIUM	$\frac{\mathrm{mg} \text { mag }}{\text { mglkg }}$	$\stackrel{0.91 \mathrm{U}}{0.90}$	$\stackrel{0.870}{0.39}$	$\stackrel{0.93 \mathrm{U}}{0.42 \mathrm{U}}$	$\stackrel{1.0 \cup}{0.47}$	$\stackrel{0.890}{0.40}$	$\stackrel{0.88 \mathrm{U}}{0.40}$	${ }_{0}^{0.860 ~}{ }^{0.39 \mathrm{UJ}}$	0.860 0.390	${ }_{0}^{0.910} 0$	0.83 U 0.38 u	0.94 U 0.43 u	${ }^{1.25} 0$	0.94U	0.88 U 0.40 U	(0.890	- 0.86 UJ	0.94 0.0 J	0.96 U 0.43 U	
SW6020	VANADIUM (FUME OR DUST)	mgkg	12	6.9	9.9	2.4	6.8	1.8	2.8	0.92 UJ	2.6	1.4	1.7	1.5	3.2	0.94 U	2.8 J	2.3 J	1.0 uJ	5.3	0.98 UJ
SW7471	MERCURY	mgkg	0.16	0.25 J	0.22	${ }^{0.19 \mathrm{~J}}$	${ }^{0.018 \mathrm{~J}}$	0.20	0.54	0.14	0.88	0.80	0.50	1.3	${ }^{0.53 \mathrm{~J}}$	${ }^{0.073 \mathrm{~J}}$	${ }^{0.058}$	${ }_{0}^{0.058}$	3.2	${ }^{0.50 \mathrm{~J}}$	0.21
SW8260	1,1,1.-TRICHLOROETHANE	ugkg	${ }^{0.210}$	0.15 U	${ }^{0.144}$	${ }^{0.214}$	$0.17{ }^{0.174}$	${ }_{0}^{0.13 U^{4}}$	${ }^{0.133}$	${ }_{0}^{0.13 U^{0}}$	$\stackrel{0.14 \mathrm{U}}{ }$	0.18 U	0.14 U	${ }^{0.210}$	0.18 U	$0.14{ }^{\text {O }}$	${ }^{0.16 U}$	$0.17{ }^{\text {U }}$	0.15 U	${ }^{0.14 \mathrm{U}}$	${ }_{0}^{0.190}$
	1,1,2,2-TETRACHLOROETHANE	$\stackrel{\text { ugkg }}{ }$	0.12U	0.080 U	0.075	0.12	0.094 U	0.070 U	0.070 U	0.070	0.074 U	0.099 UJ	0.074 0	$\stackrel{0.12 \mathrm{U}}{0}$	0.096U	${ }^{0.072 U}$	0.084U	0.090 ${ }^{018}$	${ }_{0}^{0.078 \mathrm{U}}$	0	0.11 U
SW8260	1,1--1CICHLOROETHANE	ugkg	0.114	0.076 U	0.072	0.11	0.089 U	0.067 U	0.067 U	$\stackrel{0.14 \mathrm{U}}{0.067 \mathrm{U}}$	$\stackrel{0.0710}{0.0}$	$\stackrel{0}{0.094 \mathrm{U}}$	${ }_{0}^{0.071 \mathrm{U}}$	$\stackrel{0.114}{0.230}$	$\stackrel{0}{0.091 \mathrm{U}}$	$\stackrel{0.159 \mathrm{U}}{ }$	0.080 U	$\stackrel{0.186 \mathrm{U}}{ }$	$\stackrel{0}{0.074 \mathrm{U}}$	$\stackrel{0}{0.073 \mathrm{U}}$	$\stackrel{0.206 \mathrm{U}}{0}$
SW8260	1,1-DICHLOROETHYLENE	ugkg	0.30 U	0.21 U	0.20 U	0.30 U	0.24 U	0.18 U	0.18 U	0.18 U	0.19 U	0.26 U	0.20 U	0.30 U	0.25 U	0.19 U	0.22 U	0.24 U	0.20 U	0.20 U	0.26 U
W8260	1,2,4-TRICHLOROBENZENE	ugkg	0.27 UJ	${ }^{0.18 \mathrm{U}^{0.5}}$	$\stackrel{0.17 \mathrm{U}}{0}$	$0.26 \mathrm{U}^{0.0}$	${ }_{0}^{0.220 ~}$	${ }^{0.150 \mathrm{UJ}}$	${ }^{0.16 U^{0}}$	0.15 UJ	0.17 UJ	0.23 ${ }^{0.230}$	0.17 UJ	0.26 UJ	0.22 J	${ }_{0}^{0.17 U^{0}}$	${ }^{0.19 u^{2}}$	${ }_{0}^{0.214}$	0.15 UJ	${ }_{0}^{0.187}$	$\stackrel{0.23 \mathrm{U}}{0}$
SW8260	1,2-DIIROMO-3-CHLOROPROPANE (DBCP)	$\underbrace{\substack{u g k g \\ \text { ugkg }}}_{\text {ug }}$	0.86 U ${ }_{0}^{0.098}$	${ }_{0}^{0.598}$	0.56 ${ }_{0}^{0.064 \mathrm{U}}$	0.84 U 0.096 U	0.70 U 0.080 U	${ }_{0}^{0.52 \mathrm{UJ}} 0$	0.52 U 0.060 U	0.52 U ${ }_{0}^{0.059 \mathrm{U}}$	${ }_{0}^{0.55 \mathrm{uJ}} 0$	-	0.55 UJ	${ }^{0.84 \mathrm{UJ}} 0$	${ }_{0}^{0.710 \mathrm{~J}^{0} \mathrm{O}}$	0.54 U 0.061 U	0.62U	0.67 U 0.076 U	${ }_{0}^{0.580 \mathrm{UJ}}$	0.57 U 0.065 U	$\frac{0.75 \mathrm{U}}{0.085 \mathrm{U}}$
SW8260	1,2-DICHLOROBENZENE	ugkg	0.14 UJ	0.094 U	0.088 U	0.14 U	0.12 U	0.083 UJ	0.083 U	0.082 U	0.087 UJ	0.12 UJ	0.088 UJ	0.14 UJ	0.12 UJ	0.085 U	0.099 U	0.11 U	0.092 UJ	0.090 U	${ }^{0.12 \mathrm{U}}$
SW8260	1,2-DICHLOROETHANE	ugkg	0.18 U	0.12 U	0.12 U	${ }^{0.18 \mathrm{U}}$	0.15 U	0.11 U	0.11 U	0.11 U	0.12 U	${ }^{0.154}$	0.12 U	${ }^{0.18 \mathrm{U}}$	${ }^{0.150}$	0.11 U	${ }^{0.13 U}$	0.14 U	${ }^{0.12 \mathrm{U}}$	0.12 U	0.16 U
SW8260	1.2-DICHLOROPROPANE	$\frac{u g k g}{\text { ugkg }}$	$\frac{0.095 \mathrm{U}}{0.16 \mathrm{UJ}}$	$\frac{0.065 U}{0110}$	${ }_{0}^{0.061 U}$	-0.093U	$\frac{0.077 \cup}{0134}$	0.058 U	0.058U	${ }_{0}^{0.057 U}$	-0.061U	-0.081U	0.061U	-0.093U	$\stackrel{0.078 \mathrm{U}}{0.13 \mathrm{U}}$	0.059 U	0.069 U	0	0.064 U	0.063 U	0.082 U
Sterse		${ }_{\text {ug }}^{\text {ugkg }}$	$\frac{0.16 \mathrm{UJ}}{4.4 \mathrm{u}}$	$\frac{0.11 \mathrm{U}}{3.0 \mathrm{u}}$	$\frac{0.099 \mathrm{U}}{2.9 \mathrm{u}}$	$\frac{0.57 \mathrm{~J}}{4.3 \mathrm{U}}$	$\stackrel{0.13 \mathrm{U}}{3.6 \mathrm{U}}$	$\frac{0.093 \mathrm{UJ}}{2.7 \mathrm{UJ}}$	$\frac{0.092 U}{2.70}$	0.092 U   100 J	${ }^{0.097} 260$	0.13 UJ   3.8 UJ	$\stackrel{0.098 \mathrm{UJ}}{2.9 \mathrm{UJ}}$	$\frac{0.150 J}{4.3 \mathrm{u}}$	$\frac{0.130 \mathrm{~J}}{3.7 \mathrm{U}}$	$\frac{0.095 \mathrm{U}}{2.8 \mathrm{U}}$	$\stackrel{0.11 \mathrm{U}}{5.5 \mathrm{~J}}$	0.12 J   0.9 J	$\frac{0.110 \mathrm{~J}}{3.0 \mathrm{U}}$	$\stackrel{0.10 \mathrm{U}}{2.9 \mathrm{u}}$	$\stackrel{0.14 \mathrm{U}}{3.8 \mathrm{U}}$
SW8260	BENZENE	ugkg	$0.68 \mathrm{U}^{0.5}$	${ }^{0.47 U^{4}}$	${ }^{0.44 U}$	0.67U	${ }^{0.56 U}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$	0.41U	${ }^{0.44 \mathrm{U}}$	0.58 U	0.44 U	0.67 U	$0.57{ }^{\text {U }}$	${ }^{0.43 U}$	0.50	0.53 U	${ }^{0.46 \mathrm{U}}$	0.45 U	0.60 U
血W82600	BROMODICHLOROMETHANE	ugkg	${ }^{0.514}$	${ }^{0.35 \mathrm{U}}$	${ }^{0.334}$	${ }^{0.50}$	${ }^{0.414}$	${ }_{0}^{0.314}$	$\stackrel{0.314}{034}$	${ }_{0}^{0.314}$	$\stackrel{0.334}{ }$	0.44 U	${ }_{0}^{0.334}$	${ }_{0}^{0.50 \mathrm{U}}$	${ }^{0.422 ~}$	${ }_{0}^{0.323}$	${ }_{0}^{0.37 \mathrm{U}}$	0.40 U	${ }^{0.344}$	${ }^{0.344}$	0.45 U
N8260	CARBON DISULFIDE	ugkg	2.8 U	$2.0 \cup$	1.9 U	2.8 U	2.30	1.70	1.70	1.7 U	1.8 U	2.4 U	1.8 U	2.8 U	2.4 U	1.8 U	2.10	2.2 U	1.9 U	1.9 U	2.5 U
N8260	CARBON TETRACHLORIDE	ugkg	0.61 U	0.42 U	0.40 U	0.60 U	0.50 U	0.38 U	0.37 U	0.37U	0.39 U	0.52 U	0.40 U	0.60 U	0.51 U	${ }^{0.38 \mathrm{U}}$	0.45 U	0.48 U	0.41 U	${ }^{0.414}$	0.54 U
SW8260	CFC-11	ugkg	${ }^{0.46 \mathrm{U}}$	${ }^{0.32 \mathrm{U}}$	${ }^{0.30 \mathrm{U}}$	${ }^{0.45 U}$	${ }^{0.37 \mathrm{U}}$	0.28 U	0.28 U	${ }^{0.28 \mathrm{U}}$	0.29 U	0.39 U	${ }^{0.30 \mathrm{U}}$	${ }^{0.455}$	${ }^{0.38 \mathrm{U}}$	${ }^{0.299}$	${ }^{0.334}$	${ }^{0.364}$	${ }^{0.310}$	${ }^{0.300}$	${ }^{0.40 \mathrm{U}}$
SW8260	${ }^{\text {CFC-12 }}$ CHLORINATED FLUOROCARBON ( (REOON 113)	$\frac{\mu g \mathrm{~kg}}{\text { ugkg }}$	0.56 U 0.63 U	0.39 0	$\frac{0.37 \mathrm{~J}}{0.41 \mathrm{U}}$	0.55 U   0.62 U	$\stackrel{0.46 \mathrm{UJ}}{0.51 \mathrm{U}}$	0.34 U 0.39 u	$\xrightarrow{0.34 \mathrm{U}}$	0.34 U 0.38 U	$\xrightarrow{0.36 \mathrm{U}}$	$\xrightarrow{0.48 \mathrm{U}}$	O. 0.36 U	0.55 ${ }_{0}^{0.62 \mathrm{U}}$	0.47 U 0.52 U	$\frac{0.35 \mathrm{U}}{0.40 \mathrm{U}}$	0.41 U 0.46 U	0.44U	0.38 U 0.43 U	$\frac{0.37 \mathrm{~J}}{0.42 \mathrm{U}}$	$\frac{0.49 \mathrm{UJ}}{0.55 \mathrm{u}}$
SW8260	CHLOROBENZENE	ugkg	0.70 U	0.48 U	0.46 U	0.69 U	0.57 U	0.43 U	0.43 U	0.42 U	0.45 U	0.60 UJ	0.45 UJ	0.69 U	0.58 U	0.44 U	0.51 U	0.55 U	0.47 U	0.46 U	0.61 U
SW8260	HLORODIBROMOMETHANE	ugkg	0.44 U	0.30 U	0.29 U	0.43 U	0.36 U	0.27 U	0.27 U	0.27 U	0.28 U	0.38 UJ	0.29 UJ	0.43 U	0.37 U	0.28 U	0.32 U	0.34 U	0.30 U	0.29 U	0.38 U
SW8260	CHLOROETHANE	ugkg	0.63 U	0.44 U	0.41 U	0.62 U	0.51 U	0.39 U	0.39 U	${ }^{0.38 \mathrm{U}}$	${ }^{0.410}$	0.54 U	${ }^{0.411}$	0.62 U	${ }^{0.52 \mathrm{U}}$	${ }^{0.400}$	${ }^{0.46 \mathrm{U}}$	${ }^{0.49}$ U	${ }^{0.43 U}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.55}$
SW8260	CHLLORORORMETHANE	$\frac{\mathrm{lg} / \mathrm{kg}}{\text { ugkg }}$	0.60 0	$\stackrel{0.41 \mathrm{U}}{0.54 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.51 \mathrm{U}}$	$\frac{0.59 \mathrm{U}}{0.77 \mathrm{U}}$	$\stackrel{0.48 \mathrm{U}}{0.64 \mathrm{U}}$	$\stackrel{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\stackrel{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\stackrel{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\stackrel{0.38 \mathrm{U}}{0.51 \mathrm{U}}$	${ }_{0}^{0.514}$	$\frac{0.39 \mathrm{U}}{0.51 \mathrm{U}}$	$\frac{0.59 ~ U ~}{0.77)}$	$\stackrel{0.50 \mathrm{U}}{0.650}$	$\stackrel{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\stackrel{0.43 \cup}{0.57 \mathrm{U}}$	$\stackrel{0.47 \mathrm{U}}{0.61 \mathrm{U}}$	$\stackrel{0.40 \mathrm{U}}{0.53 \mathrm{U}}$	$\stackrel{0.40 \mathrm{U}}{0.52 \mathrm{U}}$	$\xrightarrow[0.52 \mathrm{U}]{0.6}$
SW8260	CIS-1,2-DICHLOROETHYLENE	ugkg	0.46 U	0.32 U	0.30 U	0.45 U	0.37 U	0.28 U	0.28 U	0.28 U	0.29 U	0.39 U	0.30 U	0.45 U	0.38 U	0.29 U	0.33 U	0.36 U	0.31 U	0.30 U	0.40 U


			$\begin{gathered} \text { SSO80 } \\ \text { SSo80AA } \\ 0-0.25 \text { feet } \\ 12 / 166 / 2006 \end{gathered}$	$\begin{gathered} \text { sso81 } \\ \text { ssoinia } \\ 0-0.25 \text { feet } \\ 12101 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS082 } \\ \text { SSO82AA } \\ 0-0.25 \text { feet } \\ 121 / 07 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS083 } \\ \text { SSo83AA } \\ 0-0.25 \text { feet } \\ 12101 / 2006 \end{gathered}$	SS084 SSo84AA 0.0 .25 feet $12108 / 2006$	$\begin{array}{\|c\|} \hline \text { SSO85 } \\ \text { SSO05AA } \\ 0.0 .25 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS086 } \\ \text { SSO88AA } \\ 0-0.25 \text { feet } \\ 12 / 09 / 2006 \end{gathered}$	$\begin{array}{\|c} \text { SS087 } \\ \text { SSo87AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \end{array}$	$\begin{gathered} \text { SS088 } \\ \text { SSo88AA } \\ 0-0.25 \text { feet } \\ 12 / 09 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO89 } \\ \text { SSo89AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO90 } \\ \text { SSO99AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \end{gathered}$	$\begin{gathered} \text { SS091 } \\ \text { Sso91AA } \\ 0.0 .25 \text { feet } \\ 121092 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO92 } \\ \text { SSo92AA } \\ 0-0.25 \text { feet } \\ 11 / 30 / 2006 \end{gathered}$	$\begin{gathered} \text { sso93 } \\ \text { sso93AA } \\ 0-0.25 \text { feet } \\ 121 / 01 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO94 } \\ \text { SsoanA } \\ 0.0 .25 \text { feet } \\ 12112 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO94 } \\ \text { SSO94AB } \\ 0-0.25 \text { feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO95 } \\ \text { Sso99AA } \\ 0-0.25 \text { feet } \\ 12 / 06 / 2006 \end{gathered}$	$\begin{gathered} \text { SS096 } \\ \text { SSO96AA } \\ 0-0.25 \text { feet } \\ 12 / 07 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO97 } \\ \text { SSO97AA } \\ 0-0.25 \text { feet } \\ 12107 / 2006 \end{gathered}$
Lab Metrod	Analyte	Units																			
SW8260	CIS-1,3-DICHLOROPROPENE	ugkg	${ }^{0.514}$	${ }^{0.354}$	${ }_{0}^{0.33 \mathrm{U}}$	${ }^{0.50 \mathrm{U}}$	${ }_{0}^{0.41 U^{054}}$	${ }_{0}^{0.31 \mathrm{U}}$	${ }_{0}^{0.31 \mathrm{U}}$	${ }^{0.314}$	$\stackrel{0.33 \mathrm{U}}{0}$	${ }^{0.440 J}$	${ }^{0.33 U J}$	${ }^{0.500^{05}}$	${ }_{0}^{0.42 U^{4}}$	${ }_{0}^{0.32 \mathrm{U}}$	$\stackrel{0.37 \mathrm{U}}{0}$	${ }^{0.40 U^{0}}$	${ }_{0}^{0.344}$	${ }_{0}^{0.344}$	${ }^{0.455}$
SW8260	CYCLOHEXANE	ugkg	${ }^{0.670}$	${ }^{0.464}$	${ }_{0}^{0.43 \mathrm{U}}$	${ }_{0}^{0.650}$	$\stackrel{0.54 U}{0.54}$	0.41U	$\stackrel{0.41 \mathrm{U}}{0}$	${ }_{0}^{0.400}$	$\xrightarrow{0.434}$	${ }^{0.57 \mathrm{U}}$	${ }^{0.434}$	${ }_{0}^{0.654}$	${ }_{0}^{0.554}$	-0.42U	0.48 U 0.50 U	$\stackrel{0.52 \mathrm{U}}{0}$	$\frac{0.45 \mathrm{U}}{0.46 \mathrm{U}}$	0.44U	0.58 u   0.60 u
SW8260	ETHYLBENZENE	ugkg	$\stackrel{0.880}{0.74 \mathrm{U}}$	$\stackrel{0.510}{0.41}$	$\stackrel{0.44 \mathrm{U}}{0.48 \mathrm{U}}$	$\stackrel{0.720}{0.750}$	${ }_{0}^{0.600}$	$\stackrel{0.450}{0.45}$	$\stackrel{0.450}{0.45}$	$\stackrel{.450}{0.45}$	$\stackrel{0.47 \mathrm{U}^{0}}{0.47 \mathrm{U}}$	$\stackrel{0.53 \mathrm{UJ}}{0.0}$	$\stackrel{0.48 \mathrm{UJ}}{0}$	$\stackrel{0.720}{ }$	$\stackrel{0.510}{0.610}$	$\stackrel{0.460}{0.430}$	$\stackrel{0.54 \mathrm{u}}{0}$	$\stackrel{0.57{ }^{0}}{0.53}$	${ }_{0}^{0.50 \mathrm{U}}$	$\stackrel{0.490}{ }$	0.604
SW8260	SOPROPYLBENZENE	ugkg	0.81 UJ	0.56 U	0.52 U	0.79 U	0.65 U	0.49 UJ	0.49 U	0.49 U	0.52 UJ	0.69 UJ	0.52 UJ	0.79 UJ	0.67 UJ	0.50 U	0.59 U	0.63 U	$0.54{ }^{\text {UJ }}$	0.53 U	0.70 U
SW8260	m.p-Xylenes	uglkg	1.6 U	1.10	0.99 U	1.50	1.30	${ }^{0.933}$	$\xrightarrow{0.929}$	$\xrightarrow{0.923}$	0.97U	${ }^{1.30 \mathrm{UJ}}$	-0.98 UJ	1.5 U	1.3 U	$\xrightarrow{0.955}$	1.1U	1.2U	1.10	1.0U	1.4 U
SW8260	M-DICHLOROBENZENE	ugkg	${ }^{0.0880 J}$	0.060 ${ }_{\text {O }}^{023}$	0.057 ${ }_{\text {O }}^{0.022}$	-0.086 ${ }_{\text {O }}^{0.0}$	0.071U	${ }^{0.053 ~}{ }^{\text {U J J }}$	$\frac{0.053 \mathrm{U}}{0.0214}$	-0.053	${ }^{0.056 ~ U ~}{ }^{\text {O }}$	0.075 U	0.057 UJ	- 0.086 UJ	${ }_{\text {orem }}^{0.073 \mathrm{JJ}}$	0.055	0.064U		${ }^{0.0599 ~ U ~}$	$\frac{0.058 \mathrm{U}}{0.02 \mathrm{u}}$	-0.076
SW8260	METHYL ACEEATE	$\frac{\text { ugkg }}{\text { ugkg }}$	$\frac{0.34 \mathrm{U}}{200}$	$\frac{0.23 U}{1.4 U}$	0.22U	0.33	$\frac{0.27 \mathrm{U}}{1.6 \mathrm{U}}$	$\frac{0.210}{120}$	$\frac{0.21 \mathrm{U}}{12 \mathrm{U}}$	$\frac{0.20 \mathrm{U}}{1.2 \mathrm{U}}$	$\frac{0.22 \mathrm{U}}{1.3 \mathrm{U}}$	$\frac{0.29 \mathrm{U}}{1.7 \mathrm{U}}$	$\frac{0.22 \mathrm{U}}{1.3 \mathrm{U}}$	$\frac{0.33 \mathrm{U}}{1.9 \mathrm{U}}$	$\frac{0.28 \mathrm{U}}{1.6 \mathrm{U}}$	$\frac{0.21 \mathrm{U}}{1.2 \mathrm{U}}$	$\frac{0.24 \mathrm{U}}{1.4 \mathrm{U}}$	$\frac{0.26 \mathrm{U}}{1.5 \mathrm{U}}$	$\frac{0.230}{1.30}$	$\frac{0.22 \mathrm{U}}{1.3 \mathrm{U}}$	0.29U
SW8260	METTY L LIHCUKELONE	${ }^{\text {ug }}$	$\stackrel{2.00}{1.30}$	${ }^{1.85}$	${ }_{0}^{1.810}$	1.90	$\stackrel{1.10}{1.10}$	$\stackrel{1.26}{0.760}$	${ }_{0}^{1.760}$	${ }_{0}^{1.25}$	${ }^{1.30}$	${ }_{1}^{1.1 .1 \mathrm{UJ}}$	${ }^{1.80}{ }^{1.80 \mathrm{UJ}}$	1.30	${ }_{1.10}^{1.10}$	${ }_{0}^{1.78 \mathrm{U}}$	${ }_{0}^{1.90}$	$0.97{ }^{1.9}$	${ }_{0}^{1.83 U}$	${ }_{0}^{1.820}$	1.10
SW8260	METHYL N-BUTYL KETONE	ugkg	1.8 U	1.2 U	1.2 U	1.8 U	1.5 U	1.10	1.10	1.10	1.2 U	1.5 UJ	1.2 UJ	1.8 U	1.5 U	1.10	1.3 U	1.4 U	1.2 U	1.2 U	1.6 U
SW8260	METHYLBENZENE	ugkg	0.74 U	${ }^{0.51 \mathrm{U}}$	0.48 U	0.72 U	0.60 U	0.45 U	0.45 U	0.45 U	0.47 U	0.63 UJ	0.48 UJ	0.72 U	0.61 U	0.46 U	0.54 U	0.57 U	0.50 U	0.49 U	0.64 U
SW8260	METHYLCYLOHEXANE	ugkg	0.77 U	${ }^{0.53 U}$	0.50 U	0.76 U	${ }^{0.63 U}$	0.47 U	0.47 U	$0.47{ }^{\text {U }}$	0.49 U	0.660 J	0.50 UJ	$0.76{ }^{\text {O }}$	0.64 U	0.48 U	0.56 U	0.60 U	${ }^{0.524}$	0.51 U	0.67 U
SW8260	O-XYLENE	ugkg	0.70 U	${ }^{0.48 \mathrm{U}}$	${ }^{0.46 \mathrm{U}}$	0.69 U	${ }^{0.5714}$	${ }^{0.430}$	${ }^{0.43 U^{4}}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.450}$	${ }^{0.600 \mathrm{UJ}}$	0.45 UJ	${ }^{0.694}$	${ }^{0.58 \mathrm{U}}$	${ }^{0.44 u^{4}}$	${ }^{0.514}$	${ }^{0.550}$	${ }^{0.4714}$	${ }^{0.46 U^{4}}$	${ }^{0.610}$
SW8260	STYRENE (MONOMER)	ugkg	0.75	0.52 U	$\frac{0.49 \mathrm{U}}{037}$	0.74	0.61 U	0.46 U	0.46 U	0.46 U	$\frac{0.48 \mathrm{U}}{0.364}$	${ }_{0}^{0.640 J}$	0.49 U J	0.74U	$\frac{0.62 \mathrm{U}}{0.47 \mathrm{U}}$	$\frac{0.47 \mathrm{U}}{0.354}$	$\frac{0.55 ~ U}{0.414}$	0.59 U	0.51U	0.50 ${ }_{0}^{037}$	0.66 U
SW8260	TERT-BUTYL METHYLETHER	19 kg	${ }^{0.560}$	${ }^{0.390}$	0.370	0.55	${ }^{0.460}$	0.34U	$\stackrel{0.340}{ }$	$\stackrel{0.340}{ }$	-0.36	${ }^{0.48 \mathrm{U}}$	${ }^{0.360}$	0.55	0.470	0.35	0.410	0.440	${ }^{0.380}$	${ }^{0.370}$	0.49
SW8260	TETRACHLOROETHYLENE	ugkg	0.70	0.48 U	0.46 U	0.69 U	$0.57 \mathrm{U}^{\text {U }}$	0.43 U	0.43 U	0.42 U	0.450	0.60 UJ	0.45 UJ	0.69 U	0.58 U	0.44 U	$0.510^{0}$	0.55	$0.47{ }^{\text {U }}$	0.46 U	$0.61{ }^{0}$
SW8260	TRANS-1,2-IICHLOROPROPENE	ugkg	${ }_{0}^{0.53 U}$	${ }_{0}^{0.36 \mathrm{U}}$	${ }_{0}^{0.344}$	${ }_{0}^{0.520}$	${ }_{0}^{0.43 U}$	${ }_{0}^{0.32 \mathrm{U}}$	${ }_{0}^{0.32 \mathrm{U}}$	${ }_{0}^{0.32 U}$	$\stackrel{0.34 U}{0.45}$	0.45 UJ	0.34 UJ	${ }_{0}^{0.52 \mathrm{U}}$	$\stackrel{0.54 \cup}{0.44}$	O.33	$\stackrel{0.38 \mathrm{U}}{0}$	-0.41	${ }_{0}^{0.365}$	-0.35	0.56
SW8260	TRIBOMOMETHANE	ugkg	0.68 U	74	0.44 U	0.67 U	0.56	0.42 U	0.42	0.41	0.44 U	0.58 UJ	0.44 UJ	0.67 U	0.57 U	0.43 U	0.50 U	0.53 U	0.46 U	0.45 U	
SW8260	TRICHLOROETHYLENE	ugkg	0.70 U	0.48 U	0.46 U	0.69 U	0.57 U	0.43 U	0.43 U	0.42 U	0.45 U	0.60 U	0.45 U	0.69 U	0.58 U	0.44 U	0.51 U	0.55	0.47 U	0.46 U	0.61 U
SW8260	VINYL CHLORIDE	ugkg	0.42 U	0.29 U	${ }^{0.28 U}$	0.41 U	0.34 U	0.26 U	0.26 U	0.26 U	0.27 U	${ }^{0.36 \mathrm{U}}$	0.27 U	0.42 U	0.35 U	0.27 U	${ }^{0.31 \mathrm{U}}$	0.33 U	0.29 U	0.28 U	0.37 U
SW8270	2.4,5-TRICHLOROPHENOL	ugkg	150	15 U	15 U	17 U	14 U	14 U	14 U	14 U	15 U	14 U	15 U	18 U	15 U	15 U	14 U	14 U	16 U	150 U	15 U
SW8270	2,4,6-TRICHLOROPHENOL	ugkg	40 U	410	410	46 U	390	39 U	38 U	38 U	40 U	39 U	410	50 U	410	40 U	39 U	38 U	42 U	420 O	40 U
SW8270	2,4-DICHLOROPHENOL	ugkg	19 U	20 U	20 U	22 O	190	18 U	18 U	18 U	190	19 U	20 O	24 U	20 O	190	19	18 U	20 O	200 O	19
SW8270	2,4-DIMETHYLPHENOL	ugkg	22 U	22 U	22 U	250	210	210	20 U	20 U	22 U	26 J	22 U	27 U	22 U	210	210	20 U	230	220 U	210
SW8270	2,4-DINITROPHENOL	ugkg	14 U	14 UJ	14 U	16 UJ	13 U	13 UJ	13 U	13 UJ	14 U	13 UJ	14 UJ	17 U	14 UJ	14 UJ	13 U	13 U	14 U	${ }_{140}$	14 U
SW827	2,4-DNTOTOTUENE	ugkg	40		12	154			110	110	40	39	414	140	12	40	39	130	12 u	120 O	111
SW8270	2.CHLORONAPHTHALENE	ugkg	18 U	19 U	18 U	210	18 U	17 U	17 U	17 U	18 U	18 U	18 U	22 U	19 U	18 U	18 U	17 U	19 U	190 U	18 U
SW8270	2 -CHLOROPHENOL	ugkg	20 U	210	210	23 U	20 U	20 U	19 U	19 U	20 U	20 U	210	25 U	210	20 U	20 U	19 U	210	210 U	20 U
SW8270	${ }^{2}$-METHYLPHENOL (O-CRESOL)	ugkg	14 U	14 U	14 U	16 U	13 U	13 U	13 U	13 U	14 U	13 U	14 U	17 U	14 U	14 U	13 U	13 U	14 U	140 U	14 U
SW8270	2-NITROANILINE	ugkg	25 U	25 UJ	25 U	28 UJ	24 U	24 U	24 U	23 U	25 U	24 U	25 U	31 U	25 UJ	24 JJ	24 U	24 U	${ }^{26 \mathrm{U}}$	260 U	25 UJ
SW8270	2-NITROPHENOL	ugkg	16 U	16 U	16 U	18 U	16 U	15 U	15 U	15 U	16 U	16 U	16 U	20 U	16 U	16 U	15 U	15 U	170	1700	16 U
SW8270	355 TPIMETYYL 2 -CYCL	ughg	15 v	15 U	15 U	174	140	14 l	14 u	14 U	15 U	14 U	15 u	184	15 U	15 U	14 U	14 l	16 U	150 O	15u
SW8270	3-NITROANILINE	ugkg	19 U	20 U	20 U	22 U	19 U	18 U	18 U	18 U	19 U	190	20 U	24 U	20 U	19 U	19 U	18 U	20 U	200 U	19 U
SW8270	4,6-DINTRO-2-METHYLPHENOL	ugkg	11 U	11 U	11 U	12 UJ	11 U	10 UJ	9.9 U	9.8 UJ	11 UJ	11 UJ	11 UJ	13 UJ	11 UJ	11 UJ	10 U	9.9 U	110	110 U	11 U
SW8270	4-BROMOPHENYLPHENYL ETHER	ugkg	110	12 U	12 U	13 U	110	110	110	110	11 UJ	110	110	14 UJ	12 U	110	110	110	12 U	${ }^{120 \mathrm{U}}$	11
SW8270	4.CHLORO-3-METHYLPHENOL	ugkg	18 U	19 U	18 U	210	18 U	17 U	17 U	17 U	18 U	18 U	18 U	22 U	19 U	18 U	18 U	17 U	19 U	190 U	18 U
SW8270	4.CHLOROPHENYL PHENYL ETHER	ugkg	25 U	25 U	25 U	28 U	24 U	24 U	24 U	23 U	25 U	24 U	25 U	31 U	25 U	24 U	24 U	24 U	26 U	260 U	25 U
SW8270	4-METHYLPHENOL (MP-CRESOL)	ugkg	29 U	30 U	30 U	33U	28 U   19 uj	$\frac{28 \mathrm{U}}{18}$	28 U	$\frac{27 U}{184}$	$\frac{29 U}{194}$	28 U	30 U	360	$\frac{30 \mathrm{U}}{20}$	$\frac{29 U}{194}$	$\frac{28}{190}$	$\frac{28 \mathrm{U}}{18}$	$\frac{310}{201}$	$\stackrel{300 \mathrm{U}}{ }$	$\frac{29 U}{1940}$
SW8270	4 -NITROPPENOL	ugkg	190	20 U	20 uJ	22	1903	180	18 U	18 U	190	190	20	25 u	214	204	20	19	214	$\stackrel{200 U 5}{2100}$	$\underline{1900}$
SW88270	BENYY LUUTYL PHIHALATE	$\xrightarrow{\text { ugkg }}$	${ }_{170}{ }^{200}$	${ }_{170}^{210}$	170	${ }_{1020}$	${ }_{170}^{200}$	${ }_{100} 100$	190 U	190 U	${ }^{200}$	${ }_{170}^{200}$	${ }_{170}$	${ }_{210} 21$	170	${ }_{170}$	${ }_{160} 16$	160 UJ	${ }_{180}^{2180}$	${ }^{21800}{ }^{180}$	$\frac{20 \mathrm{U}}{170}$
SW8270	BIS(2-CHLORETHOXYMETHANE	ugkg	19 U	20 U	20 U	22 U	19 U	18 U	18 U	18 U	19 U	19 U	20 U	24 U	20 U	19 U	19 U	18 U	20 U	200 U	19 U
SW8270	BIS(2-CHLOROETHYLETHER	ugkg	17 U	17 UJ	17 U	19 UJ	17 U	16 U	16 U	16 U	17 UJ	17 U	17 U	21 UJ	17 UJ	17 UJ	16 U	16 U	18 U	180 U	17 U
SW8270	BIS(2-CHLOROISOPROPYL) ETHER	ugkg	24 U	24 U	24 UJ	27 U	23 UJ	23 U	23 U	22 U	24 U	23 U	24 U	29 U	24 U	23 U	23 U	23 U	25 U	250 UJ	24
SW8270	BIS2-ETHYLHEXYLIPHTHALATE	ugkg	23 J	27 J	27 J	24 J	18 U	57 J	17 U	33 J	18 U	62 J	33 J	22 U	32 J	18 U	18 U	24 J	19 U	190 U	18 U
SW8270	CARBAZOLE	ugkg	73 J	160 J	390	110 J	18 U	210	230	84 J	730 J	1200	670	1600 J	490	270	74J	65 J	860	1500 J	37 J
SW8270	DIBENZOFURAN	ugkg	24.	94 J	200 J	140 J	14 U	67 J	66 J 13	29 J	210	$\begin{array}{r}260 \\ 13 \\ \hline 1\end{array}$	180 J	${ }^{370}$	$\frac{120 \mathrm{~J}}{14}$	40 J	25 J	26J	270	240 J	15 U
SW8270	DIETHYL PHTHALATE	ugkg	14 U	14 U	14 U	16 U	130	130	13 U	13 U	14 U	13 U	14 U	174	14 U	14 U	130	130	14 U	140 U	14 U
SW8270	DIMETHY P PHTHALATE	ugkg	110	12 U	12 U	13 U	110	110	110	110	110	110	110	14 U	12 U	110	11 U	110	12 U	120 U	110
SW8270	DI-N-OCTYL-PHTHALATE	ugkg	17 U	17 U	17 U	19 U	17 U	16 U	16 U	16 U	17 U	170	17 U	210	17 U	17 U	16 U	16 U	18 U	180 U	17 U
SW8270	HEXACHLORO-1,3-BUTADIENE	Likg	19 U	20 U	20 U	22 U	19 U	18 U	18 U	18 U	19 U	19 U	20 U	24 U	20 U	19 U	19 U	18 U	U	200	19 U
SW8270	HEXACHLOROBENZENE	ugkg	9.30	9.4 U	9.40	11 U	9.00	8.8 U	8.8 U	8.6 U	${ }^{9.3} \mathrm{UJ}$	9.00	9.40	12 UJ	9.40	9.10	${ }^{8.9 \mathrm{UJ}}$	${ }^{8.8 \mathrm{UJ}}$	9.7 U	96 U	9.2 U
SW8270	HEXACHLLOROCYCLOPENTADIENE	$\frac{\text { ugkg }}{\text { ugkg }}$	13 U	$\frac{13 \mathrm{UJ}}{204}$	13 U	$\frac{14 \mathrm{UJ}}{22 \mathrm{U}}$	12 U	$\frac{12 \mathrm{UJ}}{18 \mathrm{U}}$	12 U	$\frac{12 \mathrm{UJ}}{18 \mathrm{U}}$	13UJ	$\frac{12 \mathrm{UJ}}{12 \mathrm{U}}$	$\frac{13 \mathrm{UJ}}{20 \mathrm{u}}$	$\frac{16 \mathrm{UJ}}{24 \mathrm{U}}$	$\frac{130 J}{204}$	12 UJ	12 U	12 U	13 U	$\stackrel{130 \mathrm{U}}{2004}$	13U
SW8270	HITROBENZENE	ugkg	19 U	230	230	220	19 O	18 U	18 U	$\underline{180}$	190	190	230	28 U	230	19 U	19 U	18 U	24 U	200 U 230 U	19U
SW8270	N-NITROSOO-DI-N.-PROPYLAMINE	ugkg	20 U	210	21 U	23 U	20 U	20 U	19 U	19 U	20 U	20 U	21 U	25 U	210	20 U	20 U	19 U	21 U	210 U	20 U
SW8270	N-NITROSODIPHENYLAMINE	ugkg	13 U	13 U	13 U	14 U	12 U	12 U	12 U	12 U	13 UJ	12 U	13 U	16 UJ	13 U	12 U	12 U	12 U	13 U	${ }^{130 \mathrm{O}}$	13 U
SW8270	CHLOROANLINE	ugkg	29 U	30 U	30 U	33 U	28 U	28 U	28 UJ	27 U	29 U	28 U	30 U	36 U	U	29 U	28 U	28 U			29 U
SW8270	PHENOL	ugkg	18 U	19 U	18 U	21 U	18 U	17 U	17 U	17 U	18 U	18 U	18 U	22 U	19 U	18 U	18 U	17 U	19 U	190 U	18 U
SW8270	P-NTR ROANLINE	ugkg	14 U	14 U	14 U	16 U	13 U	13 U	13 U	13 U	14 U	13 U	14 U	17 U	14 U	14 U	13 U	13 U	14 U	140 U	14 U
	TOTAL ORGANIC CARBON																				

```
Mg/kg: miligrams per kilorram
U = non-d
ugkg: micrograms per kilogram reslus from Vistal laboratory
```

		$\begin{array}{r} \text { Location } \\ \text { Sample ID } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{array}{\|c\|c\|} \hline \hline \text { Ssoon } \\ \text { ssonicis } \\ \text { o.25-5 feet } \\ 12107 / 2006 \\ \hline \end{array}$	$\begin{gathered} \hline \text { ssoon } \\ \text { ssoong } \\ \text { S.120.5 feet } \\ 12105 / 20006 \\ \hline \end{gathered}$							$\begin{array}{\|c\|} \hline \hline \text { SSOOT7 } \\ \text { SSOO7BC } \\ 0.25-5.5 \text { feet } \\ 1210412006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SS5008 } \\ \text { Ssooge } \\ \text { o.25-5.5 feet } \\ 12105 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { Ssoong } \\ \text { ssoogeng } \\ \text { 0.12-5 feet } \\ 12105 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO10 } \\ \text { SS5010A } \\ 0.25-5.5 \text { eet } \\ 12105 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \hline \text { SSO11 } \\ \text { Sson1118 } \\ \text { o.25-5 feet } \\ 12105 / 2006 \\ \hline \end{array}$			
Lab Method	Analyte	Units																
BNASIM	2-METHYLNAPHTHALENE	ugkg	17 U	52 J	85	67 J	99 J	660	150	44 J	52 J	16 U	17 U	140	220 J	36 J	34 J	140
ENASIM	ACENAPHTHENE	uglkg	30 U	59 U	62 J	39 J	710	580	120 J	68 U	710	29 U	29 U	58 U	52 J	35 J	32 U	30 U
BNASIM	ACENAPHTHYLENE	ugkg	29 U	480	910	460 J	720 J	1900	1200	550	640	370	41 J	190	230 J	630	530	620
BNASIM	ANTHRACENE	uglkg	15 J	1100	1800	520 J	840 J	6400	2500	1100	1300	400	150	350	340	1200	700	1300
BNASIM	BENZO(A)ANTHRACENE	ug/kg	32 J	920	2800	710 J	1100 J	5600	1400	680	810	820	94 J	410	${ }^{710} \mathrm{~J}$	1100	840	1500
BNASIM	BENZO(A)PYRENE	ugkg	41	1400	6100	930 J	1400 J	6500	1700	1000	1300	1200	110 J	460	610 J	1600	900	3900
ENASIM	BENZO(B) FLUORANTHENE	uglkg	59	2500	12000	1500 J	2200 J	13000	3000	1800	2100	1700	220 J	870	1000 J	2500	1700	7100
BNASIM	BENZO(G,H,U)PERYLENE	ugkg	33 J	950	2900	880 J	1400 J	5500	2400	1100	1300	920	95 J	360	480 J	980	810	5500
BNASIM	BENZO(K)FLUORANTHENE	ugkg	52	1700	5900	${ }^{1100 ~ J}$	1700 J	6500	2300	1300	1700	1400	160 J	580	660 J	2000	1300	5000
BNASIM	CHRYSENE	uglkg	46	1300	4900	880 J	1200 J	7200	1600	940	1200	1100	150 J	690	960 J	1600	1500	2500
ENASIM	DIBENZO(A,H)ANTHRACENE	uglkg	8.3 J	320	1200	220 J	350 J	1200	740	310	370	310	27 J	130	190 J	380	260	1300
BNASIM	FLUORANTHENE	ugkg	60	910	6500	940 J	1700 J	12000	2400	860	1000	970	170	730	860	1100	2300	1200
BNASIM	FLUORENE	ugkg	17 U	38 J	89	29 J	66 J	560	100	38 U	42 J	16 U	17 U	32 U	38 J	40 J	32 J	29 J
ENASIM	INDENO(1,2,3-CD) PYRENE	uglkg	35 J	1300	5200	990 J	1600 J	5500	2700	1300	1500	1100	120 J	450	570 J	1200	890	4900
BNASIM	NAPHTHALENE	uglkg	5.6 U	92	150	70 J	100 J	920	160	56 J	65 J	14 J	5.5 U	250	220 J	58	49	130
BNASIM	PENTACHLOROPHENOL	ugkg	${ }^{110} \mathrm{~J}$	210 J	${ }^{8.80 \mathrm{UJ}}$	51 J	54 J	430 J	560 J	480 J	650 J	190 J	200 J	36 J	32 J	690	510	260 J
ENASIM	PHENANTHRENE	uglkg	36 U	190	830	170 J	260 J	2800	870	140 J	180	71J	40 J	580	680	160	310	360
ENASIM	PYRENE	ugkg	56	1400	7100	1100 J	1600 J	12000	2100	1100	1300	2500	200 J	650	${ }^{820}$	1700	2200	1600
E160.3	RESIDUE, TOTAL	percent	93	92	80	79	76	90	95	80	77	95	93	94	83	82	86	93
E1613/E1668	1,2,3,4,6,7,8,-HEPTACHLORODIBENZOFURAN	ngkg	17.532	251.552	674			3110 J	4100	1898.063	2704.312							
E1613\|E1668	1,2,3,4,6,7,8,-HEPTACHLORODIBENZO-P-DIOXIN	nglkg	192.404	2877.368 J	5580			42500	34500	14276.192	16845.941							
E1613/E1668	1, 1,2,3,4,7, ,9,-HEPTACHLORODIBENZOFURAN	nglkg	1.28 J	18.079	54			225	251	115.07	176.2							
E1613/E1668	1, 2, 3,4,7,8-HEXACHLORODIBENZOFURAN	nglkg	1.434 J	5.384 J	18.5			65.2	89.2	${ }^{93.009}$	139.068							
E1613/E1668	1,2,3,4,7,8,-HEXACHLORODIBENZO-P-DIOXIN	nglkg	1.058 J	10.005	26.3			181	242	108.69	121.148							
E1613/E1668	1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	nglkg	0.75 J	2.665 J	10			34.7	70.7	46.081	77.311							
E1613/E1668	1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	nglkg	4.784 J	51.217	118			756	722	336.563	462.902							
E1613/E1668	1, 1, ,3,7,7,9.-HEXACHLORODIBENZOFURAN	nglkg	0.19 U	0.321 U	3.56			11.7	21.2	${ }^{1.726 ~ J}$	2.206 U							
E1613/E1668	1, 1,2,7,7,8-PENTACHLORODIBENZOFURAN	ngkg	${ }_{0}^{3.758 \mathrm{~J}}$	$\frac{12.274}{0.545}$	${ }^{43.65}$			4401	440	53.253 J	${ }^{356215}$							
E1613/E1668	1, 1, 2, 7, \%,-PENTACHLORODIBENZO-P-DIOXIN	nglkg	0.548 J	4.292 J	$\frac{2.25}{}$			48.3	72.4	3, 39.592	40.54							
E1613/E1668	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	ngkg	0.754 J	2.355 J	20.3			64.3	140	27.582	${ }^{71.626}$							
E1613/E1668	2,3,4,7,8.PENTACHLORODIBENZOFURAN	nglkg	$0.71{ }^{\text {J }}$	0.812 J	6.08			14.3	28.5	10.16	14.765							
E1613\|E1668	2,3,7,8-TETRACHLORODIBENZOFURAN	ngkg	1.188 U	1.07 U	1.65			1.86	1.5	1.079 J	1.615 J							
E1613/E1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	nglkg	0.068 U	$0.64{ }^{0}$	OU			5.84	3.4	2.61	2.263 J							
E1613/E1668	OCTACHLORODIBENZOFURAN	nglkg	82.162	1968.873	3730			17500	18200	9426.466	11901.892							
E1613/E1668	OCTACHLORODIBENZO-P-DIOXIN	nglkg	1730.716	28365.185 J	56400			412000	323000	114044.047 J	144856.584							
E1613/E1668	TOTAL HEPPACHLORINATED DIBENZOFURANS	nglkg	69.294	${ }^{1297.652}$	3110			15700 J	${ }^{17200}$	${ }^{7652.562}$	${ }^{114966.572}$							
E1613/E1668	TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	nglkg	705.172	17099.905	20000			248000	189000	49924.614	${ }^{62918.051}$							
E1613/E1668	TOTAL HEXACHLORINATED DIBENZOFURANS	nglkg	22.872	219.932	575 J			2510 J	3750 J	2487.422	3251.605							
E1613/E1668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	nglkg	54.614	1271.878	1600			19200	${ }_{1}^{13600}$	${ }_{5}^{5155.31}$	6758.84							
E1613/E1668 E1613/E1668	TOTAL PENTACHLORINATED DIBENZOFURANS	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$	$\frac{11.86}{3.812}$	$\stackrel{26.7}{52.805}$	$\frac{101 \mathrm{~J}}{76.7}$			$\frac{304 \mathrm{~J}}{813}$	$\frac{6311}{575}$	$\frac{321.067}{292.321}$	$\frac{444.56}{274.798}$							
E1613/E1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ng/kg	$\frac{3.981}{}$	$\frac{52.85}{8.85}$	54.4 J			76.9 J	79.3 J	$\stackrel{31.283}{ }$	$\stackrel{34.843}{ }$							
E1613/E1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	nglkg	1.849	5.631	22.9			179	45.6	11.331	7.293							
SW6020	ANTIMONY	mg/kg	${ }^{0.37 \mathrm{~J}}$	0.37 J	0.41 UJ	0.43 UJ	0.43 UJ	${ }^{0.37 \mathrm{U}}$	0.34 UJ	0.42 UJ	0.43 UJ	0.35 UJ	0.34 UJ	1.7	${ }^{0.96 \mathrm{~J}}$	${ }^{0.86 \mathrm{~J}}$	${ }^{0.76 \mathrm{~J}^{\text {J }} \text {, }}$	$0.77{ }^{\text {J }}$
SW6020	ARSENIC	mq/kg	99	6.9	22 J	4.8	5.1	12 J	18	4.3	5.5	4.7	1.00	5.3	8.0	33 J	56 J	140 J
SW6020	BARIUM	mq/kg	5.6	16	51	33	31	32	22	$8.1 \mathrm{E}^{\text {8 }}$	10 E	5.7	13	21	180	34	26	65
SW6020	CADMIUM	mq/kg	${ }^{0.300}$	0.30 U	${ }^{0.35 \mathrm{U}}$	0.36 U	$0.37{ }^{15}$	0.32 U	0.29 U	${ }^{0.36 \mathrm{U}}$	${ }^{0.374}$	${ }^{0.30 \mathrm{U}}$	${ }^{0.290}$	${ }^{0.30} 5$	${ }^{0.344}$	${ }^{0.33 \mathrm{U}}$	0.32	0.29 U
SW6020	CHROMIUM	mg/kg	2.8	6.4	10 J	14	15	12 J	11	6.5	7.1	3.8	5.4	5.6	14	23 J	74 J	45 J
SW6020	COPPER	mq/kg	1.6	7.6	13 J	9.1	9.8	14 J	12	4.7	6.1	3.4	2.3	21	25	24	66	52
SW6020	LEAD	$\mathrm{mg} / \mathrm{kg}$	${ }^{12 \mathrm{~J}} 0$	$\frac{27}{0.85}$	$\frac{13 \mathrm{~J}}{1.0 \mathrm{u}}$	13	14	$\frac{37 \mathrm{~J}}{091 \mathrm{U}}$	-17	5.4	6.2	5.5	12	73	54	30	19	45
SW6020	SELENIUM	mq/kg	0.87 U	0.85 U	1.00	1.10	1.10	0.91 U	0.85 U	1.0 U	1.10	${ }^{0.86 \mathrm{U}}$	0.84 U	0.87 U	${ }^{1.05}$	$0.95{ }^{0.43}$	0.944	0.850
SW6020	SILVER ${ }^{\text {VANADIUM (FUME OR DUST) }}$	$\frac{\mathrm{mg} / \mathrm{kg}}{\mathrm{mg} / \mathrm{kg}}$	$\frac{0.39 \mathrm{U}}{1.7}$	$\frac{0.39 \mathrm{U}}{2.5}$	${ }^{0.460}$	$\stackrel{0}{0.48 \mathrm{U}}$	$\stackrel{0}{0.48 \mathrm{U}}$	${ }^{0.41 \mathrm{U}}$	0.39 4	$\frac{0.47 \mathrm{U}}{1.1 \mathrm{UJ}}$	${ }^{0.48 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{1.2}$	${ }_{0}^{0.38 \mathrm{U}}$	$\frac{0.39}{} 3$	${ }_{0}^{0.45}$	0.43 4	0.430	0.38 ${ }^{5}$
SW7471	MERCURY	mg/kg	0.029	0.46	0.25 J	0.20	0.27	0.32 J	0.12	0.072	0.080	0.065	0.067	0.12	0.16	0.10	0.20	0.11
SW8260	1,1,1-TRICHLOROETHANE	ugkg	0.14 U	0.14 U	0.20 U	0.17 U	0.20 U	0.14 U	0.14 U	0.24 U	0.24 U	0.13 U	0.13 U	0.13 U	0.19 U	0.054 U	0.18 U	0.14 U
SW8260	1,1,2,2,2-TETRACHLOROETHANE	uglkg	0.077 U	0.077 U	0.11 U	0.094 U	0.11 U	0.074 U	0.074 U	0.13 U	0.13 U	0.070 U	0.071 U	0.071 U	0.10 U	0.054 U	0.096 U	0.074 U
SW8260	1,1,2-TRICHLOROETHANE	ugkg	0.16 U	${ }^{0.16 \mathrm{U}}$	0.22 U	0.19 U	0.22 U	0.15 U	0.15 U	0.26 U	0.25 U	0.14 U	0.14 U	0.14 U	0.20 U	0.040 U	0.19 U	0.15 U
SW8260	1,1-DICHLOROETHANE	uglkg	0.073 U	0.073 U	$0.11{ }^{\text {O }}$	0.089 U	$0.11 \mathrm{U}^{0.21}$	0.071 U	0.071 U	$0.13{ }^{0}$	${ }^{0.133}$	0.067 U	0	-0.068 ${ }^{019}$	$\frac{0.096 \mathrm{U}}{0.26 \mathrm{u}}$	0.0056 U	$\frac{0.092 \mathrm{U}}{0.25 \mathrm{U}}$	0.071 U
SW8260	1,2,4-TRICHLOROBENZENE	ugikg	$\stackrel{0.18}{0}$	$\stackrel{0.18 \mathrm{U}}{0}$	$\stackrel{0.25}{0}$	0.22 u	$\xrightarrow[0.250]{0.20}$	$\stackrel{0.17}{0}$	$\stackrel{0.17}{0}$	0.30 U	$\stackrel{.390}{ }$	0.160	$0.17{ }^{0.19}$	$\frac{0.19 \mathrm{U}}{0.16 \mathrm{~J}}$	$\frac{0.26 U}{0.23 U}$	0.053 ${ }^{0.094}$	0.25 ${ }_{0}^{0.22 \mathrm{UJ}}$	0.20 U   0.17 UJ
SW8260	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	ugkg	0.57 U	0.57 U	0.82 U	0.70 U	0.80 U	0.55 U	0.55 U	0.97 U	0.95 U	0.52 U	0.53 U	0.53 UJ	0.75 U	0.081 U	0.71 UJ	0.55 UJ
SW8260	1,2-DIBROMOETHANE	uglkg	0.065 U	0.065 U	0.094 U	0.080 U	0.092 U	0.063 U	0.063 U	0.11 U	0.11 U	0.059 U	0.061 U	0.060 U	0.085 U	0.049 U	0.081 U	0.063 U
SW8260	1,2-DICHLOROBENZENE	uglkg	0.091 U	0.091 U	0.13 U	0.12 U	0.13 U	0.087 U	0.088 U	0.16 U	0.15 U	0.082 U	0.084 U	0.084 UJ	0.12 U	0.038 U	0.12 UJ	0.088 UJ
SW8260	1,2-DICHLOROETHANE	ugkg	0.12 U	0.12 U	$0.17{ }^{\text {U }}$	$0.15{ }^{0}$	0.17 U	0.12 U	0.12 U	0.20 U	0.20 U							0.12 U
SW8260	1,2-IICHLOROPROPANE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \mathrm{lkg}}$	$\frac{0.063 \mathrm{U}}{0.11 \mathrm{U}}$	$\frac{0.063 U}{0.11 \mathrm{U}}$	$\frac{0.090 \cup}{0.15 U}$	$\frac{0.077 \cup}{0.13 U}$	$\frac{0.088 \mathrm{U}}{0.15 \mathrm{U}}$	0	0.061 U	$\frac{0.11 \mathrm{U}}{0.18 \mathrm{U}}$	$\frac{0.11 \mathrm{U}}{0.17 \mathrm{U}}$	0.057U	${ }_{0}^{0.058 \mathrm{U}} 0$	$\frac{0.058 \cup}{0.093 ~ U J ~}$	$\frac{0.082 \mathrm{U}}{0.14 \mathrm{U}}$	$\frac{0.023 U}{0.038 \mathrm{U}}$	$\frac{0.079 \mathrm{U}}{0.13 \mathrm{UJ}}$	$\frac{0.061 \mathrm{U}}{0.098 \mathrm{UJ}}$
SW8260	ACETONE	uglkg	2.90	40 J	4.2 U	3.6 U	4.10	2.8 U	310	59 J	34 J	2.7 U	2.70	2.7 U	46 J	0.26 U	3.74	4.2 J
SW8260	BENZENE	ugkg	0.46 U	${ }^{0.46 \mathrm{U}}$	0.65 U	0.56 U	0.64 U	0.44 U	0.44 U	0.77 U	0.75 U	0.41 U	0.42 U	0.42 U	0.59 U	0.040 U	0.57 U	0.44 U
SW8260	BROMODICHLOROMETHANE	uglkg	0.34 U	0.34 U	0.49 U	0.41 U	0.48 U	0.33 U	0.33 U	$0.57{ }^{\text {U }}$	0.56 U	0.31 U	0.32 U	0.31 U	0.44 U	0.038 U	0.42 U	0.33 U
SW8260	BROMOMETHANE	uglkg	0.37 U	0.38 UJ	0.54 UJ	0.46 UJ	0.53 UJ	0.36 UJ	0.36 UJ	0.63 UJ	0.62 UJ	0.34 UJ	0.35 UJ	0.35 UJ	0.49 UJ	0.074 U	0.47 U	0.36 UJ
SW8260	CARBON DISULFIDE	uglkg	1.90	1.90	2.7 U	2.30	2.7 U	$\underline{1.8 U}$	1.80				$\underline{1.8 U}$	$\underline{1.8 U}$	2.50	0.43U	2.4 U	
SW8260	CARBON TETRACHLORIDE		$\frac{0.41 \cup}{0.31 \mathrm{U}}$	0.41U	0.59 0	$\frac{0.50 \mathrm{U}}{0.37 \mathrm{U}}$	$\frac{0.57 U}{0.43 U}$	$\frac{0.39 \mathrm{U}}{0.29 \mathrm{U}}$	$\frac{0.40 \mathrm{U}}{0.30 \mathrm{U}}$	$\frac{0.69 \mathrm{U}}{0.51 \mathrm{U}}$	0.68 0	$\frac{0.37 \mathrm{U}}{0.28 \mathrm{u}}$	0.38U	0.38U	$\frac{0.53 \mathrm{U}}{0.40 \mathrm{U}}$	$\frac{0.065 \mathrm{U}}{0.065 \mathrm{U}}$	0.51U	0.40 0
SW8260	CFC-12	uglkg	0.37 UJ	0.38 UJ	0.54 U	0.46 U	0.53 UJ	0.36 U	0.36 U	0.63 U	0.62 U	0.34 U	0.35 U	0.35 U	0.49 UJ	0.080 U	0.47 U	0.36 U
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	ugkg	0.42 U	0.42 U	0.60 U	0.51 U	0.59 U	0.41 U	0.41 U	0.71 U	$0.70{ }^{\text {O }}$	0.38 U	0.39 U	0.39 U	0.55 U	0.087 U	0.53 U	0.41 U
SW8260	CHLOROBENZENE	ugkg	0.47 U	0.47 U	0.67 U	0.57 U	0.66 U	0.45 U	0.45 U	0.79 U	0.77 U	0.42 U	0.43 U	0.43 U	0.61 U	0.024 U	${ }^{0.588}$	0.45 U
SW8260	CHLOROETHANE	ugkg	$\xrightarrow{0.42 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{ }$	$\stackrel{0.60}{ }$	$\stackrel{0.51 \mathrm{U}}{0}$	$\stackrel{0.59}{0}$	0.41 u	$\xrightarrow[0.41 \cup]{0.280}$	$\stackrel{0.710}{0.710}$	0.700	0.38 U	0.390	0.39 u	0.55	0.0319	$\stackrel{.353}{0.33}$	0.41 U
SW8260	CHLOROFORM	ug lkg	0.40 U	0.40 U	0.57 U	0.49 U	0.56 U	0.38 U	0.39 U	0.67 U	0.66 U	0.36 U	0.57 J	0.37 U	0.52 U	0.048 U	0.50 U	0.39 U
SW8260	CHLOROMETHANE	uglkg	0.52 U	0.53 U	0.75 U	0.64 U	0.74 U	0.51 U	${ }^{0.510}$	0.89 U	0.87 U	0.48 U	0.49 U	0.48 U	0.69 U	0.076 U	${ }^{0.666}$	${ }^{0.510}$
SW8260	CIIS-1,-2IICHLOROETHYLENE	ugkg	0.31 U	0.31 U	0.44 U	0.37 U	0.43 U	0.29 U	0.30 U	0.51 U	0.50 U	0.28 U	0.28 U	0.28 U	0.40 U	0.047 U	0.38 U	0.30 U


		$\begin{gathered} \text { Location } \\ \text { Sample II } \\ \text { Depth } \\ \text { Sample Date } \end{gathered}$			$\begin{array}{c\|c} \hline \hline \text { SSOO3 } \\ \text { SSOO3BA } \\ 0.25-0.5 \text { feet } \\ 12 / 08 / 2006 \end{array}$	$\begin{gathered} \hline \hline \text { SSS004 } \\ \text { ssousk } \\ 0.25-5.5 \text { feet } \\ 12105 / 2006 \\ \hline \end{gathered}$			SSOO6   Ssoobs   $0.25-0.5$ feet   $12105 / 2006$	SSO077   SSOO7BA   $0.25-0.5$ feet   $12 / 04 / 2006$	$\begin{array}{c\|c} \hline \hline \text { SS5007 } \\ \text { ssoncc } \\ 0.25-5.5 \text { feet } \\ 1210412006 \\ \hline \end{array}$	SSO088   Ssoo8BA   $0.25-0.5$ feet   $12 / 05 / 2006$	SSOO9   SsoogBA   $0.25-0.5$ feet   $12 / 05 / 2006$	SSO10   SSOOBA   $0.25-0.5$ feet   $12 / 05 / 2006$	SSO11   sSon11BA   $0.25-0.5$ feet   $12 / 05 / 2006$	SSO12   SSO12BA   $0.25-0.5$ feet   $12 / 104 / 2006$	$\begin{gathered} \text { SSO13 } \\ \text { SSOPI3BA } \\ 0.25-0.5 \text { feet } \\ 121042006 \end{gathered}$	$\begin{array}{c\|} \hline \hline \text { SSO14 } \\ \text { SS014BA } \\ 0.25-0.5 \text { feet } \\ 12 / 04 / 2006 \end{array}$
Lab Method	Analyte	Units																
SW8260	CIS-1,3-DICHLOROPROPENE	ugkg	0.34 U	0.34 U	0.49 U	0.41 U	0.48 U	0.33 U	0.33 U	0.57 U	0.56 U	0.31 U	0.32 U	0.31 U	0.44 U	0.022 U	0.42 U	0.33 U
SW8260	CYCLOHEXANE	ugkg	0.44 U	0.44 U	0.69 J	0.54 U	0.62 U	0.43 U	0.43 U	0.75 U	0.74 U	0.40 U	0.41 U	0.41 U	0.58 U	0.054 U	0.55 U	0.43 U
SW8260	DICHLOROMETHANE	uglkg	0.46 U	0.46 U	0.65 U	0.56 U	0.64 U	0.44 U	0.44 U	0.77 U	0.75 U	0.41 U	0.42 U	0.42 U	0.59 U	0.060 U	0.57 U	0.44 U
SW8260	ETHYLBENZENE	ugkg	0.49 U	0.49 U	0.70 U	0.60 U	0.69 U	0.47 U	0.47 U	0.83 U	0.81 U	0.45 U	0.46 U	0.45 U	0.64 U	0.030 U	0.61 U	0.47 U
SW8260	ISOPROPYLBENZENE	uglkg	0.54 U	0.54 U	0.77 U	0.65 U	0.75 U	0.52 U	0.52 U	0.91 U	0.89 U	0.49 U	0.50 U	0.50 UJ	0.70 U	0.030 U	0.67 UJ	0.52 UJ
SW8260	m,p-xylenes	uglkg	1.10	1.10	1.5 U	1.3 U	1.5 U	0.97 U	0.98 U	1.8 U	1.70	0.92 U	0.94 U	0.93 U	1.4 U	0.074 U	1.30	0.98 U
SW8260	M-DICHLOROBENZENE	uglkg	0.058 U	0.058 U	0.084 U	0.071 U	0.082 U	0.056 U	0.056 U	0.098 U	0.097 U	0.053 U	0.054 U	0.054 UJ	0.076 U	0.032 U	0.073 UJ	0.056 UJ
SW8260	METHYL ACETATE	uglkg	0.22 U	0.22 U	0.32 U	0.27 U	0.31 U	0.22 U	0.22 U	0.38 U	0.37 U	0.20 U	0.21 U	0.21 U	0.29 U	0.11 U	0.28 U	0.22 U
SW8260	METHYL ETHYL KETONE	uglkg	1.30	2.2 J	$2.4{ }^{\text {J }}$	1.6 U	1.8 U	1.30	1.30	2.20	2.2 U	1.2 U	1.2 U	1.2 U	1.70	0.31 U	1.6 U	1.3 U
SW8260	METHYL ISOBUTYL KETONE	ugkg	0.83 U	0.83 U	1.20	1.10	1.2 U	0.80 U	0.80 U	1.40	1.40	0.75 U	0.77 U	0.76 U	1.10	0.40 U	1.10	0.80 U
SW8260	METHYL N-BUTYL KETONE	ugkg	1.2 U	1.2 U	$1.7 \mathrm{UJ}^{\text {J }}$	1.5 U	1.7 U	1.2 UJ	1.2 U	2.00	2.00	1.14	1.10	1.14	1.6 U	0.49 U	1.5 U	1.2 U
SW8260	METHYLBENZENE	uglkg	0.49 U	0.62 J	2.9 J	0.60 U	0.69 U	0.47 U	0.47 U	0.83 U	${ }^{0.81 \mathrm{U}}$	0.45 U	0.46 U	0.45 U	0.64 U	0.031 U	0.61 U	0.47 U
SW8260	METHYLCYLOHEXANE	ugkg	0.51 U	0.51 UJ	1.5	0.63 U	0.72 UJ	0.49 U	0.50 U	0.87 U	0.85 U	0.47 U	0.48 U	0.47 U	0.67 UJ	0.085 J	0.64 U	0.50 U
SW8260	O-XYLENE	ugkg	0.47 U	0.47 U	0.67 U	0.57 U	0.66 U	0.45 U	0.45 U	0.79 U	0.77 U	0.42 U	0.43 U	0.43 U	0.61 U	0.029 U	0.58 U	0.45 U
SW8260	STYRENE (MONOMER)	uglkg	0.50 U	0.50 U	0.72 U	0.61 U	0.71 U	0.48 U	0.49 U	0.85 U	0.83 U	0.46 U	0.47 U	0.46 U	0.65 U	0.027 U	0.63 U	0.49 U
SW8260	TERT-BUTYL METHYL ETHER	uglkg	0.37 U	0.38 U	0.54 U	0.46 U	0.53 U	0.36 U	0.36 U	0.63 U	0.62 U	0.34 U	0.35 U	0.35 U	0.49 U	0.043 U	0.47 U	0.36 U
SW8260	TETRACHLOROETHYLENE	ugkg	0.47 U	0.47 U	0.67 U	0.57 U	0.66 U	0.45 U	0.45 U	0.79 U	0.77 U	0.42 U	0.43 U	0.43 U	0.61 U	0.040 U	0.58 U	0.45 U
SW8260	TRANS-1,2-DICHLOROETHENE	ugkg	0.44 U	0.44 U	0.64 U	0.54 U	0.62 U	0.43 U	0.43 U	0.75 U	0.74 U	0.40 U	0.41 U	0.41 U	0.58 U	0.058 U	0.55 U	0.43 U
SW8260	TRANS-1,2-DICHLOROPROPENE	ugkg	0.35 U	0.35 U	0.50 U	0.43 U	0.49 U	0.34 U	0.34 U	0.59 U	0.58 U	0.32 U	0.33 U	0.32 U	0.46 U	0.028 U	0.44 U	0.34 U
SW8260	TRIBOMOMETHANE	ugkg	0.46 U	0.46 U	0.65 U	0.56 U	0.64 U	0.44 U	0.44 U	0.77 U	0.75 U	0.41 U	0.42 U	0.42 U	0.59 U	0.044 U	0.57 U	0.44 U
SW8260	TRICHLOROETHYLENE	ugkg	0.47 U	0.47 U	0.67 U	0.57 U	0.66 U	0.45 U	0.45 U	0.79 U	0.77 U	0.42 U	0.43 U	0.43 U	0.61 U	0.052 U	0.58 U	0.45 U
SW8260	VINYL CHLORIDE	uglkg	0.28 U	0.28 U	0.40 U	0.34 U	0.40 U	0.27 U	0.27 U	0.48 U	0.47 U	${ }^{0.26 U}$	0.26 U	0.26 U	0.37 U	0.070 U	0.35 U	0.27 U
SW8270	2,4,5-TRICHLOROPHENOL	uglkg	14 U	15 U	17 U	17 U	18 U	15 U	14 U	17 U	17 U	14 U	14 U	14 U	16 U	16 U	16 U	14 U
SW8270	2,4,6-TRICHLOROPHENOL	ugkg	39 U	40 U	45 U	46 U	48 U	40 U	39 U	45 U	47 U	38 U	39 U	39 U	44 U	45 U	43 U	39 U
SW8270	2,4-DICHLOROPHENOL	ugkg	19 U	19 U	22 U	22 U	23 U	19 U	18 U	22 U	23 U	18 U	19 U	19 U	21 U	210	20 U	19 U
SW8270	2,4-DIMETHYLPHENOL	ugkg	210	210	24 U	25 U	25 U	32 J	210	24 U	25 U	20 U	210	210	23 U	24 U	23 U	210
SW8270	2,4-DIIIITROPHENOL	ugkg	13 U	14 U	15 U	16 U	16 U	14 U	13 U	15 U	16 U	13 V	13 V	13 V	15 U	15 U	15 U	13 U
SW8270	2,4-DINITROTOLUENE	ugkg	110	110	13 U	13 U	13 U	11 U	11 U	13 U	13 U	11 U	11 U	11 U	12 U	13 U	12 U	11 U
SW8270	2,6-DINITROTOLUENE	uglkg	39 U	40 U	45 U	46 U	48 U	40 U	39 U	45 U	47 U	38 U	39 U	39 U	44 U	45 U	43 U	39 U
SW8270	2.CHLORONAPHTHALENE	ugkg	18 U	18 U	20 U	21 U	21 U	18 U	17 U	20 U	21 U	17 U	18 U	18 U	20 U	20 U	19 U	18 U
SW8270	2-CHLOROPHENOL	ugkg	20 U	20 U	23 U	23 U	24 U	20 U	20 U	23 U	24 U	19 U	20 U	20 U	22 U	23 U	22 U	20 U
SW8270	2-METHYLPHENOL (0-CRESOL)	ugkg	13 U	14 U	15 U	16 U	16 U	14 U	13 U	15 U	16 U	13 U	13 U	13 U	15 U	15 U	15 U	13 U
SW8270	2-NITROANLINE	ugkg	24 UJ	24 U	28 U	28 UJ	29 UJ	25 U	24 UJ	28 UJ	29 UJ	24 UJ	24 UJ	24 U	27 U	27 UJ	26 UJ	24 UJ
SW8270	2-NITROPHENOL	ugkg	16 U	16 U	18 U	18 U	19 U	16 U	15 U	18 U	19 U	15 U	16 U	15 U	17 U	18 U	17 U	16 U
SW8270	3,3'-ICHLOROBENZIIINE	ugkg	37 U	38 U	43 U	44 UJ	45 UJ	38 V	36 UJ	43 U	45 U	36 UJ	37 UJ	37 U	42 U	42 U	40 U	37 U
SW8270	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	ugkg	14 U	15 U	17 U	17 UJ	18 UJ	15 U	14 UJ	17 U	17 U	14 UJ	14 UJ	14 U	16 U	16 U	16 U	14 U
SW8270	3-NITROANILINE	ugkg	19 U	19 U	22 U	22 U	23 U	19 U	18 U	22 U	23 U	18 U	19 U	19 U	210	210	20 U	19 U
SW8270	4,6-DINITRO-2-METHYLPHENOL	ugkg	11 U	11 U	12 U	12 U	13 U	11 U	10 U	12 U	13 U	9.90	11 U	11 U	12 U	12 U	11 U	11 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	11 U	11 U	13 U	13 U	13 U	11 U	11 U	13 U	13 U	11 U	11 U	11 U	12 U	13 U	12 U	11 U
SW8270	4-CHLORO-3-METHYLPHENOL	uglkg	18 U	18 U	20 U	21 U	21 U	18 U	17 U	20 U	21 U	17 U	18 U	18 U	20 U	20 U	19 U	18 U
SW8270	4-CHLOROPHENYL PHENYL ETHER	ugkg	24 U	24 U	28 U	28 U	29 U	25 U	24 U	28 U	29 U	24 U	24 U	24 U	27 U	27 U	26 U	24 U
SW8270	4-METHYLPHENOL (MP-CRESOL)	ugkg	28 U	29 U	33 U	34 U	35 U	29 U	28 U	33 U	34 U	28 U	28 U	28 U	32 U	32 U	31 U	28 U
SW8270	4-NITROPHENOL	ugkg	19 UJ	19 UJ	22 U	22 UJ	23 UJ	19 U	18 UJ	22 UJ	23 UJ	18 UJ	19 UJ	19 UJ	21 UJ	21 UJ	20 UJ	19 UJ
SW8270	BENZYL BUTYL PHTHALATE	ugkg	20 U	20 U	23 U	23 U	24 U	20 U	20 U	23 U	24 U	19 U	20 U	20 U	22 U	23 U	22 U	20 U
SW8270	BIPHENYL	ugkg	170 U	$170 \cup$	190 U	200 U	200 U	$170 \cup$	160 U	190 U	200 U	160 U	$170 \cup$	160 U	190 U	190 U	180 U	$170 \cup$
SW8270	BIS(2-CHLORETHOXY)METHANE	ugkg	19 U	19 U	22 U	22 U	23 U	19 U	18 U	22 U	23 U	18 U	19 U	19 U	21 U	21 U	20 U	19 U
SW8270	BIS(2-CHLOROETHYL)ETHER	ugkg	17 U	17 U	19 U	20 U	20 U	17 UJ	16 U	19 UJ	20 UJ	16 U	17 U	16 U	19 U	19 U	18 U	17 U
SW8270	$\frac{\text { BIS (2-CHLOROISOPROPYL ETHER }}{}$	uglkg	$\frac{23 \mathrm{UJ}}{18}$	23 UJ	27 U	27 UJ	28 UJ	24 U	23 UJ	27 U	28 U	23 UJ	23 UJ	23 UJ	26 UJ	26 U	25 U	23 U
SW8270	BIS2-ETHYLHEXYL)PHTHALATE	ugkg	18 U	29 J	30 J	210	210	94 J	17 U	20 U	210	17 U	18 U	18 U	20 U	20 U	30 J	22 J
SW8270	CARBAZOLE	ugkg	18 U	130 J	540	43 J	50 J	570	280	120 J	140 J	82 J	18 U	40 J	120 J	210	280	260
SW8270	DIBENZOFURAN	ugkg	14 U	30 J	210 J	53 J	89 J	880	220	19 J	20 J	20 J	14 U	43 J	120 J	50 J	49 J	120 J
SW8270	DIETHYL PHTHALATE	ugkg	13 U	14 U	15 U	16 U	16 U	14 U	13 U	15 U	16 U	13 U	13 U	13 U	15 U	15 U	15 U	13 U
SW8270	DIMETHYL PHTHALATE	ugkg	110	110	13 U	13 U	13 U	110	110	13 U	13 U	110	110	110	12 U	13 U	12 U	11 U
SW8270	DI-N-BUTYL-PHTHALATE	ugkg	66 U	67 U	77 U	78 U	80 U	68 U	65 U	77 U	80 U	65 U	66 U	66 U	74 U	75 U	72 U	66 U
SW8270	DI-N-OCTYL-PHTHALATE	ugkg	17 U	17 U	19 U	20 U	20 U	17 U	16 U	19 U	20 U	16 U	17 U	16 U	19 U	19 U	18 U	17 U
SW8270	HEXACHLORO-1,3-BUTADIENE	ugkg	19 U	19 U	22 U	22 U	23 U	19 U	18 U	22 U	23 U	18 U	19 U	19 U	21 U	210	20 U	19 U
SW8270	HEXACHLOROBENZENE	ugkg	9.00	9.14	114	114	11 U	$\stackrel{9.3 U}{ }$	8.80	11 U	11 U	8.80	9.00	8.9 U	11 U	11 U	9.7U	
$\frac{\text { SW8270 }}{\text { SW8270 }}$	HEXACHLOROCYCLOPENTADIENE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \text { ga }}$	$\frac{12 \mathrm{U}}{19 \mathrm{U}}$	$\frac{12 \mathrm{U}}{19}$	$\frac{14 U}{22 U}$	$\frac{14 U}{22 U}$	$\frac{15}{23 U}$	$\frac{13 \mathrm{UJ}}{19 \mathrm{U}}$	$\frac{12 \mathrm{U}}{18}$	$\frac{14 \mathrm{U}}{22 \mathrm{U}}$	$\frac{15 \mathrm{U}}{23 \mathrm{U}}$	$\frac{12 \mathrm{U}}{18}$	$\frac{12 U}{19 U}$	$\frac{12 U}{19 U}$	$\frac{14 U}{21 U}$	$\frac{14 \mathrm{U}}{21 \mathrm{u}}$	$\frac{13 U}{20 u}$	$\frac{12 \mathrm{U}}{19 \mathrm{U}}$
SW8270	NITROBENZENE	uglkg	$\underline{22 \mathrm{UJ}}$	22 U	25 U	26 U	27 U	23 U	22 U	25 U	26 U	21 u	122	22 U	25 U	25 U	24 U	12 U
SW8270	N-NITROSO-DI-N.PROPYLAMINE	uglkg	20 U	20 U	23 U	23 UJ	24 UJ	20 U	20 UJ	23 U	24 U	19 UJ	20 UJ	20 U	22 U	23 U	22 U	20 U
SW8270	N-NITROSODIPHENYLAMINE	ugkg	12 U	12 U	14 U	14 U	15 U	13 U	12 U	14 U	15 U	12 U	12 U	12 U	14 U	14 U	13 U	12 U
SW8270	P.CHLOROANILINE	ugkg	28 U	29 U	33 U	34 U	35 U	29 U	28 U	33 U	34 U	28 U	28 U	28 U	32 U	32 U	31 U	28 U
SW8270	PHENOL	uglkg	18 U	18 U	20 U	21 U	210	18 U	17 U	20 U	21 U	17 U	18 U	18 U	20 U	20 U	19 U	18 U
SW8270	P-NITROANILINE	ugakg	13 U	14 U	15 UJ	16 U	16 U	14 U	13 U	15 U	16 U	13 U	13 U	13 U	15 U	15 U	15 U	13 U
Notes:																		
$\mathrm{mg} / \mathrm{kg}:$ miligrams per kilogram		$\mathrm{U}=$ non-de	detect															
$\mathrm{ng} / \mathrm{kg}$ : nanograms per kilogram ug/kg: micrograms per kilogram		$\mathrm{J}=$ estimated detect																


		$\begin{array}{r} \text { Location } \\ \text { Sample ID } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO15 } \\ \text { SSO15BA } \\ 0.25-0.5 \text { feet } \\ 12204 / 2006 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \hline \text { SSO16 } \\ \text { SSO16BA } \\ 0.25-0.5 \text { feet } \\ 12 / 104 / 2006 \\ \hline \end{array}$			SSO19   SSO19BA   $0.25-0.5$ feet   $12 / 101 / 2006$		SSO20   Ssozoci   o.25-.5 feet   22112/2006	$\begin{array}{\|c\|} \hline \hline \text { SSO21 } \\ \text { SSO21BA } \\ 0.25-0.5 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO22 } \\ \text { SSO22BA } \\ 0.25-0.5 \text { feet } \\ 12121 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO23 } \\ \text { SSO23BA } \\ 0.25-0.5 \text { feet } \\ 12201 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO23 } \\ \text { SSO23BB } \\ 0.25-0.5 \text { feet } \\ 12 / 01 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO224 } \\ \text { SSO24BA } \\ 0.25-0.5 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO25 } \\ \text { SSO25BA } \\ 0.25-0.5 \text { feet } \\ 12 / 04 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO26 } \\ \text { SSO26BA } \\ 0.25-0.5 \text { feet } \\ 12 / 12 / 20066 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { SSO28 } \\ \text { SSo28BA } \\ 0.25-0.5 \text { feet } \end{array}$ $12 / 07 / 2006$
Lab Method	Analyte	Units																
ENASIM	2-METHYLNAPHTHALENE	uglkg	130	22 J	44 J	16 U	19 J	17 U	1.80	500	1.6 U	17 U	17 U	27	28 J	27 J	23 U	31 U
	ACENAPHTHENE								3.2 U	330 J	2.90	30 UJ		10		41 J	40 U	
ENASIM	ACENAPHTHYLENE	uglkg	450	440	780	590	59 J	52 J	66	4300	6.6 J	87 J	69 J	79	740	120	920	410
	ANTHRACENE	uglkg	710	550	1700	2100	160 J	99 J	110	7800	18	140 J	100 J	150	1100	240	2000	610
BNASIM	BENZO(A)ANTHRACENE	ugkg	640	940	1500	1300	540 J	220 J	97	8700	8.4	150 J	140 J	200	1200	250	1300	1900
ENASIM	BENZO(A)PYRENE	uglkg	620	1100	1800	1400	580 J	270 J	140	10000	10	140 J	120 J	190	1900	480	1800	1900
BNASIM	BENZO(B)FLUORANTHENE	ugikg	1200	1800	3200	2400	730 J	400 J	330	18000	29	3700	310 J	610 J	3000	860	3200	2800
BNASIM	BENZO(G,H,I)PERYLENE	uglkg	720	820	1500	780	460 J	260 J	98	8700	9.8	${ }^{120} \mathrm{~J}$	120 J	150	1100	410	1400	760
ENASIM	BENZO(K)FLUORANTHENE	uglkg	860	1500	2600	2000	550 J	290 J	150	12000	12	260 J	240 J	220	2300	450	2300	2300
ENASIM	CHRYSENE	uglkg	820	1300	2000	2000	670 J	320 J	140	11000	16	340 J	290 J	330	1900	340	1900	2400
BNASIM	DIBENZO(A,H)ANTHRACENE	ugkg	200	260	550	310	130 J	66 J	38	3000	${ }^{3.3 \mathrm{~J}}$	33 J	33 J	57 J	410	130	530	300
SNASIM	FLUORANTHENE	uglkg	1000	980	1700	1900	980 J	460 J	130	12000	15	460 J	420 J	610	1600	230	1600	2000
ENASIM	INDENO(1,2,3-CD) PYRENE	ugkg	349	100	190	100	${ }_{5}^{230} 1$	3001	100	3000	10	$\underline{1701}$	150	160	1300	360	1800	110
BNASIM	NAPHTHALENE	uglkg	160	28 J	58 J	29 J	23 J	20 J	0.60 U	770	${ }_{0}^{1053}$	22 J	16 J	27	39	25 J	34 J	110
BNASIM	PENTACHLOROPHENOL	ugkg	150 J	420 J	820 J	420	85 J	67 J	200	7900 J	4.2 J	130 J	140 J	${ }^{0.75 U}$	8400	150 J	1200	570 J
ENASIM	PHENANTHRENE	uglkg	310	120	230	170	410 J	150 J	3.90	2400	3.5 U	74 J	61 J	79	220	43 J	220	120 J
BNASIM	PYRENE	ugkg	980	2000	2300	3100	830 J	390 J	190	13000	18	410 J	360 J	690	5300	450	1900	3400
E160.3	RESIDUE, TOTAL	percent	89	94	93	95	92	92	86	85	96	93	93	94	90	95	68	98
E1613/E1668	1,2,3,4,6,6,7,-HEPTACHLORODIBENZOFURAN	ngkg							1095.083		52.891			1047.361		479		
E1613/E1668	1,2,3,4,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	ngkg							10099.39		404.592			8072.642		3850		
E1613/E1668	1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	nglkg							${ }^{71.883}$		2.746 J			58.357		30.8		
E1613/E1668	1, 2, 3,4,7,8-HEXACHLORODIBENZOFURAN	nglkg							${ }^{23.138}$		1.715 U			34.53		14.6		
E1613/E1668	1,2,3,4,7,8,HEXACHLORODIBENZO-P-DIOXIN	nglkg							48.701		2.958 J			110.813		10.9		
E1613\|E1668	1, 2, 3,6,7,8-HEXACHLORODIBENZOFURAN	nglkg							${ }^{10.258}$		0.998 J			46.407		5.02		
E1613/E1668	1, $1,2,3,6,7,8$-HEXACHLORODIBENZO-P-DIOXIN	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$							$\frac{226.532}{0.0810}$		9.174			212.945 0.759 u		67.2 3.23		
E1613/E1668	1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	nglkg							105.751		${ }_{9} 9.478$			$\stackrel{\text { 254.423 }}{ }$		${ }_{\text {3,23 }}$		
E1613/E1668	1,2,3,7,8-PENTACHLORODIBENZOFURAN	ng/kg							1.351 J		0.232 J			3.212 J		${ }_{4}^{457}$ J		
E1613/E1668	1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	nglkg							11.932		0.986 J			42.361		2.28 J		
E1613/E1668	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	nglkg							${ }_{9}^{1.646}$		1.85 J			68.376		12		
E1613)E1668	2,3,4,7,8.PENTACHLORODIBENZOFURAN	nglkg							${ }^{1.3083}$		0.436 J			4.576 J		4.23		
E1613\|E1668	2,3,7,8.-TETRACHLORODIBENZOFURAN	nglkg							0.328 U		0.069 U			${ }^{0.925 \mathrm{~J}}$		OU		
E1613/E1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	nglkg							0.476 U		0.055 U			3.537		OU		
	OCTACHLORODIENZOFURAN	ngkg							${ }_{7988383.5164}$		${ }^{261.121} 3$			${ }_{\text {956494.838 }}$		$\stackrel{2830}{5800}$		
E1613/E1668	TOTAL LEPTACHLORINATED DIBENZOFURANS	ngkg							${ }_{5} 5204.385$		${ }^{202.557}$			3599.45		2330		
E1613/E1668	TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	nglkg							19169.224		1838.906			25744.054		18400		
E1613/E1668	TOTAL HEXACHLORINATED DIBENZOFURANS	nglkg							851.324		49.005			1272.932		451 J		
E1613/E1668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	nglkg							1176.598		159.006			3287.016		911		
E1613/E1668	TOTAL PENTACHLLORINATED DIBENZOFURANS	nglkg							${ }^{61.501}$		${ }^{9.676}$			271.991		56.5J		
	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	nglkg							${ }_{\text {51.643 }}$		$\frac{12.582}{30.2}$			$\frac{291.791}{29.555}$		22.6 5.71		
E1613/E1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	nglkg							$\stackrel{9.034}{9.084}$		7.119			${ }_{2}^{21.076}$		${ }^{\text {. } 873}$		
SW6020	ANTIMONY	mg/kg	0.46 J	0.36 UJ	0.35 UJ	0.35 UJ	0.35 U	0.37 U	0.78 J	11	0.35 UJ	${ }^{0.35 \mathrm{U}}$	${ }^{0.36 U}$	0.36 UJ	0.36 UJ	0.36 UJ	0.49 UJ	0.34 U
SW6020	ARSENIC	mg/kg	51	13	6.4	2.35	3.93	4.4 J	85	600	1.2	13 J	18 J	23	59 J	180	10 J	1.1
SW6020	BARIUM	mg/kg	40 E	8.3 E	13 E	15	6.2	7.0	12	57	2.9	7.6	9.9	8.5	16	16	15	1.6
SW6020	CADMIUM	mg/kg	0.33 J	${ }^{0.31 \mathrm{U}}$	0.30 U	0.30 U	0.29 U	0.31 U	0.33 U	0.52 J	${ }^{0.30 \mathrm{U}}$	0.30 U	${ }^{0.31 \mathrm{U}}$	${ }^{0.32 \mathrm{~J}}$	0.31 U	${ }^{0.30 \mathrm{U}}$	0.42 U	0.29 U
SW6020	CHROMIUM	mq/kg	64	13	4.3	4.8 J	6.9 J	8.3 J	62	1000	2.5	9.6 J	14 J	31	44 J	4.0	17 J	1.7
SW6020	COPPER	mg/kg	40	11	5.5	4.4	5.0	5.5	11	440	1.1	12	14	17	36	2.1	21	0.90 J
SW6020	LEAD	mg/kg	56	4.4	5.8	8.0	33	40	10	52	5.0	7.5	9.1	5.4	12	5.4	9.2	1.9
SW6020	SELENIUM	mg/kg	0.91 U	0.89 U	0.86 U	0.86 U	0.85 U	0.91 U	0.96 U	0.92 U	0.87 U	0.86 U	0.90 U	0.89 UJ	0.89 U	0.88 U	1.2 U	0.85 U
SW6020	SILVER	mglkg	0.41 U	0.40 U	0.39 U	0.39 U	0.39 U	0.41 U	0.43 U	0.45 U	0.39 U	0.39 U	0.41 U	0.40 U	0.40 U	0.40 U	0.55 U	0.39 U
SW6020	VANADIUM (FUME OR DUST)	mg/kg	3.2	1.8	1.3	2.6	1.6	1.8	3.6	1.14	0.93 U	1.3 J	1.5 J	6.4 J	2.4	2.0	2.2	0.91 U
SW7471	MERCURY	mg/kg	0.20	0.15	0.35	0.22	0.047 J	0.045	0.042	2.1	0.016 J	0.020 J	0.020 J	0.029	0.32	0.022 J	0.38	0.026
SW8260	1,1,1-1-TRICHLOROETHANE	ugkg	0.15 U	0.13 U	0.13 U	0.13 U	0.14 U	0.14 U	0.16 U	0.16 U	0.13 U	0.13 U	0.13 U	0.13 U	0.14 U	0.13 U	0.20 U	0.13 U
SW8260	1,1,1,2,2-TETRACHLOROETHANE	uglkg	0.081 U	0.071 U	0.072 U	0.070 U	0.075 U	0.076 U	0.086 U	0.083 U	0.069 U	0.071 U	0.072 U	0.071 U	0.074 U	0.070 U	0.11 U	0.068 U
SW8260	1,1,2-TRICHLOROETHANE	ugkg	0.16 U	0.14 U	0.15 U	0.14 U	0.15 U	0.15 U	0.17 U	$0.17{ }^{\text {U }}$	0.14 U	0.14 U	0.14 U	0.14 U	0.15 U	0.14 U	0.22 U	0.14 U
SW8260	1,1-1.ICHLOROETHANE	uglkg	0.078 U	0.068 U	0.068 U	0.067 U	0.071 U	0.072 U	0.083 U	0.079 U	0.066 U	0.068 U	0.068 U	0.068 U	0.070 U	0.067 U	0.11 U	0.065 U
$\frac{\text { SW8260 }}{\text { SW8260 }}$	1,1.-DICHLOROETHYLENE	ug/kg	$\frac{0.21 \mathrm{U}}{0.19 \mathrm{UJ}}$	$\frac{0.19 \mathrm{U}}{0.16 \mathrm{U}}$	$\frac{0.19 \mathrm{U}}{0.17 \mathrm{U}}$	$\frac{0.18 \mathrm{U}}{0.16 \mathrm{UJ}}$	0.20 U   0.17 U	$\frac{0.20 \mathrm{U}}{0.18 \mathrm{U}}$	$\frac{0.23 \mathrm{U}}{0.20 \mathrm{u}}$	0.22U	$\frac{0.18 \mathrm{U}}{0.16 \mathrm{U}}$	$\frac{0.19 \mathrm{U}}{0.17 \mathrm{U}}$	0.19 U	$0.19{ }^{0}$	0.19U	0.18 U	0.29 U	0.18 U
SW8260	1,2-2IIROMO-3-CHLOROPROPANE (DBCP)	ugkg	0.61 UJ	$\stackrel{0.53 \mathrm{U}}{0}$	0.53	0.520 J	${ }_{0}^{0.56 \mathrm{U}}$	$\stackrel{0.56 \mathrm{U}}{0}$	${ }_{0}^{0.64 \mathrm{UJ}}$	0.62 UJ	${ }^{0.510 \mathrm{U}^{0}}$	0.53 0	${ }_{0}^{0.153}$	0.530	0.55	${ }^{0.52 \mathrm{UJ}}$	0. 0.82 UJ	0.510
SW8260	1,2-DIBROMOETHANE	ugkg	0.069 U	0.060 U	0.061 U	0.060 U	0.063 U	0.064 U	0.073 U	0.071 U	0.059 U	0.061 U	0.061 U	0.060 U	0.063 U	0.060 U	0.093 U	0.058 U
SW8260	1,2-DICHLOROBENZENE	uglkg	0.096 UJ	0.083 U	0.085 U	0.083 UJ	0.088 U	0.089 U	0.11 U	0.098 UJ	0.081 U	0.084 U	0.084 U	0.084 U	0.087 UJ	0.083 U	0.13 UJ	0.081 U
SW8260	1,2-DICHLOROETHANE	uglkg	0.13 U	0.11 U	0.11 U	0.11 U	0.12 U	0.12 U	0.14 U	0.13 U	0.11 U	0.11 U	0.11 U	0.11 U	0.12 U	0.11 U	$0.17{ }^{\text {U }}$	0.11 U
SW8260	1,2-IICHLOROPROPANE	ugkg	0.067 U	0.058 U	0.059 U	0.058 U	0.061 U	0.062 U	0.071 U	0.068 U	0.057 U	0.059 U	0.059 U	0.058 U	0.060 U	0.058 U	0.090 U	0.056 U
SW8260	1,4-DICHLOROBENZENE	uglkg	0.11 UJ	0.093 U	0.094 U	0.092 UJ	0.098 U	0.10 U	0.12 U	0.11 UJ	0.091 U	0.094 U	0.094 U	0.094 U	0.097 UJ	0.092 U	0.15 UJ	0.090 U
SW8260	ACETONE	ugkg	3.10	2.70	2.7 U	5.2 J	2.9 U	2.9 U	300	3.2 U	29 J	2.7 U	2.74	660	2.80	7.7 J	4.2 U	2.6 U
SW8260	BENZENE	ugkg	0.48 U	${ }^{0.421}$	0.43 U	${ }^{0.421 ~}$	0.44 U	0.45 U	$0.51{ }^{0.3}$	0.49 U	$0.41{ }^{\text {O }}$	${ }^{0.42 \mathrm{U}}$	0.42 U	0.42 U	0.44 U	0.42 U	0.65 U	0.41 U
SW8260	BROMODICHLOROMETHANE	uglkg	0.36 U	0.31 U	0.32 U	0.31 U	0.33 U	0.34 U	0.38 U	0.37 U	0.31 U	0.32 U	0.32 U	0.32 U	0.33 U	0.31 U	0.48 U	0.30 U
SW8260	BROMOMETHANE	ugkg	0.40 UJ	0.35 UJ	0.35 UJ	0.34 UJ	0.36 U	0.37 U	0.42 UJ	0.41 UJ	0.34 UJ	0.35 U	0.35 U	0.35 UJ	0.36 U	0.34 UJ	0.53 U	0.33 U
SW8260	CARBON DISULFIDE	$\frac{\text { uglkg }}{\text { ugakg }}$	$\frac{2.00}{0.43 \mathrm{u}}$	$\frac{1.8 \mathrm{U}}{0.38 \mathrm{U}}$	$\frac{1.8 \mathrm{U}}{0.38 \mathrm{u}}$	1.70	1.80	1.90	2.14	2.14	1.7U	1.8 U	1.8 U	$\frac{1.8 U}{}$	1.8 U	1.7 U	2.7 U	1.7 U
SW8260	CARBON TETRACHLORIDE	ugkg	0.43 U	0.38 U	0.38 U	0.37 U	0.40 U	0.40 U	0.46 U	0.44 U	0.37 U	0.38 U	0.38 U	0.38 U	0.39 U	0.37 U	0.58 U	0.37 U
SW8260	CFC-11	uglkg	0.32 U	0.28 U	0.29 U	0.28 U	0.30 U	0.30 U	0.34 U	0.33 U	0.27 U	0.28 U	0.28 U	0.28 U	0.29 U	0.28 U	0.44 U	0.27 U
SW8260	CFC-12	ugikg	0.40 U	$\stackrel{0.35 \mathrm{U}}{ }$	0.350	0.34U	$0.36 \mathrm{U}^{0.3}$	0.37 U	0.42 U	$0.41{ }^{\text {U }}$	0.34	0.35	0.35U	0.35U	0.36	0.34U	0.53 u	+0.33 U
SW8260	CHLLRINATED FLUOROCARBON (FREON 113)	ugkg	$\xrightarrow{0.450}$	0.39 U   0.43	$\xrightarrow{0.394}$	$\stackrel{0.39 \mathrm{U}}{0}$	$\xrightarrow{0.41 \mathrm{U}}$	0.42 U 0.46 U	0.470   0.53	$\stackrel{0.460}{0.510}$	$\stackrel{0.38}{0}$	0.394   0.44	0.344	0.393 0.430	0.45U	$\stackrel{.0 .43 \cup}{ }$	0.67 U	0.320
SW8260	CHLORODIBROMOMETHANE	ugkg	0.31 U	0.27 U	0.27 U	0.27 U	0.29 U	0.29 U	0.33 U	0.32 U	0.26 U	0.27 U	0.27 U	0.27 U	0.28 U	0.27 U	0.42 U	0.26 U
SW8260	CHLOROETHANE	ugkg	0.45 U	0.39 U	0.39 U	0.39 U	0.41 U	0.42 U	0.47 UJ	0.46 U	0.38 UJ	0.39 U	0.39 U	0.39 U	0.40U	0.39 UJ	0.60 U	0.38 U
SW8260	CHLOROFORM	$\frac{\mathrm{ug} \text { gg }}{\text { ug }}$	$\frac{0.42 \mathrm{U}}{0.56 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\stackrel{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.51 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.52 \mathrm{u}}$	$\frac{0.45 \mathrm{U}}{0.59 \mathrm{u}}$	$\frac{0.43 \mathrm{U}}{0.57 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.47 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.49 \mathrm{u}}$	0.37 U 0.49 u	$\frac{0.37 \mathrm{U}}{0.49 \mathrm{u}}$	$\frac{0.38 \mathrm{U}}{0.50 \mathrm{u}}$	0.36 U	0.57 U	$\frac{0.36 \mathrm{U}}{0.47 \mathrm{U}}$
SW8260	ICIS-1,2-ICHLOROETHYLENE	ugkg	0.32 U	0.28 U	0.29 U	0.28 U	0.30 U	0.30 U	0.34 U	0.33 U	0.27 U	0.28 U	0.28 U	0.28 U	0.29 U	0.28 U	0.44 U	0.27 U


		$\begin{array}{r} \text { Location } \\ \text { Sample ID } \\ \text { Depth } \\ \text { Sample Date } \end{array}$		SS016 0.25-0.5 feet 12/04/2006			SSO19   SSO19BA   $0.25-0.5$ feet   $12 / 1012006$	SSO19   SSO19BB   $0.25-0.5$ feet   $12101 / 2006$		$\begin{array}{\|c\|} \hline \hline \text { SSO21 } \\ \text { SSo21BA } \\ 0.25-0.5 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO22 } \\ \text { SSO22BA } \\ 0.25-0.5 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \hline \text { SSSO23 } \\ \text { SSO23BA } \\ 0.25-5 \text { feet } \\ 1210112006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO223 } \\ \text { SSO23BB } \\ 0.25-0.5 \text { feet } \\ 12101 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO224 } \\ \text { SSO24BA } \\ 0.25-0.5 \text { feet } \\ 12 / 11 / 20006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO25 } \\ \text { SSO25BA } \\ 0.25-5.5 \text { feet } \\ 1212420006 \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO26 } \\ \text { SSO26BA } \\ 0.25-0.5 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \hline \text { SSO27 } \\ \text { SSO278A } \\ 0.25-5.5 \text { feet } \\ 1212042006 \end{array}$	
Lab Method	Analyte	Units																
sw8260	CIS-1,3-DICHLOROPROPENE	ug/kg	0.36 U	0.31 U	0.32 U	0.31 U	0.33 U	0.34 U	0.38 U	0.37 U	0.31 U	0.32 U	0.32 U	0.32 U	0.33 U	0.31 U	0.48 U	0.30 U
SW8260	CYCLOHEXANE	ug lkg	0.47 U	0.41 U	0.41 U	0.41 U	0.43 U	0.44 U	0.50 U	0.48 U	0.40 U	0.41 U	0.41 U	0.41 U	0.43 U	0.41 U	0.63 U	0.40 U
SW8260	DICHLOROMETHANE	ugikg	0.48 U	0.42 U	0.43 U	0.42 U	0.44 U	0.45 U	8.55	0.49 U	0.41 U	${ }^{0.42 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$	$0.42 \mathrm{U}^{0}$	0.444	${ }^{0.425}$	$0.65{ }^{0}$	$0.41{ }^{\text {U }}$
SW8260	ETHYLBENZENE	ug lkg	0.52 U	0.45 U	0.46 U	0.45 U	0.48 U	0.48 U	0.55 U	0.53 U	0.44 U	0.46 U	0.46 U	0.45 U	0.47 U	0.45 U	0.70 U	0.44 U
SW8260	ISOPROPYLBENZENE	ugkg	$0.57{ }^{\text {UJ }}$	0.49 U	0.50 U	0.49 UJ	0.52 U	0.53 U	0.60 U	0.58 UJ	0.48 U	0.50 U	0.50 U	0.50 U	0.52 UJ	0.49 U	0.77 UJ	0.48 U
SW8260	m,p-xylenes	uglkg	1.10	0.93 U	0.94 U	0.92 U	0.98 U	1.00	1.2 U	1.10	0.91 U	0.94 U	0.94 U	0.94 U	0.97 U	0.92 U	1.5 U	0.90 U
sW8260	M-DICHLOROBENZENE	ugkg	0.062 UJ	0.054 U	0.054 U	0.053 UJ	0.057 U	0.058 U	0.066 U	0.063 UJ	0.052 U	0.054 U	0.054 U	0.054 U	0.056 UJ	0.053 U	0.083 UJ	0.052 U
SW8260	METHYL ACETATE	uglkg	0.24 U	0.21 U	0.21 U	0.21 U	0.22 U	0.22 U	0.25 U	0.24 U	0.20 U	0.21 U	0.21 U	0.21 U	0.22 U	0.21 U	0.32 U	0.20 U
SW8260	METHYL ETHYL KETONE	ugkg	1.4 U	1.2 U	1.2 U	1.2 U	1.3 U	1.3 U	1.5 U	1.4 U	1.2 U	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.9 U	1.2 U
SW8260	METHYL ISOBUTYL KETONE	ug/kg	0.87 U	0.76 U	0.77 U	0.76 U	0.80 U	0.81 U	0.93 U	0.89 U	0.74 U	0.77 U	0.77 U	0.76 U	$0.79{ }^{\text {u }}$	0.76 U	1.2 U	$0.74{ }^{1}$
SW8260	METHYL N-BUTYL KETONE	ug lkg	1.3 U	1.10	1.10	1.14	1.2 U	1.2 U	$1.4 \mathrm{UJ}^{\text {d }}$	1.3 U	1.10 U	1.10	1.10	1.10	1.2 U	1.10 U	1.7 U	1.10
SW8260	METHYLBENZENE	ug kg	0.52 U	0.45 U	0.46 U	0.45 U	0.48 U	0.48 U	0.55 U	0.53 U	0.44 U	${ }^{0.46 \mathrm{U}}$	0.46 U	0.45 U	0.47 U	0.56 J	0.70 U	0.44 U
SW8260	METHYLCYLOHEXANE	uglkg	0.54 U	0.47 U	0.48 U	0.47 U	0.50 U	0.51 U	0.58 U	0.56 U	0.46 U	0.48 U	0.48 U	0.48 U	0.49 U	0.47 U	0.73 U	0.46 U
SW8260	O-XYLENE	ugkg	0.50 U	0.43 U	0.44 U	0.43 U	0.45 U	0.46 U	0.53 U	0.51 U	0.42 U	0.44 U	0.44 U	0.43 U	0.45 U	0.43 U	0.67 U	0.42 U
SW8260	STYRENE (MONOMER)	uglkg	0.53 U	0.46 U	0.47 U	0.46 U	0.49 U	0.50 U	0.56 U	0.54 U	0.45 U	0.47 U	0.47 U	0.46 U	0.48 U	0.46 U	0.72 U	0.45 U
SW8260	TERT-BUTYL METHYL ETHER	ugkg	0.40 U	0.35 U	0.35 U	0.34 U	0.36 U	0.37 U	0.42 U	0.41 U	0.34 U	0.35 U	0.35 U	0.35 U	0.36 U	0.34 U	0.53 U	0.33 U
SW8260	TETRACHLOROETHYLENE	uglkg	$\stackrel{0.50 \mathrm{U}}{ }$	${ }^{0.43 U}$	$0.44{ }^{\text {U }}$	${ }^{0.43 ~}{ }^{\text {U }}$	0.45 U	${ }^{0.46 \mathrm{U}}$	$\stackrel{0.53 \mathrm{U}}{ }$	$0.51{ }^{0}$	0.42 U	$0.44{ }^{\text {U }}$	$0.44{ }^{\text {O }}$	0.43 U	0.45 U	0.43 U	0.67 U	0.42 U
SW8260	TRANS-1,2-DICHLOROETHENE	uglkg	0.47 U	0.41 U	0.41 U	0.41 U	0.43 U	0.44 U	0.50 U	0.48 U	0.40 U	0.41 U	0.41 U	0.41 U	0.43 U	0.41 U	0.63 U	0.40 U
SW8260	TRANS-1,2-IICHLOROPROPENE	ug/kg	0.37 U	0.32 U	0.33 U	0.32 U	0.34 U	0.35 U	0.40 U	0.38 U	0.32 U	0.33 U	0.33 U	0.33 U	0.34 U	0.32 U	0.50 U	0.31 U
SW8260	TRIBOMOMETHANE	ug lkg	0.48 U	0.42 U	0.43 U	0.42 U	0.44 U	0.45 U	0.51 U	0.49 U	0.41 U	0.42 U	0.42 U	0.42 U	0.44 U	0.42 U	0.65 U	0.41 U
SW8260	TRICHLOROETHYLENE	ugkg	0.50 U	0.43 U	0.44 U	0.43 U	0.45 U	0.46 U	0.53 U	0.51 U	0.42 U	0.44 U	0.44 U	0.43 U	0.45 U	0.43 U	0.67 U	0.42 U
SW8260	VINYL CHLORIDE	uglkg	0.30 U	0.26 U	0.26 U	0.26 U	0.27 U	0.28 U	0.32 U	0.31 U	${ }^{0.25 U}$	${ }^{0.26 U}$	0.26 U	0.26 U	0.27 U	0.26 U	0.40 U	0.25 U
SW8270	2,4,5-TRICHLOROPHENOL	uglkg	15 U	14 U	15 U	14 U	15 U	15 U	16 U	16 U	14 U	14 U	14 U	14 U	15 U	14 U	20 U	14 U
SW8270	2,4,6-TRICHLOROPHENOL	uglkg	41 U	39 U	39 U	39 U	40 U	40 U	42 U	43 U	38 U	39 U	39 U	39 U	40 U	38 U	54 U	37 U
SW8270	2,4-DICHLOROPHENOL	ugkg	20 U	19 U	19 U	18 U	19 U	19 U	20 U	210	18 U	19 U	19 U	19 U	19 U	18 U	26 U	18 U
SW8270	2,4-DIMETHYLPHENOL	ugkg	22 U	210	210	210	210	210	23 U	23 U	20 U	21 U	210	210	22 U	20 U	28 U	20 U
SW8270	2,4-DIIIITROPHENOL	uglkg	14 U	13 U	13 U	13 U	14 U	14 U	14 U	15 U	13 U	13 UJ	${ }_{13} 12 \mathrm{~J}$	13 U	14 U	13 U	18 U	13 U
SW8270	2,4-DINITROTOLUENE	ugkg	110	11 U	110	110	110	110	12 U	12 U	110	110	110	11 U	11 U	11 U	15 U	10 U
SW8270	2,6-DIIITROTOLUENE	uglkg	41 U	39 U	39 U	39 U	40 U	40 U	42 U	43 U	38 U	39 U	39 U	39 U	40 U	38 U	54 U	37 U
SW8270	2.CHLORONAPHTHALENE	uglkg	18 U	18 U	18 U	17 U	18 U	18 U	19 U	19 U	17 U	18 U	18 U	18 U	18 U	17 U	24 U	17 U
SW8270	2-CHLOROPHENOL	uglkg	21 U	20 U	21 U	22 U	19 U	20 U	20 U	20 U	20 U	19 U	27 U	19 U				
SW8270	2-METHYLPHENOL (0-CRESOL)	ugkg	14 U	13 U	13 U	13 U	14 U	14 U	14 U	15 U	13 U	13 U	13 U	13 U	14 U	13 U	18 U	13 U
SW8270	2-NITROANLINE	ugkg	25 UJ	24 UJ	24 UJ	24 UJ	25 UJ	25 UJ	26 U	26 U	23 U	24 UJ	24 UJ	24 U	25 UJ	24 U	33 UJ	23 U
SW8270	2-NITROPHENOL	uglkg	16 U	15 U	16 U	15 U	16 U	16 U	17 U	17 U	15 U	16 U	16 U	15 U	16 U	15 U	210	15 U
SW8270	3,3'-DICHLOROBENZIDINE	ugikg	39 U	37 U	37 U	36 U	38 U	38 U	40 U	41 U	36 U	37 U	37 U	37 U	38 U	36 U	51 U	35 U
SW8270	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	uglkg	15 U	14 U	15 U	14 U	15 UJ	15 UJ	16 U	16 U	14 U	14 U	14 U	14 U	15 UJ	14 U	20 U	14 U
SW8270	3-NITROANILINE	ugkg	20 U	19 U	19 U	18 U	19 U	19 U	20 U	21 U	18 U	19 U	19 U	19 U	19 U	18 U	26 U	18 U
SW8270	4,6-DINITRO-2-METHYLPHENOL	uglkg	11 U	10 U	11 U	10 U	11 U	11 U	11 U	12 U	9.8 U	11 U	11 U	10 U	11 U	9.9 U	14 U	9.6 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	11 U	12 U	12 U	110	11 U	110	110	11 U	11 U	15 U	10 U					
SW8270	4-CHLORO-3-METHYLPHENOL	uglkg	18 U	18 U	18 U	17 U	18 U	18 U	19 U	19 U	17 U	18 U	18 U	18 U	18 U	17 U	24 U	17 U
SW8270	4-CHLOROPHENYL PHENYL ETHER	ugkg	25 U	24 U	24 U	24 U	25 U	25 U	26 U	26 U	23 U	24 U	24 U	24 U	25 U	24 U	33 U	23 U
SW8270	4-METHYLPHENOL (MPP-CRESOL)	ug/kg	30 U	28 U	29 U	28 U	29 U	29 U	31 U	310	28 U	28 U	28 U	28 U	29 U	28 U	39 U	27 U
SW8270	4-NITROPHENOL	uglkg	20 UJ	19 UJ	19 UJ	18 UJ	19 UJ	19 UJ	20 U	21 UJ	18 U	19 UJ	19 UJ	19 U	19 UJ	18 U	26 UJ	18 UJ
SW8270	BENZYL LUTYL PHTHALATE	ugkg	21 U	20 U	20 U	20 U	23 J	28 J	21 U	22 U	19 U	20 U	20 U	20 U	20 U	19 U	27 U	19 U
SW8270	BIPHENYL	uglkg	170 U	160 U	170 U	160 U	170 U	170 U	180 U	180 U	160 U	170 U	1700	160 UJ	1700	160 UJ	230 U	160 U
SW8270	BIS(2-CHLORETHOXYMETHANE	uglkg	${ }^{20 \mathrm{U}}$	19 U	19 U	18 U	19 U	19 U	20 U	210	18 U	19 U	19 U	19 U	19 U	18 U	26 U	18 U
SW8270	BIIS(2-CHLOROETHYL)ETHER	ugkg	17 UJ	16 U	17 UJ	16 U	17 U	17 U	18 U	18 U	16 U	17 U	17 U	16 U	17 U	16 U	23 U	16 U
SW8270	BIIS(2-CHLOROISOPROPYL) ETHER	uglkg	24 U	23 U	23 U	23 U	${ }^{23} \mathbf{U J}$	23 UJ	25 U	25 UJ	22 U	23 UJ	23 UJ	23 U	24 UJ	23 U	31 U	22 UJ
SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	ugkg	18 U	18 U	18 U	17 U	32 J	27 J	19 U	33 J	17 U	18 U	18 U	18 U	18 U	26 J	24 U	17 U
SW8270	$\xrightarrow{\text { CARBAZOLE }}$ DIBENZOFURAN	$\frac{\mathrm{ug} \text { 矿 }}{\text { ugkg }}$	$\frac{150 \mathrm{~J}}{90}$	$\frac{110 \mathrm{~J}}{25}$	$\frac{180 \mathrm{~J}}{15}$	$\frac{220}{26}$	$\frac{29 \mathrm{~J}}{16}$	24 J   15   15	$\underline{19 \mathrm{~J}}$	810 480	$\frac{17 \mathrm{U}}{17}$	$\frac{38}{14}$	$\frac{23 \mathrm{~J}}{14}$	$\frac{34 \mathrm{~J}}{16 \mathrm{~J}}$	$\frac{150 \mathrm{~J}}{30}$	14 14	$\frac{860}{61 \mathrm{~J}}$	$\frac{110 \mathrm{~J}}{14}$
SW8270	DIETHYL PHTHALATE	uglkg	14 U	13 U	13 U	13 U	14 U	14 U	14 U	150	13 U	13 U	13 U	13 U	14 U	13 U	18 U	13 U
SW8270	DIMETHYL PHTHALATE	ugkg	110	110	110	11 U	110	110	12 U	12 U	110	11 U	110	110	11 U	110	15 U	10 U
SW8270	DI-N-BUTYL-PHTHALATE	ugkg	69 U	65 U	66 U	65 U	67 U	67 U	710	72 U	64 U	66 U	66 U	65 U	68 U	65 U	90 U	63 U
SW8270	DI-N-OCTYL-PHTHALATE	uglkg	17 U	16 U	17 U	16 U	17 U	17 U	18 U	18 U	16 U	17 U	17 U	16 U	17 U	16 U	23 U	16 U
SW8270	HEXACHLORO-1,3-BUTADIENE	ugkg	20 U	19 U	19 U	18 U	19 U	19 U	20 U	210	18 U	19 U	19 U	19 U	19 U	18 U	26 U	18 U
SW8270	HEXACHLOROBENZENE		9.4U 13	$\frac{8.9 \mathrm{U}}{12 \mathrm{U}}$	$\frac{9.0 U}{12 U}$	$\frac{8.8 U}{12 \mathrm{U}}$	$\frac{9.10}{130}$	$\frac{9.10}{13 U}$	$\frac{9.7 U}{13 U}$	$\frac{9.8 U}{13 U}$	$\frac{8.7 \mathrm{U}}{12 \mathrm{U}}$	$\frac{9.0 \mathrm{U}}{12 \mathrm{UJ}}$	$\frac{9.0 U}{12 \mathrm{UJ}}$	$\frac{8.9 \mathrm{UJ}}{12 \mathrm{U}}$	$\frac{9.3 U}{13 U}$	$\frac{8.8 \mathrm{UJ}}{12 \mathrm{U}}$	$\frac{13 U}{170}$	$\frac{8.50}{12 U}$
SW8270	HEXACHLOROETHANE	uglkg	200	19 U	19 U	18 U	190	190	20 U	210	18 U	19 U	19 U	19 U	19 U	18 U	26 U	18 U
SW8270	NITROBENZENE	ug/kg	23 U	22 U	24 U	24 U	210	22 U	22 U	22 U	23 U	22 U	30 U	21 U				
SW8270	N-NITROSO-DI-N-PROPYLAMINE	uglkg	21 U	20 U	20 U	20 U	20 UJ	20 UJ	21 U	22 U	19 U	20 U	20 U	20 U	20 UJ	19 U	27 U	19 U
SW8270	N-NITROSOODIPHENYLAMINE	ugkg	13 U	12 U	12 U	12 U	13 U	13 U	13 U	13 U	12 U	12 U	12 U	12 U	13 U	12 U	17 U	12 U
SW8270	P-CHLOROANILINE	ugkg	30 U	28 U	29 U	28 U	29 U	29 U	31 U	31 U	28 U	28 U	28 U	28 U	29 U	28 U	39 U	27 U
SW8270	PHENOL	ugikg	18 U	18 U	18 U	17 U	18 U	18 U	19 U	19 U	17 U	18 U	18 U	18 U	18 U	17 U	24 U	17 U
SW8270	P-NITROANLINE	uglkg	14 U	13 U	13 U	13 U	14 U	14 U	14 UJ	15 U	13 UJ	13 U	13 U	13 U	14 U	13 UJ	18 U	13 U

Notes:
mqkg:

gikg: micrograms per kilogram
Dioxin values in italics are new results from Vista laboratory

		$\begin{array}{r} \text { Location } \\ \text { Sample il } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{array}{\|c\|\|} \hline \hline \text { SSO29 } \\ \text { SSO29BA } \\ 0.25-0.5 \text { feet } \\ 121 / 107 / 2006 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \hline \text { SSO31 } \\ \text { SSo31BA } \\ 0.25-0.5 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO32 } \\ \text { Sso32BA } \\ 0.25-0.5 \text { feet } \\ 12 / 06 / 2006 \end{array}$ 12/06/2006		$\begin{array}{\|c\|} \hline \hline \text { SSO334 } \\ \text { SSO304BA } \\ 0.25-0.5 \text { feet } \\ 12204 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSOO35 } \\ \text { SSO35BA } \\ 0.25-0.5 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO36 } \\ \text { SSO36BA } \\ 0.25-0.5 \text { feet } \\ 12 / 06 / 2006 \end{array}$ $12 / 06 / 2006$		$\begin{array}{\|c\|} \hline \hline \text { SSO338 } \\ \text { SSO38BA } \\ 0.25-0.5 \text { feet } \\ 1220712006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO39 } \\ \text { SSO39BA } \\ 0.25-0.5 \text { feet } \\ 12 / 107 / 2006 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \hline \text { SSO39 } \\ \text { SSo3sBB } \\ 0.25-0.5 \text { feet } \\ 12 / 07 / 2006 \end{array}$	$\begin{gathered} \text { SSO40 } \\ \text { SSO40BA } \\ 0.25-0.5 \text { feet } \\ 12 / 101 / 2006 \end{gathered}$ 12/01/2006	$\begin{array}{\|c\|} \hline \hline \text { SSO41 } \\ \text { SSO41BA } \\ 0.25-0.5 \text { feet } \\ 12 / 11 / 20066 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \hline \text { SSO42 } \\ \text { SSO42BB } \\ 0.25-0.5 \text { feet } \\ 121 / 1 / 12006 \\ \hline \end{array}$
Lab Method	Analyte	Units																
SNASIM	2-METHYLNAPHTHALENE	uglkg	1.7 U	57	2.7 J	81 U	1.6 U	17 U	16 U	52	430	33 U	1.6 U	1.9 U	390	140	92 J	82 U
	ACENAPHTHENE	ugkg	3.00	43 J	2.90 J		2.90	29 U	29 U	31 U	160	59 U	2.90	3.4 U	180 U	110	150 U	150 U
SNASIM	ACENAPHTHYLENE	uglkg	2.80	510	8.3	960	2.8 U	410	180	210	1800	420	3.75	3.30	1200	480	2300	1800
SNASIM	ANTHRACENE	uglkg	6.2	750	19	2300	1.15	1000	86	270	8300	690	6.7	3.9 )	2600	890	3400	2900
BNASIM	BENZO(A)ANTHRACENE	ugkg	4.8	2300	11	2000	0.54 U	640	200	370	4400	1300	3.4 J	2.6 J	1400	490	3900 J	2300 J
BNASIM	BENZO(A)PYRENE	ugkg	5.0	3000	15	2100	1.2 U	680	290	400	4300	1000	4.2	2.85	1600	690	4500	3400
BNASIM	BENZO(B) FLUORANTHENE	uglkg	11	5600 J	32	3500	0.85 U	1200	280	750	9700	1800	9.4	6.0	3400	1600 J	6600	5100
BNASIM	BENZO(G,H,1)PERYLENE	ugkg	5.3	1700	17	2500	0.70 U	600	190	470	3900	930	7.0	3.65	2900	910	3300	2600
BNASIM	BENZO(K)FLUORANTHENE	uglkg	8.2	2300	17	3000	0.70 U	1100	290	580	5500	1500	7.1	4.7	2600	730	5400 J	3900 J
SNASIM	CHRYSENE	uglkg	8.5	2500	14	2500	0.51 U	1200	240	550	6000	1700	5.0	3.6 J	2200	690	5400 J	3500 J
BNASIM	DIBENZO(A,H)ANTHRACENE	uglkg	1.5 J	780 J	5.2	620	0.55 U	200	60	130	1500	280	1.5 J	0.64 U	630	260 J	1200 J	810 J
SNASIM	FLUORANTHENE	uglkg	12	2600	18	2800	${ }^{0.63 U}$	2200	180	700	8300	2100	5.6	0.74 U	2800	660	7500 J	4100 J
BNASIM	FLUORENE	ugkg	1.7 U	44	1.6 UJ	81 U	1.6 U	27 J	16 U	,	600	33 U	1.6 U	1.90	100 J	80	110 J	91 J
BNASIM	INDENO(1,2,3-CD) PYRENE	uglkg	6.1	1800	15	2400	0.93 U	690	230	500	4900	1100	7.2	3.9 J	2800	790	3900	3000
SNASIM	NAPHTHALENE	uglkg	0.55 U	92	8.6 J	65 J	0.55 U	22 J	18 J	50	640	12 U	${ }^{0.54 U}$	0.64 U	470	200	130 J	100 J
SNASIM	PENTACHLOROPHENOL	uglkg	0.76 U	7.4 U	5.7 J	1800 J	0.75 U	720	7.5 U	210 J	940 J	330 J	15 J	14 J	3200	300 J	450 J	370 J
SNASIM	PHENANTHRENE	uglkg	5.5 J	390	5.7 J	530	3.6 U	420	45 J	210	2500	360	3.5 U	4.10	1100	210	610	470
SNASIM	PYRENE	ugkg	11	3100	20	3300	0.57 J	1900	230	700	8600	1900	6.1	4.8	2600	870	8400 J	5500 J
E160.3	RESIDUE, TOTAL	percent	93	95	95	93	94	94	94	90	92	93	95	81	78	90	91	92
E1613/E1668	1,2,3,4,6,7,8,-HEPTACHLORODIBENZOFURAN	ngkg							38.195		3150	259.986				3620		
E1613/1668	1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	nglkg							219.2		25500	3050.144				33400		
E16131/1668	1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	ng lkg							1.744 J		205	18.54				243		
E16131/1668	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	nglkg							2.624 J		71.2	9.319				105		
E1613/16688	1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	nglkg							1.492 J		156	16.605				247		
E1613116688	1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	nglkg							1.478 J		${ }^{43.8 \mathrm{~J}}$	4.457 J				78.2		
E1613/11668	1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	ng lkg							${ }_{1.964 \mathrm{~J}^{\text {J }}}$		${ }_{\text {1936 }}^{69}$	54.161 0.473 U				720 30.1		
E1613/161668	1,2,3,7,	nglkg							${ }_{4}^{1.8555}{ }^{\text {J }}$		284	${ }^{50.82}$				445		
E1613/161688	1,2,3,7,8-PENTACHLORODIBENZOFURAN	ngkg							0.335 J		7.58 J	0.926 J				9.79		
E1613/1668	1,2,3,7,8.PENTACHLORODIBENZO-P-DIOXIN	ngkg							0.581 J		45.7 J	5.709				58.8		
E1613/16688	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	nglkg							1.407 J		96.8	7.493				160		
E1613/16688	2,3,4,7,8-PENTACHLORODIBENZOFURAN	nglkg							0.705 U		21.7 J	0.921 J				36.8		
E1613116688	2,3,7,8-TETRACHLORODIBENZOFURAN	nglkg							0.427 J		${ }^{6.02 \mathrm{~J}}$	0.68 J				3.34		
E1613/1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	nglkg							0.019 U		4.08 J	0.581 U				1.86		
E1613/1668	OCTACHLORODIBENZOFURAN	nglkg							118.7		17100	1273.719				14200		
E163121668	OCTACHLORODIBENZO-P-DIOXIN	nglkg							1785.304		304000	${ }^{26714.5888}$				346000		
	TOTAL HEPTACHLORINATED DIBENZOFURANS	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$							$\frac{118.6}{1043.374}$		14300 75500	${ }_{\text {1139,784 }}^{12301.16}$				$\frac{14000}{143000}$		
E1613/16688	TOTAL LEXACHLORINATED DIBENZOFURANS	$\frac{\mathrm{ng}}{\text { nglkg }}$							${ }^{\frac{1045.354}{}}$		2800	${ }_{361.553}$				$\stackrel{143000}{ }$		
E1613/1668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	nglkg							82.252		5530	761.389				13000		
E1613/1668	TOTAL PENTACHLORINATED DIBENZOFURANS	nglkg							10.958		247	41.978				678 J		
E1613/1668	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	nglkg							7.176		295	58.876				469		
E16131/1668	TOTAL TETRACHLORINATED DIBENZOFURANS	nglkg							5.809		68.8	10.667				77.8		
E16131/1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	nglkg							1.938		23.9	29.286				34.6		
SW6020	ANTIMONY	mg/kg	0.36 U	0.59 J	0.35 UJ	12	0.36 UJ	0.34 UJ	1.3	3.6	1.8 J	2.6	0.34 U	0.38 U	5.2	0.49 J	${ }^{0.36 \mathrm{U}}$	0.35 U
SW6020	ARSENIC	mg/kg	2.0	16	7.2	45	60	6.6 J	3.5	120	160	150	14	12	240	26	15	14
SW6020	BARIUM	mg/kg	6.0	23	9.2	37	9.5	7.4	52	23	30	38	3.6	3.3	100	20	17	16
SW6020	CADMIUM	mg/kg	0.31 U	0.30 U	0.30 U	0.30 U	0.30 U	0.29 U	0.30 U	0.39 J	${ }^{0.31 \mathrm{U}}$	0.31 U	0.29 U	0.33 U	1.3	0.32 U	${ }^{0.31 \mathrm{U}}$	${ }^{0.30 \mathrm{U}}$
SW6020	CHROMIUM	mg/kg	6.5 J	13	8.5	42	4.0	7.1. ${ }^{\text {J }}$	9.4	120	90	290 J	20 J	18 J	380	36	23	22
SW6020	COPPER	mgkg	1.3 J	16	1.3	72 J	1.0 J	7.4	24 J	61	160	62 J	1.4 J	1.05	190	19	15	15
SW6020	$\frac{\text { LEAD }}{\text { SELENIUM }}$	$\mathrm{mq} / \mathrm{kg}$	$\stackrel{6.9}{0.89 \mathrm{u}}$	$\frac{27}{0.86 \mathrm{UJ}}$	$\stackrel{4.5}{0.87}$	$\stackrel{180}{0.87 \mathrm{U}}$	$\frac{3.2}{0.88 \mathrm{U}}$	$\stackrel{5.0}{0.85 \mathrm{U}}$	${ }^{160}$	$\frac{17}{0.87}$	$\stackrel{24}{0.89 \mathrm{U}}$	$\frac{18}{0.89 \mathrm{U}}$	$\stackrel{2.0}{0.850}$	$\frac{1.7}{0.95}$	$\frac{230}{1.14}$	$\stackrel{19}{0.93 \mathrm{UJ}}$	$\frac{13}{0.89 \mathrm{u}}$	$\frac{13}{0.86 \mathrm{U}}$
SW6020	SILVER	mg/kg	0.40 U	0.390	0.39 U	0.40 U	0.40 U	0.390	0.390	0.390	${ }_{0}^{0.40}$	0.40 U	0.390	0.43	0.48 u	0.42	0.40	0.890 0
SW6020	VANADIUM (FUME OR DUST)	mglkg	2.3	3.9 J	0.93 U	8.8	3.2	1.3	4.6	3.4	5.2	0.96 UJ	0.91 UJ	1.0 UJ	4.3 J	5.2 J	3.5 J	3.0 J
SW7471	MERCURY	mgkg	0.032 J	0.18	0.027	1.2	0.028	0.55	0.23	0.047	0.080	0.20 J	0.021 J	0.022 J	1.1	0.20	0.12	0.12
SW8260	1,1,1-TRICHLOROETHANE	ugkg	0.13 U	0.13 U	0.13 U	${ }_{0}^{1.13 \mathrm{U}}$	0.13 U	0.15 U	0.13 U	0.14 U	0.14 U	0.13 U	0.13 U	0.15 U	0.19 U	0.14 U	0.15 U	0.15 U
SW8260	1,1,1,2,2-TETRACHLOROETHANE	ugkg	0.071 U	0.070 U	0.070 U	0.072 U	0.071 U	0.078 U	0.071 U	0.074 U	0.072 U	0.072 U	0.070 U	0.082 U	0.11 U	0.075 U	0.083 U	0.080 U
SW8260	1,1,2-TRICHLOROETHANE	uglkg	0.14 U	0.16 U	0.14 U	0.15 U	0.15 U	0.15 U	0.14 U	0.17 U	0.21 U	0.15 U	0.17 U	0.16 U				
SW8260	1,1-DICHLOROETHANE	uglkg	0.068 U	0.067 U	0.067 U	0.068 U	0.067 U	0.074 U	0.067 U	0.071 U	0.069 U	0.069 U	0.067 U	0.078 U	0.10 U	0.072 U	0.079 U	0.077 U
SW8260	1,1-DICHLOROETHYLENE	uglkg	0.19 U	0.18 U	0.18 U	0.19 U	0.19 U	0.20 U	0.19 U	0.19 U	0.19 U	0.19 U	0.18 U	0.22 U	0.27 U	0.20 U	0.22 U	0.21 U
SW8260	1,2,4-TRICHLOROBENZENE	ugkg	0.17 U	0.16 U	0.16 U	0.17 U	0.16 U	0.18 U	0.16 U	0.17 U	0.17 U	0.17 U	0.16 U	0.19 U	0.24 UJ	$0.17{ }^{0}$	0.19 U	0.19 U
SW8260	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	$\frac{\mathrm{ug} \text { 伯g }}{\text { ugkg }}$	${ }_{0}^{0.53 \mathrm{U}}$	${ }_{0}^{0.52 \mathrm{U}} 0$	$\frac{0.52 \mathrm{U}}{0.060 \mathrm{U}}$	$\stackrel{0.53 \mathrm{U}}{0.061 \mathrm{U}}$	$\frac{0.53 \mathrm{U}}{0.060 \mathrm{U}}$	$\frac{0.58 \mathrm{U}}{0.066 \mathrm{U}}$	$\frac{0.53 \mathrm{U}}{0.060 \mathrm{U}}$	${ }_{0}^{0.55 \mathrm{U}}$	0.54 U 0.062 U	$\frac{0.53 \mathrm{U}}{0.061 \mathrm{U}}$	$\frac{0.52 \mathrm{U}}{0.060 \mathrm{U}}$	$\frac{0.61 \mathrm{U}}{0.070 \mathrm{U}}$	0.78 U J	0.56 U 0.064 U	0.62 U	0.60 U 0.068 U
SW8260	1,2-DICHLOROBENZENE	uglkg	0.084 U	0.52 J	0.083 U	0.084 U	0.083 U	0.092 U	0.083 U	0.087 U	0.085 U	0.085 U	0.083 U	0.097 U	0.013 UJ	0.088 U	0.0908	0.0095
SW8260	1,2-DICHLOROETHANE	uglkg	0.11 U	0.12 U	0.11 U	0.12 U	0.11 U	0.11 U	0.11 U	0.13 U	0.16 U	0.12 U	0.13 U	0.13 U				
SW8260	1,2-DICHLOROPROPANE	uglkg	0.058 U	0.057 U	0.058 U	0.059 U	0.058 U	0.064 U	0.058 U	0.061 U	0.059 U	0.059 U	0.058 U	0.067 U	0.086 U	0.061 U	0.068 U	0.066 U
SW8260	1,4-DICHLOROBENZENE	uglkg	0.094 U	0.092 U	0.092 U	0.094 U	0.093 U	0.11 U	0.093 U	0.097 U	0.095 U	0.094 U	0.092 U	0.11 U	0.14 UJ	0.099 U	0.11 U	0.11 U
SW8260	ACETONE	ugikg	2.7 U	4.4 J	48 J	2.7 U	2.7 U	3.00	2.7 U	2.8 U	2.8 U	2.7 U	2.7 U	3.10	4.0 U	6.1 J	3.2 U	3.10
SW8260	BENZENE	uglkg	$\frac{0.42 \mathrm{U}}{032 \mathrm{U}}$	$\frac{0.41 \mathrm{U}}{031 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{031 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{0}$	$\frac{0.42 \mathrm{U}}{0}$	0.46U	$\frac{0.42 \mathrm{U}}{0}$	0	$\xrightarrow{0.43 \mathrm{U}}$	$\xrightarrow{0.43 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{031 \mathrm{U}}$	$\stackrel{0.49 \mathrm{U}}{0.36 \mathrm{U}}$	$\frac{0.62 \mathrm{U}}{0.46 \mathrm{u}}$	0.44U	0.49 U 0	0.48 U 0.36 U
SW8260	BROMOMETHANE	ugkg	$\stackrel{0.35 \mathrm{U}}{ }$	0.34 UJ	0.34 UJ	${ }_{0}^{0.35 \mathrm{UJ}}$	0.34 UJ	$\stackrel{0.38 \mathrm{U}}{ }$	0.34 UJ	${ }_{0}^{0.36 \mathrm{UJ}}$	0.35 UJ	$\stackrel{0.35 \mathrm{U}}{0}$	O.314	${ }_{0}^{0.300 ~}$	${ }_{0}^{0.510}$	$\stackrel{0.37 \mathrm{UJ}}{0.3}$	0.40 U	0.39 u
SW8260	CARBON DISULFIDE	uglkg	1.8 U	1.70	1.7 U	1.8 U	1.70	1.90	1.7 U	1.8 U	1.8 U	1.8 U	1.70	2.00	2.6 U	1.9 U	2.00	2.00
SW8260	CARBON TETRACHLORIDE	uglkg	0.38 U	0.37 U	0.37 U	0.38 U	0.38 U	0.41 U	0.38 U	0.39 U	0.39 U	0.38 U	0.37 U	0.44 U	0.56 U	0.40 U	0.44 U	0.43 U
sW8260	CFC-11	ugkg	0.28 U	0.31 U	0.28 U	0.29 U	0.29 U	0.29 U	0.28 U	0.33 U	0.42 U	0.30 U	0.33 U	0.32 U				
SW8260	CFC-12	uglkg	$\stackrel{0.35 \mathrm{U}}{ }$	0.34U	0.34U	0.35 U	$\stackrel{0.34 \mathrm{U}}{0}$	$\frac{0.38 \mathrm{U}}{}$	0.34 U	${ }_{0}^{0.360}$	$\xrightarrow{0.350}$	$\frac{0.35 \mathrm{UJ}}{0.0}$		0.40 UJ	0.51 U	0.37 U	0.40	0.39 U
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \mathrm{lkg}}$	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.42 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.44 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	0.43U	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.41 \mathrm{U}}{0.45 \mathrm{U}}$	$\frac{0.40 \mathrm{U}}{0.44 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.44 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.45 \mathrm{U}}{0.50 \mathrm{U}}$	$\frac{0.57 \mathrm{U}}{0.64 \mathrm{U}}$	0.41U	$\frac{0.45 \mathrm{U}}{0.50 \mathrm{U}}$	0.44U
SW8260	CHLORODIBROMOMETHANE	uglkg	0.27 U	0.30 U	0.27 U	0.28 U	0.28 U	0.27 U	0.27 U	0.31 U	0.40 U	0.29 U	0.32 U	0.31 U				
SW8260	CHLOROETHANE	ugikg	0.39 U	0.38 U	0.39 UJ	$\stackrel{0.39 \mathrm{U}}{ }$	0.39 U	0.43 U	0.39 U	0.41 U	0.40 U	0.39 U	0.39 U	0.45 U	0.57 U	0.41 U	0.45 U	0.44 U
SW8260	CHLOROFORM		$\frac{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.40 \mathrm{U}}{0.53 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.51 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.50 \mathrm{U}}$	$\xrightarrow{0.37 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.43 \mathrm{U}}{0.56 \mathrm{U}}$	$\frac{0.54 \mathrm{U}}{0.72 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.51 \mathrm{u}}$	0.43 U 0.57 U	$\frac{0.42 \mathrm{U}}{0.55 \mathrm{u}}$
SW8260	CIIS-1,2-ICHLOROETHYLENE	uglkg	0.28 U	0.31 U	0.28 U	0.29 U	0.29 U	0.29 U	0.28 U	0.33 U	0.42 U	0.30 U	0.33 U	0.32 U				


		$\begin{array}{r} \text { Location } \\ \text { Sample ID } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{array}{c\|} \hline \text { SSO29 } \\ \text { sso2ga } \\ \text { s.25-5.5 feet } \\ 12107 / 2006 \\ \hline \end{array}$	$\begin{gathered} \hline \hline \text { SSO30 } \\ \text { SSOO3BA } \\ 0.25-0.5 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \hline \text { SSO31 } \\ \text { SSO31BA } \\ 0.25-.5 \text { feet } \\ 1212122006 \end{array}$		SSO33   SSO33BA   $0.25-0.5$ feet   $12 / 106 / 2006$	$\begin{array}{\|c\|} \hline \hline \text { SSO334 } \\ \text { SSO34BA } \\ 0.25-0.5 \text { feet } \\ 12104 / 2006 \\ \hline \end{array}$	$\begin{gathered} \hline \hline \text { SSO35 } \\ \text { SSO35BA } \\ 0.25-0.5 \text { feet } \\ 12 / 06 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \hline \text { SSO36 } \\ \text { sso36BA } \\ 0.25-0.5 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$	$\begin{gathered} \hline \hline \text { SSO37 } \\ \text { SSO37BA } \\ 0.25-0.5 \text { feet } \\ 12 / 05 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { SSO38 } \\ \text { SSO38BA } \\ 0.25-0.5 \text { feet } \\ 12 / 07 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \hline \text { SSO39 } \\ \text { SSO39BA } \\ 0.25-0.5 \text { feet } \\ 12 / 07 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO393 } \\ \text { SSo39BB } \\ 0.25-0.5 \text { feet } \\ 12 / 107 / 20006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO40 } \\ \text { SSOOPBA } \\ 0.25-0.5 \text { feet } \\ 1212012006 \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO41 } \\ \text { SSo41BA } \\ 0.25-0.5 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { SSO42 } \\ \text { SSO24BA } \\ 0.25-5.5 \text { feet } \\ 121012006 \end{array}$	
Lab Method	Analyte	Units																
sw8260	CIS-1,3-DICHLOROPROPENE	ug/kg	0.32 U	0.31 U	0.31 U	0.32 U	0.31 U	0.34 U	0.31 U	0.33 U	0.32 U	0.32 U	0.31 U	0.36 U	0.46 U	0.33 U	0.37 U	0.36 U
SW8260	CYCLOHEXANE	ug lkg	0.41 U	0.40 U	0.41 U	0.41 U	0.41 U	0.45 U	0.41 U	0.43 U	0.42 U	0.42 U	0.41 U	0.48 U	0.61 U	0.43 U	0.48 U	0.46 U
SW8260	DICHLOROMETHANE	ugikg	0.42 U	0.41 U	0.42 U	0.42 U	0.42 U	${ }^{0.460}$	$0.42 \mathrm{U}^{0}$	$0.44{ }^{0}$	${ }^{0.43 U^{4}}$	${ }^{0.43 U^{4}}$	${ }^{0.425}$	0.49 U	$0.62{ }^{\text {O }}$	0.444	0.49 U	${ }^{0.4814}$
SW8260	ETHYLBENZENE	ug lkg	0.45 U	0.45 U	0.45 U	0.46 U	0.45 U	0.50 U	0.45 U	0.47 U	0.46 U	0.46 U	0.45 U	0.52 U	0.67 U	0.48 U	0.53 U	0.51 U
SW8260	ISOPROPYLBENZENE	ugkg	0.50 U	0.49 U	0.49 U	0.50 U	0.49 U	0.54 U	0.49 U	0.52 U	0.51 U	0.50 U	0.49 U	0.57 U	0.73 UJ	0.52 U	0.58 U	0.56 U
SW8260	m, p -xylenes	uglkg	0.94 U	0.92 U	0.92 U	0.94 U	0.93 U	1.10	0.93 U	0.974	$0.95{ }^{0}$	0.94 U	0.92 U	1.10	1.4 U	0.997	1.10	1.10
SW8260	M-DICHLOROBENZENE	ugkg	0.054 U	0.053 U	0.053 U	0.054 U	0.054 U	0.059 U	0.054 U	0.056 U	0.055 U	0.054 U	0.053 U	0.062 U	0.080 UJ	0.057 U	0.063 U	0.061 U
SW8260	METHYL ACETATE	uglkg	0.21 U	0.20 U	0.21 U	0.21 U	0.21 U	0.23 U	0.21 U	0.22 U	0.21 U	0.21 U	0.21 U	0.24 U	0.31 U	0.22 U	0.24 U	0.23 U
SW8260	METHYL ETHYL KETONE	ugkg	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	1.4 U	1.8 U	1.3 U	1.4 U	1.4 U				
SW8260	METHYL LSOBUTYL KETONE	ugikg	0.77 U	0.75 U	0.75 U	$0.77{ }^{11}$	$0.76 \mathrm{U}^{11}$	${ }^{1.84 U}$	$0.76 \mathrm{U}^{11}$	$0.79{ }^{124}$	0.78 U	$0.77{ }^{12}$	0.75 U	0.88 U	1.2 U	${ }^{0.814}$	0.89 U	${ }^{0.864}$
SW8260	METHYL N-BUTYL KETONE	uglkg	1.10	1.10	1.10	1.14	1.10	1.2 U	1.10	1.2 U	1.10	1.10	1.10	1.3 U	1.6 U	1.2 U	1.3 U	1.3 U
SW8260	METHYLBENZENE	ug kg	0.45 U	0.45 U	0.45 U	0.46 U	0.45 U	0.50 U	0.45 U	0.47 U	${ }^{0.46 \mathrm{U}}$	${ }^{0.46 \mathrm{U}}$	0.45 U	0.52 U	0.67 U	0.48 U	0.53 U	0.51 U
SW8260	METHYLCYLOHEXANE	ugkg	0.48 U	0.47 U	0.47 U	0.48 U	0.47 U	0.52 U	0.47 U	0.49 UJ	0.48 U	0.48 U	0.47 U	0.55 U	0.70 U	0.50 U	0.55 U	0.54 U
SW8260	O-XYLENE	ugkg	0.43 U	0.42 U	0.43 U	0.44 U	0.43 U	0.47 U	0.43 U	0.45 U	0.44 U	0.44 U	0.43 U	0.50 U	0.64 U	0.46 U	0.50 U	0.49 U
SW8260	STYRENE (MONOMER)	uglkg	0.47 U	0.46 U	0.46 U	0.47 U	0.46 U	0.51 U	0.46 U	0.48 U	0.47 U	0.47 U	0.46 U	0.54 U	0.68 U	0.49 U	0.54 U	0.53 U
SW8260	TERT-BUTYL METHYL ETHER	ugkg	0.35 U	0.34 U	0.34 U	0.35 U	0.34 U	0.38 U	0.34 U	0.36 U	0.35 U	0.35 U	0.34 U	0.40 U	0.51 U	0.37 U	0.40 U	0.39 U
SW8260	TETRACHLOROETHYLENE	ugkg	0.43 U	0.42 U	0.43 U	0.44 U	0.43 U	0.47 U	0.43 U	0.45 U	0.44 U	0.44 U	0.43 U	0.50 U	0.64 U	0.46 U	0.50 U	0.49 U
SW8260	TRANS-1,2-DICHLOROETHENE	uglkg	0.41 U	0.40 U	0.41 U	0.41 U	0.41 U	0.45 U	0.41 U	0.43 U	0.42 U	0.42 U	0.41 U	0.48 U	0.61 U	0.43 U	0.48 U	0.46 U
SW8260	TRANS-1,2-IICHLOROPROPENE	ugkg	0.33 U	0.32 U	0.32 U	0.33 U	0.32 U	0.36 U	0.32 U	0.34 U	0.33 U	0.33 U	0.32 U	0.38 U	0.48 U	0.34 U	0.38 U	0.37 U
SW8260	TRIBOMOMETHANE	uglkg	0.42 U	0.41 U	0.42 U	0.42 U	0.42 U	0.46 U	0.42 U	0.44 U	0.43 U	0.43 U	0.42 U	0.49 U	0.62 U	0.44 U	0.49 U	0.48 U
SW8260	TRICHLOROETHYLENE	ugkg	0.43 U	0.42 U	0.43 U	0.44 U	0.43 U	0.47 U	0.43 U	0.45 U	0.44 U	0.44 U	0.43 U	0.50 U	0.64 U	0.46 U	0.50 U	0.49 U
SW8260	VINYL CHLORIDE	uglkg	0.26 U	0.29 U	0.26 U	0.27 U	${ }^{0.27 U}$	${ }^{0.26 U}$	0.26 U	0.30 U	0.38 U	0.28 U	0.30 U	0.30 U				
SW8270	2,4,5-TRICHLOROPHENOL	ugkg	14 U	15 U	15 U	14 U	14 U	17 U	17 U	15 U	15 U	15 U						
SW8270	2,4,6-TRICHLOROPHENOL	uglkg	39 U	38 U	38 U	39 U	39 U	39 U	39 U	40 U	40 U	39 U	38 U	45 U	47 U	40 U	40 U	40 U
SW8270	2,4-DICHLOROPHENOL	ug/kg	19 U	18 U	18 U	19 U	18 U	210	22 U	19 U	19 U	19 U						
SW8270	2,4-DIMETHYLPHENOL	ugkg	210	20 U	20 U	210	210	210	210	22 U	35 J	21 U	20 U	24 U	25 U	22 U	36 J	36 J
SW8270	2,4-IIIITROPHENOL	uglkg	13 U	14 U	14 U	13 U	13 U	15 U	16 UJ	14 U	14 UJ	14 UJ						
SW8270	2,4-DINITROTOLUENE	ugikg	110	11 U	110	11 U	11 U	110	110	110	11 U	110	110	$\frac{13}{45}$	13 U	110	110	110
SW8270	2,6-DIIITROTOLUENE	uglkg	39 U	38 U	38 U	39 U	39 U	39 U	39 U	40 U	40 U	39 U	38 U	45 U	47 U	40 U	40 U	40 U
SW8270	2.CHLORONAPHTHALENE	ugkg	18 U	17 U	17 U	18 U	17 U	20 U	210	18 U	18 U	18 U						
SW8270	2-CHLOROPHENOL	uglkg	20 U	19 U	19 U	20 U	19 U	23 U	24 U	20 U	20 U	20 U						
SW8270	2-METHYLPHENOL (0-CRESOL)	ugkg	13 U	14 U	14 U	13 U	13 U	15 U	16 U	14 U	14 U	14 U						
SW8270	2-NITROANLINE	ugkg	24 U	24 UJ	24 U	25 U	24 U	24 UJ	24 U	28 U	29 UJ	25 U	25 UJ	25 UJ				
SW8270	2-NITROPHENOL	uglkg	16 U	15 U	15 U	16 U	15 U	15 U	15 U	16 U	16 U	16 U	15 U	18 U	19 U	16 U	16 U	16 U
SW8270	3,3'-DICHLOROBENZIDINE	ugkg	37 U	36 U	36 U	37 U	37 U	37 U	37 U	38 U	38 U	37 U	36 U	42 U	44 U	38 U	38 U	38 U
SW8270	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	ugikg	14 U	15 U	15 U	14 U	14 U	17 U	17 U	15 U	15 U	15 U						
SW8270	3-NITROANILINE	ugkg	19 U	18 U	18 U	19 U	18 U	21 U	22 U	19 U	19 U	19 U						
SW8270	4,6-DINITRO-2-METHYLPHENOL	uglkg	11 U	9.9 U	9.90	11 U	10 U	11 U	10 U	11 U	11 U	11 U	9.90	12 U	13 U	11 U	11 U	11 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	11 U	110	11 U	11 U	110	13 U	13 U	11 U	11 U	11 U						
SW8270	4-CHLORO-3-METHYLPHENOL	uglkg	18 U	17 U	17 U	18 U	17 U	20 U	21 U	18 U	18 U	18 U						
SW8270	4-CHLOROPHENYL PHENYL ETHER	ugkg	24 U	25 U	24 U	24 U	24 U	28 U	29 U	25 U	25 U	25 U						
SW8270	4-METHYLPHENOL (MPP-CRESOL)	ugkg	28 U	29 U	29 U	28 U	28 U	33 U	34 U	29 U	29 U	29 U						
SW8270	4-NITROPHENOL	uglkg	19 U	18 U	18 U	19 UJ	19 U	19 UJ	19 UJ	19 U	19 UJ	19 UJ	18 U	21 U	22 UJ	19 U	19 UJ	19 UJ
SW8270	BENZYL LUTYL PHTHALATE	ugkg	20 U	19 U	19 U	20 U	19 U	23 U	49 J	20 U	20 U	20 U						
SW8270	BIPHENYL	uglkg	170 U	160 UJ	160 U	$170 \cup$	160 U	170 U	160 U	1700	170 U	170 U	160 U	190 U	200 U	170 U	170 U	170 U
SW8270	BIS(2-CHLORETHOXY)METHANE	ugkg	19 U	18 U	18 U	19 U	18 U	210	22 U	19 U	19 U	19 U						
SW8270	BIIS(2-CHLOROETHYL)ETHER	ugkg	17 U	16 U	16 U	17 UJ	16 U	17 U	16 U	17 U	17 U	17 U	16 U	19 U	20 U	17 U	17 U	17 U
SW8270	BIS (2-CHLOROISOPROPYL) ETHER	ugkg	23 U	23 U	23 U	23 U	23 UJ	23 U	23 UJ	24 U	${ }^{23 \mathrm{UJ}}$	23 UJ	23 UJ	26 U	28 UJ	24 U	24 UJ	23 UJ
SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	ugkg	18 U	17 U	17 U	18 U	18 U	18 U	18 U	33 J	24 J	18 U	17 U	20 U	69 J	18 U	30 J	18 U
SW8270	CARBAZOLE	ugkg	18 U	110 J	17 U	390	18 U	150 J	18 U	60 J	1900	1700	17 U	20 U	400	160 J	370	410
SW8270	DIBENZOFURAN	uglkg	14 U	38 J	14 U	78 J	14 U	22 J	14 U	40 J	460	230	14 U	17 U	200 J	51 J	72 J	62 J
SW8270	DIETHYL PHTHALATE	ugkg	13 U	14 U	14 U	13 U	13 U	15 U	16 U	14 U	14 U	14 U						
SW8270	DIMETHYL PHTHALATE	uglkg	110	11 U	110	110	11 U	110	11 U	110	110	110	110	130	13 U	110	110	110
SW8270	DI-N-BUTYL-PHTHALATE	uglkg	66 U	65 U	65 U	66 U	65 U	66 U	65 U	68 U	67 U	66 U	65 U	76 U	790	${ }_{17}^{68 \mathrm{U}}$	$\frac{68 \mathrm{U}}{17 \mathrm{u}}$	67 U
SW8270	HEXACHLORO-1,3-BUTADIIENE	uglkg	19 U	18 U	18 U	19 U	18 U	210	22 U	19 U	19 U	19 U						
SW8270	HEXACHLOROBENZENE	ugkg	9.00	8.8 UJ	8.80	9.00	8.9 U	8.90	8.9 U	9.3 U	9.10	9.00	8.8 U	11 U	11 U	9.3 U	9.2 U	9.10
SW8270	HEXACHLOROCYCLOPENTADIENE	uglkg	12 U	13 U	12 U	12 U	12 U	14 U	15 UJ	13 UJ	13 UJ	13 UJ						
SW8270	HEXACHLOROETHANE	ugkg	19 U	18 U	18 U	19 U	18 U	21 U	22 U	19 UJ	19 U	19 U						
SW8270	NITROBENZENE	uglkg	22 U	230	22 U	22 UJ	22 U	25 U	26 U	230								
SW8270	$\frac{\text { N-NITROSO-DI-N.PROPYLAMINE }}{\text { N-NTTROSOOIPHENYLAMINE }}$	$\frac{\mathrm{ug} \text { 伯g }}{\text { ugkg }}$	$\frac{20 U}{12 \mathrm{U}}$	19 U	19 U	20 U	20 U	$\frac{20 U}{12 \mathrm{U}}$	$\frac{20 U}{12 \mathrm{U}}$	20 U	$\frac{20 U}{12 \mathrm{U}}$	20 U	19 U	23 U	$\frac{24 U}{150}$	$\frac{20 U}{13 \mathrm{U}}$	$\frac{20 U}{13}$	20 U
SW8270	P.CHLOROANILINE	ugkg	28 U	29 U	29 U	28 U	28 U	33 U	34 U	29 U	29 U	29 U						
SW8270	PHENOL	ugkg	18 U	17 U	17 U	18 U	17 U	20 U	21 U	18 U	18 U	18 U						
SW8270	P-NITROANLINE	ugkg	13 U	13 U	13 UJ	13 U	13 U	13 U	13 U	14 U	14 U	13 U	13 U	15 U	16 U	14 U	14 U	14 U

Notes:
mgkg:

iigkg: micrograms per kilogram
Dioxin values in italics are new results from Vista laboratory

			$\begin{array}{\|c\|} \hline \hline \text { SSO43 } \\ \text { SSO4BBA } \\ 0.25-0.5 \text { feet } \\ 12 / 105 / 2006 \\ \hline \end{array}$	SSO43BB 0.25-0.5 fee 12/05/2006			$\begin{array}{\|c\|} \hline \hline \text { SSO046 } \\ \text { SSOO46BA } \\ 0.25-0.5 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO47 } \\ \text { SSO47BA } \\ 0.25-0.5 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO48 } \\ \text { SSOO8BBA } \\ 0.25-0.5 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO48 } \\ \text { SSOU8BB } \\ 0.25-0.5 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSOO4 } \\ \text { SSO99BA } \\ 0.25-5.5 \text { feet } \\ 1 / 1 / 9092006 \end{gathered}$ 1209/200	$\begin{array}{\|c\|} \hline \hline \text { SSO50 } \\ \text { SSO00BA } \\ 0.25-0.5 \text { feet } \\ 12 / 04 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO51 } \\ \text { SSo51BA } \\ 0.25-0.5 \text { feet } \\ \hline 12 / 04 / 2006 \\ \hline \end{array}$		$\begin{gathered} \hline \hline \text { SSO54 } \\ \text { SSo5sBA } \\ 0.25-0.5 \text { feet } \\ 12 / 101 / 2006 \\ \hline \end{gathered}$		$\begin{gathered} \hline \hline \text { SS058 } \\ \text { SSo58BA } \\ 0.25-0.5 \text { feet } \\ 12105 / 2006 \\ \hline \end{gathered}$	SSO59   SSo59BA   $0.25-0.5$ feet   $11 / 30 / 2006$
Lab Method	Analyte	Units																
ENASIM	2-METHYLNAPHTHALENE	ug/kg	63 J	69 J	440	17 U	16 U	7.5	24 J	${ }^{23 \mathrm{~J}}$	36 J	19 J	42	110 J	340 J	3.4 J	2800	580
ENASIM	ACENAPHTHENE	ugkg	61 J	79 J	790	29 U	29 UJ	6.6 J	30 U	30 U	31 U	30 UJ	60 J	410 J	31 U	3.0 J	1200 J	330 J
BNASIM	ACENAPHTHYLENE	ug/kg	720	730	10000	290	550	71	150	140	380	350 J	1200	1100	720 J	2.70	18000	3900
BNASIM	ANTHRACENE	ugkg	2000	1900	24000	610	1100	220	170	160	790	630	2300	4500	1300 J	0.64 U	49000	7700
BNASIM	BENZO(A)ANTHRACENE	ugkg	960	1100	16000	730	1400	95	240	230	660	750 J	4800	1900	1600 J	0.52 U	120000	5700
BNASIM	BENZO(A)PYRENE	ugkg	1100	1200		840	1600	130	290	270	920	780 J	4800	1800	1700 J	1.2 U	61000	5600
ENASIM	BENZO(B)FLUORANTHENE	ugkg	2300	2500	45000	1900 J	4600	260 J	480	460	1800	1300 J	7700	${ }^{7400} \mathrm{~J}$	2800 J	0.84 U	260000	10000
BNASIM	BENZO(G, H, JPERYLENE	ugkg	1200	1200	22000	560	1300	100	280	270	900	740 J	4200	2200	1300 J	0.68 U	63000	5800
ENASIM	BENZO(k)FLUORANTHENE	ugkg	1700	2000	36000	910	1900	120	390	360	860	1100 J	7400	3900	1800 J	0.68 U	190000	7400
ENASIM	CHRYSENE	uglkg	1300	1500	19000	1000	1900	110	330	320	890	1100 J	8100	4400	2300 J	${ }^{0.50 U}$	200000	7200
ENASIM	DIBENZO(A,H)ANTHRACENE	uglkg	380	380	8300	220 J	490	37 J	95	91	270	240 J	1000	560 J	540 J	1.0 J	26000	2000
BNASIM	FLUORANTHENE	uglkg	1900	2100	19000	790	1800	99	340	300	870	1200	10000	3900	2400 J	8.5	360000	10000
BNASIM	FLUORENE	ugkg	92	110	890	22 J	16 U	5.9	17 U	17 U	24 J	17 UJ	65	160	53 J	1.6 U	900	280
ENASIM	INDENO(1,2,3-CD) PYRENE	uglkg	1500	1600	35000	560	1300	100	320	300	820	830 J	4500	2100	1700 J	0.91 U	110000	7100
BNASIM	NAPHTHALENE	uglkg	77	80	870	18 J	5.50	27	43	41	50	25 J	58	65	550 J	0.53 U	3400	970
ENASIM	PENTACHLOROPHENOL	ugkg	580 J	520 J	${ }^{5000}{ }^{200}$	160 J	1800	200	110 J	120 J	220 J	320 J	1400	1300 J	96 J	11 J	630000 J	2600
ENASIM	PHENANTHRENE		320	340	2500	71 J	250 J	17	80	80	170	120	840	420	1100 J	4.3 J	15000	2900
ENASIM	PYRENE	ugkg	1600	1800	21000	1300	2300	140	370	330	1100	1300 J	10000	4400	2200 J	7.1	410000	8700
E160.3	RESIDUE, TOTAL	percent	92	92	69	93	94	92	92	91	89	91	89	97	90	96	90	94
E1613/E1668	1, 1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	ngkg	818.601	1069.459	29200		7480									23.086	215000 J	
E1613/1668	1,2,3,4,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	ng/kg	9279.743	12879.186	260000		76800									138.065	1390000	
E1613121668	1, 1, 2, 4, , , , , ,9-HEPTACHLORODIBENZOFURAN	nglkg	${ }^{58.812}$	${ }^{68.771}$	1980		421									1.022 J	15000	
E16131E1668	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	ng kg	$\stackrel{26.054}{ }$	${ }^{33.594}$	763		184									0.475 J	5180	
E1613/1668	1,2,3,4,7,8,-HEXACHLORODIBENZO-P-DIOXIN	nglkg	58.828	76.558	1630		485									0.905 J	5920	
E1613/1668	1, 2, 3, ,6,7,8-HEXACHLORODIBENZOFURAN	nglkg	17.262	22.947	515		77.7									0.407 J	2880 J	
E16131/1668	1,2,3,6,7,8,HEXACHLORODIBENZO-P-DIOXIN	nglkg	185.074	231.765	5220		1480									3.253 J	38500	
		nglkg	0.479 J	0.884 J	178		63.9									0.08U	1350	
	1, $1,2,3,7,8,9$-HEXACHLORODIBENZO-P-DIOXIN		$\frac{159.246}{2.115 ~}$	$\frac{196.349}{2.755 ~}$	$\frac{2670}{58.9}$		$\frac{523}{00}$									$\frac{2.491 \mathrm{~J}}{0.037 \mathrm{~J}}$	$\frac{12200}{358}$	
E1613/16668	1, 1, 2, 7, \%-PPENTACHLORODIBENZO-P-DIOXIN	ng lkg	${ }^{218.879}$	${ }_{2}^{25.371}$	${ }_{4} 4.95$		83.4									0.392 J	1420	
E1613/1668	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	ngkg	12.587	17.33	965		174									0.479 J	5990	
E1613/1668	2,3,4,7,8.PENTACHLORODIBENZOFURAN	nglkg	2.871 J	3.718 J	154		${ }^{40.5 \mathrm{~J}}$									0.036 U	982	
E16131/1668	2,3,7,8-TETRACHLORODIBENZOFURAN	ngkg	0.659	1.082 J	${ }^{14.5 \mathrm{~J}}$		0 O									0.061 U	64	
E16131/1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	nglkg	1.588	1.768	34.4		${ }^{7} .12 \mathrm{~J}$									0.025 U	${ }^{74.6}$	
E16131/1668	OCTACHLORODIBENZOFURAN	ngkg	5508.105	8340.791	148000		40000									${ }^{655.397}$	1220000	
E1631/1668	OCTACHLORODIBENZO-P-DIOXIN	ng kg	106045.5999	163147.2983	2740000		779000									1247.434	14660000 J	
E1613/E1668	TOTAL HEPTACHLORINATED DIBENZOFURANS	$\frac{\mathrm{ng} \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$	3358.559 35730.728	${ }_{344776.173}$	$\frac{118000}{153000}$		35500 310000									$\frac{72.254}{426.342}$	$\frac{1090000 \mathrm{~J}}{361000}$	
E1613/1668	TOTAL HEXACHLORINATED DIBENZOFURANS	nglkg	923.95	1272.962	$\frac{25400 ~ J ~}{\text { J }}$		$\underline{6920}{ }^{\text {J }}$									+12.927	${ }^{2180000} \mathrm{~J}$	
E1613/1668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	ngkg	3030.16	3782.508	106000		25100									37.557	224000	
E1613/1668	TOTAL PENTACHLORINATED DIBENZOFURANS	nglkg	146.698	193.265	3330		419 J									1.787	13300 J	
E1613/1668	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	ng/kg	174.981	226.359	4190		1310									3.456	6700	
E1613/1668	TOTAL TETRACHLORINATED DIBENZOFURANS	nglkg	15.627	27.775	423		45.7									0.768	1830 J	
E16131/1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	ngkg	8.27	14.68	355		37.1									0.742	1130	
SW6020	ANTIMONY	mg/kg	0.37 UJ	${ }^{0.58 \mathrm{~J}}$	${ }^{0.81 \mathrm{~J}}$	1.6 J	0.34 UJ	0.36 UJ	${ }^{0.35 \mathrm{U}}$	${ }^{0.36 \mathrm{U}}$	0.90 J	0.96 J	0.69 J	0.34 UJ	1.5	0.33 U	1.0 J	3.2
SW6020	ARSENIC	mg/kg	20	16	79	73	16	7.4	15 J	5.9 J	49	90 J	63 J	25	20	0.60	78	200 J
SW6020	BARIUM	mglkg	7.9	7.7	30	87	13	9.3	9.8	9.2	13	17	19	12	120	9.8	160	47
SW6020	CADMIUM	mglkg	${ }^{0.31 \mathrm{U}}$	${ }^{0.314}$	0.42 U	${ }^{0.30 \mathrm{U}}$	${ }^{0.290}$	0.31 U	0.30 U	${ }^{0.310}$	${ }^{0.41 \mathrm{~J}}$	0.31 U	0.32 U	${ }^{0.29 \mathrm{U}}$	${ }^{0.31 \mathrm{U}}$	0.28 U	${ }^{0.30 \mathrm{U}}$	${ }^{0.36 \mathrm{~J}^{20}}$
SW6020	CHROMUM	mq/kg	28	23	140	8.8	7.0	5.0	19 J	10 J	87 J	120 J	77 J	40 J	26	5.0	89	200 J
SW6020	COPPER	mg/kg	16	15	96	57	9.8	1.6	12 J	4.9 J	39	60	60	26	51	${ }^{0.87 \mathrm{~J}}$	190	160
SW6020	LEAD	mglkg	6.1	4.7	23	21	5.5	5.4	6.7 J	4.4 J	11	20	26	14	160	13	37	40
SW6020	SELENIUM	mq/kg	$0.91{ }^{011}$	0.890	1.2U	0.87 UJ	0.84 U	0.89 OJ	0.86 U	0.89 U	0.93 U	0.900	$0.93{ }^{0.20}$	${ }^{0.85 \cup}$	1.00	${ }_{0}^{0.82 \mathrm{U}}$	$0.87{ }^{0}$	0.88 U
SW6020	SILVER	mq/kg	$0.41{ }^{27}$	0.40 U	0.55 U	$0.39{ }^{\text {U }}$	0.40 U	0.40 U	0.39 U	$0.40{ }^{2}$	0.42 UJ	0.41 U	0.42 U	0.38 UJ	0.40 U	0.37 U	0.39 U	0.40 U
SW6020	VANADIUM (FUME OR DUST)	mgkg	2.7	3.0	2.3	3.7 J	2.2	2.80	2.1	2.7	6.9	2.8	3.2	1.1	18 J	3.2	17	4.0
SW7471	MERCURY	$\frac{\mathrm{mg} / \mathrm{kg}}{\mathrm{ug} \mathrm{kg}}$	$\stackrel{0.095}{0.14 \mathrm{U}}$	$\stackrel{0.081}{0.14 \cup}$	${ }_{0}^{1.5}$	$\stackrel{0.069}{0.130}$	$\stackrel{0.39}{0.13 \mathrm{U}}$	$\frac{0.077}{0.14 U}$	$\frac{0.031 \mathrm{~J}}{0.14 \mathrm{U}}$	0.047 J	0.093 0.14 U	0.23	0.20 0.14 U	0.19 $0.13 \cup$	$\frac{0.27}{0.20}$	0.044 $0.13 \cup$	${ }_{0}^{0.57}$	$\stackrel{3.1}{0.13}$
SW8260	1,1,1,2,2-TETRACHLOROETHANE	ugkg	0.072 U	0.072 U	0.11 U	0.071 U	0.070 U	0.072 U	0.072 U	0.080 U	0.074 U	0.081 U	0	0	$\stackrel{0.210}{0.110}$	$\stackrel{0}{0.069}$	0.086 U	$\frac{0.13}{0.0710}$
SW8260	1,1,2-TRICHLOROETHANE	ugkg	0.15 U	0.15 U	0.21 U	0.14 U	0.14 U	0.15 U	0.15 U	0.16 U	0.15 U	0.16 U	0.15 U	0.14 U	0.21 U	0.14 U	0.17 U	0.14 U
SW8260	1,1-DICHLOROETHANE	uglkg	0.069 U	0.069 U	0.098 U	0.068 U	0.067 U	0.069 U	0.069 U	0.076 U	0.071 U	0.077 U	0.071 U	0.066 U	0.11 U	0.066 U	0.082 U	0.068 U
SW8260	1,1-DICHLOROETHYLENE	ugkg	0.19 U	0.19 U	0.27 U	0.19 U	0.19 U	0.19 U	0.19 U	0.21 U	0.20 U	0.21 U	0.20 U	0.18 U	0.28 U	0.18 U	0.23 U	0.19 U
SW8260	1,2,4-TRICHLOROBENZENE	uglkg	0.17 UJ	0.17 UJ	0.24 UJ	0.17 U	0.16 U	0.17 U	0.17 U	0.19 U	0.17 U	0.19 U	0.17 UJ	0.16 U	0.25 UJ	0.16 U	0.20 UJ	0.16 UJ
SW8260	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	uglkg	0.54 UJ	0.54 UJ	0.76 UJ	0.53 U	0.52 U	0.54 U	0.54 U	0.60 U	0.55 U	0.60 U	0.55 UJ	0.52 U	0.79 UJ	0.51 U	0.64 UJ	0.53 UJ
SW8260	1,2-DIBROMOETHANE	uglkg	0.061 U	0.061 U	0.087 U	0.060 U	0.060 U	0.062 U	0.061 U	0.068 U	0.063 U	0.069 U	0.063 U	0.059 U	0.091 U	0.059 U	0.073 U	0.060 U
SW8260	1,2-IICHLOROBENZENE	uglkg	0.085 UJ	0.085 UJ	0.13 UJ	0.084 U	0.083 U	0.085 U	0.085 U	0.094 U	0.088 U	0.095 U	0.088 UJ	0.082 U	0.13 UJ	0.081 U	0.11 UJ	0.083 UJ
SW8260	1,2-DICHLOROETHANE	ugkg	0.11 U	$0.11 \mathrm{U}^{\text {U }}$	$0.16 \mathrm{U}^{\text {e }}$	0.11 U	0.11 U	0.11 U	0.11 U	0.13 U	0.12 U							0.11 U
SW8260	1, 1,-2IICHLOROPROPANE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \mathrm{kg}}$	${ }^{0.059 ~ U ~} 0$	$\frac{0.059 \mathrm{U}}{0.095 \mathrm{UJ}}$	${ }_{0}^{0.084 \mathrm{U}} 0$	${ }^{0.058 \mathrm{U}} 0$	${ }^{0.058 \mathrm{U}} 0$	0.059 U	0.059 U	$\frac{0.066 \mathrm{U}}{0.11 \mathrm{U}}$	${ }^{0.061 \mathrm{U}} 0$	$\frac{0.066 \mathrm{U}}{0.11 \mathrm{U}}$	${ }^{0.061 \mathrm{U}} 0$	$\frac{0.057 \mathrm{U}}{0.091 \mathrm{U}}$	0.087U	$\frac{0.057 \mathrm{U}}{0.091 \mathrm{U}}$	${ }_{0}^{0.071 \mathrm{U}} 0$	${ }_{0}^{0.058 \mathrm{U}} 0$
SW8260	ACETONE	uglkg	2.8 U	2.8 U	3.9 U	14 J	20 J	14 J	64 J	110 J	2.8 U	3.10	$\underline{2.84}$	$\frac{.70}{}$	44 J	$\underline{2.6 U}$	$\frac{1230}{3.30}$	$\frac{2.70 J}{}$
SW8260	BENZENE	uglkg	0.43 U	0.43 U	0.61 U	${ }^{0.42 \mathrm{U}}$	0.42 U	0.43 U	0.43 U	0.47 U	0.44 U	0.48 U	0.44 U	0.41 U	0.63 U	0.41 U	0.51 U	0.42 U
SW8260	BROMODICHLOROMETHANE	uglkg	0.32 U	0.32 U	0.45 U	0.32 U	0.31 U	0.32 U	0.32 U	0.35 U	0.33 U	0.36 U	0.33 U	0.31 U	0.47 U	0.31 U	0.38 U	0.31 U
SW8260	BROMOMETHANE	uglkg	0.35 UJ	0.35 UJ	0.50 UJ	0.35 UJ	0.34 UJ	0.35 UJ	0.35 UJ	0.39 uJ	${ }^{0.36 \mathrm{U}}$	0.39 U	0.36 U	0.34 U	0.52 U	0.34 UJ	0.42 UJ	0.35 U
SW8260	CARBON DISULFIIDE	ugkg	1.8 U	1.84	2.54	1.84	1.70	1.8 U	1.8 U	2.0 U	1.8 U	2.0 U	1.8 U	1.74	2.64	1.7 U		
SW8260	CARBON TETRACHLORIDE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \text { gag }}$	$\frac{0.38 \mathrm{U}}{0.29 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.29 \mathrm{U}}$	$\frac{0.55 ~ U ~}{0.41 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.28 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.28 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.29 \mathrm{u}}$	$\frac{0.39 \mathrm{U}}{0.29 \mathrm{u}}$	0.43 U 0.32 U	0.40 U 0.30 U	$\stackrel{0.43 \mathrm{U}}{0.32 \mathrm{U}}$	0.40U	0.37 U 0.28 U	$\frac{0.57 \mathrm{U}}{0.42 \mathrm{U}}$	0.37 U 0.27 U	0.46U	$\frac{0.38 \mathrm{U}}{0.28 \mathrm{U}}$
SW8260	CFC-12	ug/kg	0.35 U	0.35 U	0.50 U	0.35 U	0.34 U	0.35 U	0.35 U	0.39 U	0.36 U	0.39 U	0.36 U	0.34 U	0.52 U	0.34 U	0.42 U	0.35 U
SW8260	CHLORINATED FLUOROCARBON(FREON 113)	ugkg	0.40 U	0.40 U	0.56 U	0.39 U	0.39 U	0.40 U	0.40 U	0.44 U	0.41 U	0.44 U	0.41 U	0.38 U	0.58 U	0.38 U	0.47 U	0.39 U
SW8260	CHLOROBENZENE	uglkg	0.44 U	0.44 U	0.62 U	0.43 U	0.43 U	0.44 U	0.44 U	0.49 U	0.45 U	0.49 U	0.45 U	0.42 U	0.65 U	0.42 U	0.52 U	0.43 U
SW8260	CHLORODIBROMOMETHANE	ug lkg	0.28 U	0.28 U	0.39 U	0.27 U	0.27 U	0.28 U	0.28 U	0.31 U	0.28 U	0.31 U	0.28 U	0.27 U	0.41 U	0.26 U	0.33 U	0.27 U
SW8260	CHLOROETHANE	ugkg	0.40 U	0.40 U	0.56 U	0.39 U	0.39 U J	0.40 U	0.40 U	0.44 U	0.41 U	0.44 U	0.41 U	0.38 U	0.58 U	0.38 U	0.47 U	0.39 U
SW8260	CHLOROROMETHANE	$\frac{\mathrm{ugkg}}{\mathrm{ug} \mathrm{kg}}$	$\stackrel{0.370}{0.49}$	$\stackrel{0.390}{0.49}$	$\xrightarrow{0.530}$	$\stackrel{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\stackrel{0.37 \mathrm{U}}{0.48 \mathrm{U}}$	$\stackrel{0.380}{0.0}$	$\stackrel{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\xrightarrow{0.41 \mathrm{U}}$	$\stackrel{0.39 \mathrm{U}}{0.51 \mathrm{U}}$	$\xrightarrow{0.425}$	$\xrightarrow{0.591 \mathrm{U}}$	$\stackrel{0.36 \mathrm{U}}{0.47 \mathrm{U}}$	$\xrightarrow{0.550}$	$\stackrel{0.36 \mathrm{U}}{0.47}$	$\stackrel{0.59}{0}$	0.37 U 0.48 U
SW8260	CII-1,2-DICHLOROETHYLENE	ugkg	0.29 U	0.29 U	0.41 U	0.28 U	0.28 U	0.29 U	0.29 U	0.32 U	0.30 U	0.32 U	0.30 U	0.28 U	0.42 U	0.27 U	0.34 U	0.28 U


		$\begin{array}{r} \text { Location } \\ \text { Sample ID } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{array}{c\|} \hline \text { SSO43 } \\ \text { Ssoun3a } \\ \text { S.25-5 feet } \\ 12105 / 2006 \\ \hline \end{array}$	SSO43 SSO43B 0.25-0.5 feet 12/05/2006	$\begin{array}{\|l\|l\|} \hline \hline \text { SSO44 } \\ \text { SSO44BA } \\ 0.25-.5 \text { fet } \\ 12055 / 2006 \end{array}$	$\begin{array}{\|c} \hline \hline \text { SSO45 } \\ \text { SSO545BA } \\ 0.25-5.5 \text { fet } \\ 12111 / 2006 \\ \hline \end{array}$	SSO46   SSO46BA   $0.25-. .5$ feet   $12 / 122 / 2006$	$\begin{array}{\|c\|} \hline \hline \text { SSO477 } \\ \text { SSO47BA } \\ 0.25-0.5 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{gathered} \hline \hline \text { SSO48 } \\ \text { SSOO8BA } \\ 0.25-0.5 \text { feet } \\ 12 / 06 / 2006 \\ \hline \end{gathered}$	SSO48 SSO48BB 0.25-0.5 feet 12/06/2006	$\begin{array}{\|c} \hline \hline \text { SSO49 } \\ \text { SSOO4BA } \\ 0.25-0.5 \text { feet } \\ 12 / 09 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \hline \text { SSO50 } \\ \text { SSO50BA } \\ 0.25-0.5 \text { feet } \\ 12 / 104 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \hline \text { SSO51 } \\ \text { SSo51BA } \\ 0.25-0.5 \text { feet } \\ 12 / 04 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO52 } \\ \text { SSo52BA } \\ 0.25-0.5 \text { feet } \\ 12 / 09 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO54 } \\ \text { SSO54BA } \\ 0.25-5.5 \text { feet } \\ 12101 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO557 } \\ \text { SSo57BA } \\ 0.25-0.5 \text { feet } \\ 12 / 06 / 2006 \\ \hline \end{array}$		
Lab Method	Analyte	Units																
sw8260	CIS-1,3-DICHLOROPROPENE	ug/kg	0.32 U	0.32 U	0.45 U	0.32 U	0.31 U	0.32 U	0.32 U	0.35 U	0.33 U	0.36 U	0.33 U	0.31 U	0.47 U	0.31 U	0.38 U	0.31 U
SW8260	CYCLOHEXANE	ug lkg	0.42 U	0.42 U	0.59 U	0.41 U	0.41 U	0.42 U	0.42 U	0.46 U	0.43 U	0.47 U	0.43 U	0.40 U	0.62 U	0.40 U	0.63 J	0.41 U
SW8260	DICHLOROMETHANE	ugikg	0.43 U	0.43 U	0.61 U	0.42 U	0.42 U	0.43 U	0.43 U	0.47 U	0.44 U	0.48 U	0.44 U	0.41 U	0.63 U	0.41 U	$0.51{ }^{\text {O }}$	0.42 U
SW8260	ETHYLBENZENE	ug lkg	0.46 U	0.46 U	0.65 U	0.45 U	0.45 U	0.46 U	0.46 U	0.51 U	0.47 U	0.52 U	0.48 U	0.44 U	0.68 U	0.44 U	0.55 U	0.45 U
SW8260	ISOPROPYLBENZENE	ugkg	0.50 UJ	0.50 UJ	0.72 UJ	0.50 U	0.49 U	0.51 U	0.51 U	0.56 U	0.52 U	0.56 U	0.52 UJ	0.48 U	0.74 UJ	0.48 U	0.60 UJ	0.49 UJ
SW8260	m, p -Xylenes	uglkg	0.95 U	0.95 U	1.40	0.94 U	0.93 U	0.95 U	0.95 U	1.10	0.98 U	1.14	0.98 U	0.91 U	1.4 U	0.91 U	1.2 U	0.93 U
sW8260	M-DICHLOROBENZENE	ugkg	0.055 UJ	0.055 UJ	0.078 UJ	0.054 U	0.053 U	0.055 U	0.055 U	0.061 U	0.056 U	0.061 U	0.056 UJ	0.053 U	0.081 UJ	0.052 U	0.065 UJ	0.054 UJ
SW8260	METHYL ACETATE	uglkg	0.21 U	0.21 U	0.30 U	0.21 U	0.21 U	0.21 U	0.21 U	0.23 U	0.22 U	0.24 U	0.22 U	0.20 U	0.31 U	${ }^{0.20 U}$	0.25 U	0.21 U
SW8260	METHYL ETHYL KETONE	ugkg	1.2 U	1.2 U	1.7 U	1.2 U	1.2 U	1.2 U	1.2 U	1.4 U	1.3 U	1.4 U	1.3 U	1.2 U	1.8 U	1.2 U	1.5 U	1.2 U
SW8260	METHYL LSOBUTYL KETONE	ugikg	0.77 U	$0.77{ }^{114}$	1.14	$0.77{ }^{11}$	$0.76 \mathrm{U}^{11}$	0.78 U	0.78 U	${ }^{1.86 U}$	${ }^{0.800}$	${ }^{1.87 \mathrm{U}^{1}}$	${ }^{1.80 \mathrm{U}}$	$0.74{ }^{1}$	1.2 U	$0.74{ }^{11}$	0.93 U	$0.76{ }^{11}$
SW8260	METHYL N-BUTYL KETONE	uglkg	1.10	1.10	1.6 U	1.14	1.10	1.10	1.10	1.30	1.2 U	1.3 U	1.2 U	1.14	1.70	1.14	1.30	1.10
SW8260	METHYLBENZENE	ug kg	0.46 U	${ }^{0.46 \mathrm{U}}$	0.65 U	0.45 U	0.88 J	0.46 U	0.46 U	0.51 U	0.47 U	0.52 U	0.48 U	0.44 U	0.68 U	0.44 U	1.9 J	0.45 U
SW8260	METHYLCYLOHEXANE	uglkg	0.48 U	0.48 U	0.68 U	0.48 U	0.47 U	0.48 U	0.48 U	0.54 U	0.50 U	0.54 U	0.50 U	0.46 U	0.71 U	0.46 U	1.4 J	0.57 J
SW8260	O-XYLENE	ug lkg	0.44 U	0.44 U	0.62 U	0.43 U	0.43 U	0.44 U	0.44 U	0.49 U	0.45 U	0.49 U	$0.45{ }^{\text {U }}$	0.42 U	$0.65{ }^{0}$	0.42 U	${ }_{0}^{0.52 U}$	${ }_{0}^{0.43 ~}{ }^{0}$
SW8260	STYRENE (MONOMER)	uglkg	0.47 U	0.47 U	0.67 U	0.47 U	0.46 U	0.47 U	0.47 U	0.52 U	0.49 U	0.53 U	0.49 U	0.45 U	0.70 U	0.45 U	0.56 U	0.46 U
SW8260	TERT-BUTYL METHYL ETHER	ugikg	0.35 U	0.35 U	0.50 U	0.35 U	0.34 U	0.35 U	0.35 U	0.39 U	0.36 U	0.39 U	0.36 U	0.34 U	0.52 U	0.34 U	0.42 U	0.35 U
SW8260	TETRACHLOROETHYLENE	ugkg	0.44 U	0.44 U	0.62 U	0.43 U	0.43 U	0.44 U	0.44 U	0.49 U	0.45 U	0.49 U	0.45 U	0.42 U	0.65 U	0.42 U	0.52 U	0.43 U
SW8260	TRANS-1,2-DICHLOROETHENE	uglkg	0.42 U	0.42 U	0.59 U	0.41 U	0.41 U	0.42 U	0.42 U	0.46 U	0.43 U	0.47 U	0.43 U	0.40 U	0.62 U	0.40 U	0.50 U	0.41 U
SW8260	TRANS-1,2-IICHLOROPROPENE	ugkg	0.33 U	0.33 U	0.47 U	0.33 U	0.32 U	0.33 U	0.33 U	0.37 U	0.34 U	0.37 U	0.34 U	0.32 U	0.49 U	0.32 U	0.39 U	0.32 U
SW8260	TRIBOMOMETHANE	ug lkg	0.43 U	0.43 U	0.61 U	0.42 U	0.42 U	0.43 U	0.43 U	0.47 U	0.44 U	0.48 U	0.44 U	0.41 U	0.63 U	0.41 U	0.51 U	0.42 U
SW8260	TRICHLOROETHYLENE	ugkg	0.44 U	0.44 U	0.62	${ }_{0}^{0.43 U}$	${ }_{0}^{0.43 \mathrm{U}}$	0.44 U	0.44 U	0.49 U	0.45 U	0.49 U	0.45 U	0.42U	0.65 U	0.42 U	0.52 U	0.43 U
SW8260	VINYL CHLORIDE	uglkg	0.27 U	0.27 U	0.38 U	0.26 U	0.26 U	0.27 U	0.27 U	0.29 U	0.27 U	${ }^{0.30 \mathrm{U}}$	0.27 U	0.25 U	0.39 U	0.25 U	0.32 U	0.26 U
SW8270	2,4,5-TRICHLOROPHENOL	ugkg	15 U	15 U	19 U	14 U	14 U	15 U	14 UJ	15 U	14 U	150 U	14 U					
SW8270	2,4,6-TRICHLOROPHENOL	uglkg	40 U	40 U	52 U	39 U	39 U	40 U	40 U	40 U	41 U	40 U	41 U	38 UJ	41 U	38 U	410 U	39 U
SW8270	2,4-DICHLOROPHENOL	ugkg	19 U	19 U	25 U	19 U	20 U	19 U	20 U	18 U	19 U	18 U	190 U	19 U				
SW8270	2,4-DIMETHYLPHENOL	ugkg	210	210	75 J	210	210	210	210	210	22 U	21 U	22 U	20 U	22 U	20 U	220 U	35 J
SW8270	2,4-IIIITROPHENOL	uglkg	14 U	14 U	18 U	13 U	13 U	14 U	13 UJ	14 UJ	13 U	140 U	13 UJ					
SW8270	2,4-DINITROTOLUENE	ugkg	11 U	11 U	15 U	11 U	11 U	110	110	110	12 U	110	11 U	$\xrightarrow{11 \mathrm{UJ}}$	11 U	110	110 U	110
SW8270	2,6-DIIITROTOLUENE	uglkg	40 U	40 U	52 U	39 U	39 U	40 U	40 U	40 U	41 U	40 U	41 U	38 UJ	41 U	38 U	410 U	39 U
SW8270	2.CHLORONAPHTHALENE	ugkg	18 U	18 U	24 U	18 U	17 UJ	18 U	17 U	180 U	18 U							
SW8270	2-CHLOROPHENOL	uglkg	20 U	20 U	26 U	20 U	21 U	20 U	21 U	19 U	21 U	19 U	210 U	20 U				
SW8270	2-METHYLPHENOL (0-CRESOL)	ugkg	14 U	14 U	18 U	13 U	13 U	14 U	13 U	14 U	13 U	140 U	13 U					
SW8270	2-NITROANLINE	ugkg	24 U	24 UJ	32 UJ	24 U	24 U	24 U	24 U	25 U	25 U	25 UJ	25 UJ	23 UJ	25 UJ	23 U	250 U	24 U
SW8270	2-NITROPHENOL	uglkg	16 U	16 U	210	16 U	15 U	16 U	15 U	16 U	15 U	160 U	15 U					
SW8270	3,3'-DICHLOROBENZIDINE	uglkg	37 UJ	37 UJ	50 UJ	37 U	37 U	37 U	37 U	38 U	39 U	38 U	39 U	36 U	38 U	36 U	380 U	37 U
SW8270	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	$\frac{\mathrm{ug} \text { 伯g }}{\text { ugkg }}$	15 U	15 U	$\frac{19 \mathrm{UJ}}{25}$	14 U	14 U	$\frac{150}{190}$	15 U	15 U	$\frac{150}{20}$	$\frac{15 \mathrm{UJ}}{19 \mathrm{U}}$	$\frac{15 \mathrm{UJ}}{20 \mathrm{U}}$	14 U	15 U	14 U	$\frac{150 \mathrm{U}}{190 \mathrm{U}}$	14 U
SW8270	4.6-DIINTRO-2-METHYLPHENOL	uglkg	11 U	11 U	14 U	11 U	10 U	110	11 U	110	11 UJ	110	110	${ }_{9} 9.7 \mathrm{U}$	110	9.8 U	110 U	10 UJ
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	11 U	110	15 U	110	110	110	110	110	12 UJ	11 U	11 U	110	110	110	110 U	110
SW8270	4-CHLORO-3-METHYLPHENOL	uglkg	18 U	18 U	24 U	18 U	17 U	18 U	17 U	180 U	18 U							
SW8270	4-CHLOROPHENYL PHENYL ETHER	ugikg	24 U	24 U	32 U	24 U	24 U	24 U	24 U	25 U	25 U	25 U	25 U	23 UJ	25 U	23 U	250 U	24 U
SW8270	4-METHYLPHENOL (MP-CRESOL)	uglkg	29 U	29 U	49 J	28 U	28 U	29 U	29 U	29 U	30 U	29 U	30 U	27 U	29 U	28 U	290 U	29 J
SW8270	4-NITROPHENOL	uglkg	19 U	19 UJ	25 UJ	19 U	20 U	19 UJ	20 UJ	18 UJ	19 UJ	18 U	190 UJ	19 U				
SW8270	BENZYL BUTYL PHTHALATE	uglkg	20 UJ	20 UJ	26 U	20 U	210	20 U	210	19 U	28 J	19 U	210 U	20 U				
SW8270	BIPHENYL	uglkg	170 U	$170 \cup$	220 U	170 UJ	160 U	170 UJ	170 U	1700	170 U	170 U	170 U	160 UJ	170 U	160 U	1700 U	160 U
SW8270	BIS(2-CHLORETHOXYMETHANE	uglkg	19 U	19 U	25 U	19 U	20 U	19 U	20 U	18 U	19 U	18 U	190 U	19 U				
SW8270	BIIS(2-CHLOROETHYLETHER	ugkg	17 U	17 UJ	22 U	17 U	16 U	17 U	17 U	17 U	17 UJ	17 U	17 U	16 UJ	17 U	16 U	170 U	16 U
$\frac{\text { SW8270 }}{\text { SW8270 }}$	BIS (2-CHLOROISOPROPYL ETHER	ugkg	$\frac{23 U}{280}$	$\frac{23 U}{3301}$	$\frac{310 J}{24 U}$	23 U	$\underline{23 U}$	$\frac{23 U}{184}$	$\frac{23}{18 \mathrm{U}}$	24 U	24 U	$\frac{24 \mathrm{UJ}}{27}$	${ }_{24}^{24 \mathrm{JJ}}$	$\frac{22 U}{174}$	$\frac{24 \mathrm{UJ}}{18 \mathrm{U}}$	$\frac{22 U}{17 \mathrm{U}}$	$\frac{240 \mathrm{UJ}}{180 \mathrm{UJ}}$	$\frac{23}{711}$
SW8270	CARBAZOLE	ug/kg	97J	110 J	1600	110 J	270	31 J	18 U	27 J	120 J	210	340	690	320	17 U	4400	770
SW8270	DIBENZOFURAN	uglkg	37 J	36 J	310	14 U	41 J	15 U	15 U	15 U	35 J	34 J	45 J	87 J	230	14 U	4000	520
SW8270	DIETHYL PHTHALATE	uglkg	14 U	14 U	18 U	13 U	13 U	14 U	13 UJ	14 U	13 U	140 U	13 U					
SW8270	DIMETHYL PHTHALATE	uglkg	11 U	11 U	15 U	11 U	12 U	11 U	11 U	11 UJ	11 U	11 U	110 U	11 U				
SW8270	DI-N-BUTYL-PHTHALATE	ugkg	67 U	${ }^{67 \mathrm{U}}$	89 U	66 U	65 U	67 U	67 U	68 U	69 UJ	68 U	69 U	63 U	68 U	64 U	680 U	65 U
SW8270	HEXACHLORO-1,-3BUTADIENE	uglkg	19 U	19 U	25 U	19 U	20 U	19 U	20 U	18 U	19 u	18 U	190 U	19 U				
SW8270	HEXACHLOROBENZENE	ugkg	9.00	9.00	12 U	9.0 UJ	8.9 U	9.10 J	9.10	9.2 U	9.4 UJ	9.2 U	9.3 U	8.6 U	9.3 U	8.7 U	93 U	8.9 U
SW8270	HEXACHLOROCYCLOPENTADIENE	uglkg	12 U	12 U	16 U	12 U	12 U	12 U	12 U	13 U	13 UJ	13 U	13 U	12 UJ	13 UJ	12 U	130 U	12 UJ
SW8270	HEXACHLOROETHANE	ugkg	19 U	19 U	25 U	19 U	20 U	19 U	20 U	18 U	19 U	18 U	190 U	19 U				
SW8270	NITROBENZENE	uglkg	22 U	22 U	29 U	22 U	23 U	22 U	23 U	210	23 U	210	230 U					
SW8270	$\frac{\text { N-NITROSO-DI-N.PROPYLAMINE }}{\text { N-NTTROSOOIPHENYLAMINE }}$	$\frac{\mathrm{ug} \text { 伯g }}{\text { ugkg }}$	$\frac{20 U}{12 \mathrm{U}}$	$\frac{20 U}{12 \mathrm{U}}$	$\frac{26 \mathrm{UJ}}{16 \mathrm{U}}$	20 U	20 U	20 U	20 U	$\frac{20 U}{13 \mathrm{U}}$	$\frac{21 \mathrm{U}}{13 \mathrm{UJ}}$	$\frac{20 \mathrm{UJ}}{13 \mathrm{U}}$	$\stackrel{210 J}{134}$	19 U	21 U	19 U	$\frac{210 \mathrm{U}}{130 \mathrm{U}}$	20 U
SW8270	P.CHLOROANILINE	uglkg	29 U	29 U	38 U	28 U	28 U	29 U	29 U	29 U	30 U	29 U	30 U	27 U	29 U	28 U	290 U	28 U
SW8270	PHENOL	ugkg	18 U	18 U	24 U	18 U	17 U	18 U	17 U	180 U	18 U							
SW8270	P-NITROANLINE	ugkg	14 U	14 U	18 U	13 U	13 U	14 U	$\stackrel{13 \mathrm{UJ}}{ }$	14 U	13 U	140 U	13 U					

Notes:
mgkg:
$\begin{array}{ll}\text { gikg: miligrams per kilogram } & U=\text { non-d } \\ J=\text { estime }\end{array}$
tugkg: micrograms per kilogram
Dioxin values in italics are new results from Vista laboratory

		$\begin{array}{r} \text { Location } \\ \text { Sample il } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO60 } \\ \text { SSo60BA } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \hline \text { SS062 } \\ \text { SSO62BA } \\ 0.25-0.5 \text { feet } \\ 12108 / 2006 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \hline \text { SSO64 } \\ \text { SSO64BA } \\ 0.25-0.5 \text { feet } \end{array}$ $12 / 08 / 2006$	$\begin{array}{c\|} \hline \text { SSO66 } \\ \text { SSo66BA } \\ 0.25-0.5 \text { feet } \\ 11 / 200000 \end{array}$ 12/08/2006	$\begin{array}{\|c\|} \hline \hline \text { SSO607 } \\ \text { SSo67BA } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO607 } \\ \text { SSo67BB } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \hline \text { SSO668 } \\ \text { SSO68BA } \\ 0.25-0.5 \text { feet } \\ 12 / 09 / 20066 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \hline \text { SSO669 } \\ \text { SSo698A } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|\|} \hline \hline \text { SSO70 } \\ \text { SSO70BA } \\ 0.25-0.5 \text { feet } \\ 122112 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO71 } \\ \text { sso7118 } \\ \text { o.25-5 feet } \\ 12101 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO72 } \\ \text { SSo72BA } \\ 0.25-0.5 \text { feet } \\ 12107 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSOT3 } \\ \text { SSO73BA } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { SSOT74 } \\ \text { SSO74BA } \\ 0.25-0.5 \text { feet } \\ 12 / 104 / 2006 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \hline \text { SSO75 } \\ \text { SS075BA } \\ 0.25-0.5 \text { feet } \\ 12 / 09 / 2006 \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO076 } \\ \text { SSO76BA } \\ 0.25-0.5 \text { feet } \\ 12 / 105 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSOO77 } \\ \text { SSO77BA } \\ 0.25-0.5 \text { feet } \\ 12109 / 2006 \\ \hline \end{array}$
Lab Method	Analyte	Units																
SNASIM	2-METHYLNAPHTHALENE	ugkg	140 J	18 U	33 J	7.1	220 J	130 J	86	33 J	250 J	28 J	170 U	480	530	660	240	16 UJ
	ACENAPHTHENE	ugkg				5.3 J	290 U	150 U	140	58 U	320 UJ	30 U		230 J	470	150 U	85 J	29 UJ
SNASIM	ACENAPHTHYLENE	uglkg	690	320	320	16	2200 J	1300 J	1100	640	4300	35 J	1700	4900	3500	4700	2200	220 J
SNASIM	ANTHRACENE	uglkg	1400	520	490	26	3700 J	2700 J	2000	480	11000	62	3900	9600	18000	5200	3700	180
BNASIM	BENZO(A)ANTHRACENE	ugkg	1300	890	970	28	3700 J	5500 J	1900	1200	9400	180	2700	7800	5800	13000	5600	430
BNASIM	BENZO(A)PYRENE	ugkg	1200	930	940	30	4300	3500	2100	1400	13000	210	2600	11000	9800	15000	6500	510 J
BNASIM	BENZO(B)FLUORANTHENE	uglkg	2700	1600	1700	60	8300	7600	7600 J	1600	25000	280	5600	21000	19000	30000 J	13000	620
SNASIM	BENZO(G, H, I, PERYLENE	uglkg	1300	710	730	40	5200 J	3500 J	1900	1000	11000	160	3900	9800	12000	12000	4900	370
BNASIM	BENZO(K)FLUORANTHENE	uglkg	1900	1400	1300	47	6700	6200	3500	1400	11000	220	4200	12000	12000	13000	9100	580
SNASIM	CHRYSENE	uglkg	1800	1300	1200	42	5600	7500	3800	1400	12000	250	3600	10000	9400	16000	8600	550
BNASIM	DIBENZO(A,H)ANTHRACENE	uglkg	420	250	270	11	1500	1200	600	370	3800	46	930	3900	3100	5000	1900	130 J
SNASIM	FLUORANTHENE	uglkg	2700	1200	1600	54	5900 J	12000 J	3700	1600	12000	340	5300	9700	10000	17000	7000	1000
BNASIM	FLUORENE	ugkg	160 J	20 J	17 J	7.9	160 U	790	92	32 U	290 J	17 U	170 U	380	410	140 J	150	18 J
BNASIM	INDENO(1,2,3-CD) PYRENE	ugkg	1600	840	880	41	5900 J	4300 J	2100	1300	10000	200	3800	12000	13000	12000	6400	400
BNASIM	NAPHTHALENE	ugkg	160 J	5.9 u	5.50	21	290 J	180 J	95	58 J	390 J	29 J	57 U	930	900	1100	360	20 J
SNASIM	PENTACHLOROPHENOL	uglkg	${ }^{710} \mathrm{~J}$	8.10	260 J	20 J	2900 J	2100 J	3400	15 U	7500	25 J	9200	6700	4500 J	900 J	1100 J	7.4 UJ
SNASIM	PHENANTHRENE	uglkg	670	140	260	33	1000	1200	440	220	1700	110	1600	2500	2300	2900	1700	160 J
SNASIM	PYRENE	ugkg	2200	1400	1500	56	6600 J	12000 J	4500	1700	18000	290	5500	9400	12000	25000	11000	1200
E160.3	RESIDUE, TOTAL	percent	92	87	94	96	94	95	95	94	85	91	91	94	89	92	94	96
E1613/E1668	1,2,3,4,6,7,8,-HEPTACHLORODIBENZOFURAN	ngkg		1458.313 J		204.18			42900		67400	156.282					5370	
E1613/1668	1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	nglkg		11445.337 J		1408.029			302000		419000	1202.926					35700	
E16131/1668	1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	ng lkg		97.005		11.835			2590		5430	8.104					489	
E16131/1668	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	nglkg		46.016		4.515 J			1210		1880	4.117 J					193	
E1613/16688	1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	nglkg		52.445		10.643			1970		2590	9.096					463	
E16131/1668	1, 2,3,6,7,8.-HEXACHLORODIBENZOFURAN	nglkg		41.823		$\frac{3.7593}{325}$			$\stackrel{838}{1040}$		706 J	$\frac{3.178 \mathrm{~J}}{}$					165	
E1613/1668	1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$		$\frac{499.76}{8.759}$		34.255 0.163 U			$\frac{10400}{494}$		$\frac{11200}{362}$	27.318 0.089 U					$\frac{885}{57.25}$	
E1613/161668	1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	nglkg		${ }^{267.756}$		${ }^{25.218}$			3830		4250	$\stackrel{27.003}{ }$					${ }^{56.25}$	
E1613/161688	1,2,3,7,8-PENTACHLORODIBENZOFURAN	ng/kg		8.509		0.635 J			158		54.2 J	0.429 J					17.6 J	
E1613/1668	1,2,3,7,8.PENTACHLORODIBENZO-P-DIOXIN	ngkg		43.017		3.414 J			597		509	3.29 J					129	
E1613/16688	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	nglkg		40.485		3.016 J			1910		1670	2.887 J					257	
E1613/16688	2,3,4,7,8-PENTACHLORODIBENZOFURAN	nglkg		10.156		0.39 J			503		220	0.779 J					44.6 J	
E1613116688	2,3,7,8-TETRACHLORODIBENZOFURAN	nglkg		${ }^{3.835}$		0.232 U			22.5		${ }^{7.81 \mathrm{~J}}$	0.379 U					OU	
E1613/1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	nglkg		6.274		0.17 U			31.6		OU	0.254 U					12.7	
E1613/1668	OCTACHLORODIBENZOFURAN	nglkg		5591.954 J		1171.538			178000		361000	774.548					22600	
E163121668	OCTACHLORODIBENZO-P-DIOXIN	nglkg		93149.542 J		14403.737 J			3740000		3940000	10958.784J					344000	
	TOTAL HEPTACHLORINATED DIBENZOFURANS	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$		${ }_{358775.98} 5$		$\frac{796.183}{5162.217}$			$\frac{178000}{65000}$		319000 145000	535.261   4303.934					19700	
E1613/16688	TOTAL LEXACHLORINATED DIBENZOFURANS	$\frac{\mathrm{ng}}{\text { nglkg }}$		1793.312		${ }^{\frac{5}{2192.322}}$			492000 J		$\frac{1459000}{}$						${ }_{137900}$	
E1613/161668	TOTAL HEXACHLORINATED DIBENZO-P.-DIOXINS	nglkg		4241.841		${ }_{2} 299.316$			52600		112000	394.646					12300	
E1613/1668	TOTAL PENTACHLORINATED DIBENZOFURANS	nglkg		450.147		30.536			5250 J		3020 J	25.257					869 J	
E1613/1668	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	nglkg		534.738		18.725			2820		4140	42.775					707	
E16131/1668	TOTAL TETRACHLORINATED DIBENZOFURANS	nglkg		85.027		7.042			525		363 J	8.504					52.1	
E16131/1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	nglkg		${ }^{136.661}$		0.525			271		170	${ }^{6.626}$					55.6	
SW6020	ANTIMONY	mg/kg	1.7	0.39 UJ	0.39 J	0.35 U	3.5 J	2.2 J	2.15	0.79 J	0.40 UJ	0.37 U	0.56 J	3.0	0.61 J	4.5 J	1.1	0.35 UJ
SW6020	ARSENIC	mg/kg	160 J	12	110	54 J	220 J	120 J	190	14 J	61	4.6	59	150 J	55	120	130	1.3
SW6020	BARIUM	mg/kg	13	73	17	9.2	25	19	20	16	30	24	36	85	63 E	72	20	14
SW6020	CADMIUM	mq/kg	${ }^{0.340}$	0.80	0.300	0.30 U	$\frac{0.30 \mathrm{U}}{35}$	${ }^{0.300}$	0.29 U	0.30 U	0.34 U	0.316	0.37 J	0.92	0.57	0.310	${ }^{0.300}$	0.30 U
SW6020	CHROMIUM	mglkg	$\frac{200 \mathrm{~J}}{100}$	60	190	$\frac{19 \mathrm{~J}}{46}$	$\frac{350 \mathrm{~J}}{100}$	$\frac{180 \mathrm{~J}}{85}$	$\frac{230 \mathrm{~J}}{120}$	$\frac{6.45}{8 .}$	26	8.8	59	$\frac{140 \mathrm{~J}}{240}$	60	150 J	230	4.9 J
SW6020	LEAD	mglkg	9.2	9.4	8.4	${ }^{4.95}$	28J	19 J	37	${ }^{82}$	24	57	53	220	$\frac{62}{52}$	120	$\frac{140}{29}$	$\frac{1.3}{5.1}$
SW6020	SELENIUM	mg/kg	0.87 U	0.96 U	0.86 U	0.87 U	0.88 U	0.88 U	0.85 U	0.88 U	0.98 U	0.91 U	0.89 U	0.89 U	0.89 U	0.93 J	0.88 U	0.86 U
SW6020	SILVER	mg/kg	0.39 U	0.43 U	0.39 U	0.39 U	0.40 U	0.40 U	0.39 UJ	0.40 U	0.44 U	0.41 U	0.40 U	0.40 U	0.40 U	0.41 UJ	0.40 U	0.39 uJ
SW6020	VANADIUM (FUME OR DUST)	mgkg	0.93 UJ	34	2.2	1.9	0.94 U	0.94 U	0.91 U	3.9	7.2	7.8 J	7.1	5.9	4.6	5.3	0.94 U	4.3
SW7471	MERCURY	mg/kg	0.22	0.087 J	0.21 J	0.031 J	0.38 J	0.32 J	0.20	0.074 J	2.9	0.063	1.9	1.8	1.7	0.42	0.15	0.022 J
SW8260	1,1,1-TRICHLOROETHANE	ugkg	0.14 U	0.15 U	0.13 U	0.16 U	0.14 U	0.14 U	0.13 R	0.14 U	0.13 U	0.13 U	0.13 U					
SW8260	1,1,1,2,2-TETRACHLOROETHANE	ugkg	0.072 U	0.081 U	0.072 U	0.069 U	0.071 U	0.070 U	0.070 U	0.071 U	0.084 U	0.073 U	0.077 U	0.070 R	0.075 U	0.072 U	0.071 U	0.069 U
SW8260	1,1,2-TRICHLOROETHANE	uglkg	0.15 U	0.16 U	0.14 U	0.17 U	0.15 U	0.16 U	0.14 R	0.15 U	0.15 U	0.14 U	0.14 U					
SW8260	1,1-DICHLOROETHANE	uglkg	0.069 U	0.077 U	0.068 U	0.066 U	0.067 U	0.067 U	0.067 U	0.068 U	0.080 U	0.069 U	0.073 U	0.067 R	0.071 U	0.069 U	0.067 U	0.066 U
SW8260	1,1-DICHLOROETHYLENE	uglkg	0.19 U	0.21 U	0.19 U	0.18 U	0.19 U	0.18 U	0.18 U	0.19 U	0.22 U	0.19 U	0.20 U	0.19 R	0.20 U	0.19 U	0.19 U	0.18 U
SW8260	1,2,4-TRICHLOROBENZENE	ugkg	0.17 UJ	0.19 U	0.17 U	0.16 U	0.16 UJ	0.16 UJ	0.16 UJ	0.16 U	0.19 U	0.17 UJ	0.18 U	0.16 R	0.17 UJ	0.17 UJ		0.16 U
SW8260	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	$\frac{\mathrm{ug} \text { 伯g }}{\text { ugkg }}$	0.54 UJ	${ }_{0}^{0.6008}$	${ }_{0}^{0.53 \mathrm{U}}$	$\frac{0.51 \mathrm{U}}{0.059 \mathrm{U}}$	0.53 U 0	0.52 U	0.52 U	${ }_{0}^{0.53 \mathrm{U}} 0$	$\frac{0.62 \mathrm{U}}{0.071 \mathrm{U}}$	${ }_{0}^{0.544 \mathrm{U}} 0$	$\frac{0.57 \mathrm{U}}{0.065 \mathrm{U}}$	0.52 ${ }^{0.060 \mathrm{R}}$	0.55 UJ	${ }_{0}^{0.54 \mathrm{UJ}} 0$	0.53 U J	$\frac{0.52 \mathrm{U}}{0.059}$
SW8260	1,2-DICHLOROBENZENE	uglkg	0.085 U	0.095 U	0.084 U	0.081 U	0.083 UJ	0.083 UJ	0.083 UJ	0.084 U	0.099 U	0.086 UJ	0.091 U	${ }_{0}^{0.083 \mathrm{R}}$	0.088 UJ	0.085 JJ	0.083 JJ	0.082 U
SW8260	1,2-DICHLOROETHANE	uglkg	0.11 U	0.13 U	0.11 U	0.13 U	0.11 U	0.12 U	0.11 R	0.12 U	0.11 U	0.11 U	0.11 U					
sW8260	1,2-DICHLOROPROPANE	ugkg	0.059 U	0.066 U	0.059 U	0.057 U	0.058 U	0.057 U	0.058 U	0.058 U	0.068 U	0.060 U	0.063 U	0.058 R	0.061 U	0.059 U	0.058 U	0.057 U
SW8260	1,4-DICHLOROBENZENE	uglkg	0.095 U	0.11 U	0.094 U	0.091 U	0.093 UJ	0.092 UJ	0.092 UJ	0.093 U	0.11 U	0.096 UJ	0.11 U	0.093 R	0.098 UJ	0.095 UJ	0.093 UJ	0.091 U
SW8260	ACETONE	ugikg	2.8 UJ	120 J	2.7 U	2.6 U	2.7 U	2.7 U	2.7 U	2.7 U	11 J	2.8 U	2.9 U	2.7 R	4.3 J	2.8 U	2.7 U	48 J
SW8260	BENZENE	uglkg	$\stackrel{0.43 \mathrm{U}}{0}$	$\stackrel{0.48 \mathrm{U}}{0.36 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{0}$	$\frac{0.41 \mathrm{U}}{031 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{0.31 \mathrm{U}}$	$\xrightarrow{0.42 \mathrm{U}}$	$\xrightarrow{0.42 \mathrm{U}}$	$\xrightarrow{0.42 \mathrm{U}}$	$\stackrel{0.50 \mathrm{U}}{037 \mathrm{U}}$	$\xrightarrow{0.43 \mathrm{U}}$	$\frac{0.46 \mathrm{U}}{034 \mathrm{U}}$	$\frac{0.42 \mathrm{R}}{0}$	0	0.43 U	0.42 U	0.41 U 0.31 U
SW8260	BROMOMETHANE	ugkg	$\stackrel{0.35 \mathrm{U}}{ }$	0.39 U	0.35	0.34 UJ	${ }_{0}^{0.344}$	$\stackrel{0.34 \cup}{0}$	0.34 U	$\stackrel{0.35 \mathrm{U}}{0}$	0.41 UJ	$\stackrel{0.36 \mathrm{U}}{0}$	0.37 U	${ }_{0}^{0.34 \mathrm{R}}$	${ }_{0}^{0.36 \mathrm{UJ}}$	0.35	${ }_{0}^{0.34 \mathrm{UJ}}$	0
SW8260	CARBON DISULFIDE	uglkg	1.8 U	2.00	1.8 U	1.7 U	1.7 U	1.7 U	1.7 U	1.8 U	2.10	1.8 U	1.90	1.7 R	1.8 U	1.8 U	1.70	1.70
SW8260	CARBON TETRACHLORIDE	uglkg	0.38 U	0.43 U	0.38 U	0.37 U	0.38 U	0.37 U	0.37 U	0.38 U	0.45 U	0.39 U	0.41 U	0.38 R	0.40 U	0.38 U	0.38 U	0.37 U
sW8260	CFC-11	ugkg	0.29 U	0.32 U	0.28 U	0.27 U	0.28 U	0.28 U	0.28 U	0.28 U	0.33 U	0.29 U	0.31 U	0.28 R	0.30 U	0.29 U	0.28 U	0.28 U
SW8260	CFC-12	uglkg	$\xrightarrow{0.350}$	0.394	0.35 U	0.34U	$\stackrel{0.34 \mathrm{U}}{0}$	0.34U	0.34U	0.35 U	0.41 U	$\frac{0.36 \mathrm{U}}{0}$	$\frac{0.37 \mathrm{UJ}}{0.42 \mathrm{~J}}$	${ }_{0}^{0.34 \mathrm{R}}$	${ }_{0}^{0.36 \mathrm{U}}$	0.35	0.34 U	0.34U
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \mathrm{lkg}}$	$\frac{0.40 \mathrm{U}}{0.44 \mathrm{U}}$	0.44U	$\frac{0.39 \mathrm{U}}{0.44 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.42 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	0.38U	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.46 \mathrm{U}}{0.51 \mathrm{U}}$	$\frac{0.40 \mathrm{U}}{0.44 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{0.47 \mathrm{U}}$	0.39R	$\frac{0.41 \mathrm{U}}{0.45 \mathrm{U}}$	0.39 0	0.39 U 0.43 U	$\frac{0.38 \mathrm{U}}{0.42 \mathrm{U}}$
SW8260	CHLORODIBROMOMETHANE	uglkg	0.28 U	0.31 U	0.27 U	0.26 U	0.27 U	0.27 U	0.27 U	0.27 U	0.32 U	0.28 U	0.29 U	0.27 R	0.29 U	0.28 U	0.27 U	0.27 U
SW8260	CHLOROETHANE	ugikg	0.40 U	0.44 U	$0.39{ }^{\text {U }}$	0.38 U	0.39 U	0.38 U	0.39 U	0.394	0.46 UJ	0.40 U	0.42 U	0.39 R	0.41 U	0.39 U	$0.39{ }^{\text {U }}$	0.38 U
SW8260	CHLOROFORM		$\frac{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{0.55}$	$\frac{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.47 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.43 \mathrm{U}}{0.57 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.50 \mathrm{U}}$	$\frac{0.40 \mathrm{U}}{0.52 \mathrm{U}}$	$\frac{0.37 \mathrm{R}}{0.48 \mathrm{R}}$	$\frac{0.39 \mathrm{U}}{0.51 \mathrm{u}}$	$\frac{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.48 \mathrm{u}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$
SW8260	CIIS-1,2-ICHLOROETHYLENE	uglkg	0.29 U	0.32 U	0.28 U	0.27 U	0.28 U	0.28 U	0.28 U	0.28 U	0.33 U	0.29 U	0.31 U	0.28 R	0.30 U	0.29 U	0.28 U	0.28 U


		$\begin{array}{r} \text { Location } \\ \text { Sample ID } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{gathered} \text { SSO60 } \\ \text { SSOO6BA } \\ 0.25-5.5 \text { fet } \\ 1130 / 20006 \\ \hline \end{gathered}$			$\begin{array}{\|c\|} \hline \hline \text { SSO666 } \\ \text { SSo66BA } \\ 0.25-0.5 \text { feet } \\ 12108 / 20006 \\ \hline \end{array}$		$\begin{gathered} \hline \hline \text { SSO667 } \\ \text { SS067BB } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{gathered}$		SSO699   SSO698A   0.05-.5 feet   11/30/2006$\|$	SSO70   SSO70BA   $0.25-0.5$ feet   $12 / 12 / 2006$	SSO71   Sso711A   o.05-.5feet   12/01/2006$\|$		SSO73   SSO73BA   $0.25-0.5$ feet   $11 / 30 / 2006$	SSO74   SS074BA   $0.25-0.5$ feet   12/04/2006	$\begin{array}{\|c\|} \hline \hline \text { SSO75 } \\ \text { SSO75BA } \\ 0.25-0.5 \text { feet } \\ 12109 / 2006 \\ \hline \end{array}$	SSO76 SSO76BA 0.25-0.5 feet 12/05/2006	
Lab Method	Analyte	Units																
sw8260	CIS-1,3-DICHLOROPROPENE	ugkg	0.32 U	0.36 U	0.32 U	0.31 U	0.37 U	0.32 U	0.34 U	0.31 R	0.33 U	0.32 U	0.31 U	0.31 U				
SW8260	CYCLOHEXANE	uglkg	0.42 U	0.47 U	0.41 U	0.40 U	0.41 U	0.40 U	0.41 U	0.41 U	0.48 U	0.42 U	0.44 U	0.41 R	0.43 U	0.42 U	0.41 U	0.40 U
SW8260	DICHLOROMETHANE	uglkg	${ }^{0.43 \mathrm{U}}$	0.48 U	0.42 U	0.41 U	0.42 U	0.42 U	${ }^{0.42 \mathrm{U}}$	0.42 U	0.50 U	0.43 U	0.46 U	0.42 R	0.44 U	0.43 U	0.42 U	0.41 U
SW8260	ETHYLBENZENE	uglkg	0.46 U	0.51 U	0.46 U	0.44 U	0.45 U	0.45 U	0.45 U	0.45 U	0.53 U	0.46 U	0.49 U	0.45 R	0.48 U	0.46 U	0.45 U	0.44 U
SW8260	ISOPROPYLBENZENE	uglkg	0.50 U	0.56 U	0.50 U	0.48 U	0.49 UJ	0.49 UJ	0.49 UJ	0.50 U	0.58 U	0.51 UJ	0.54 U	0.49 R	0.52 UJ	0.50 UJ	0.49 UJ	0.49 U
SW8260	m,p-xylenes	uglkg	0.95 U	1.10	0.94 U	0.91 U	0.93 U	0.92 U	0.92 U	0.93 U	1.10	0.96 U	1.10	0.93 R	0.98 U	0.95 U	0.93 U	0.91 U
SW8260	M-DICHLOROBENZENE	ugkg	0.055 U	0.061 U	0.054 U	0.052 U	0.054 UJ	0.053 UJ	0.053 UJ	0.054 U	0.063 U	0.055 UJ	0.058 U	0.053 R	0.057 UJ	0.055 UJ	0.054 UJ	0.053 U
SW8260	METHYL ACETATE	uglkg	0.21 U	0.24 U	0.21 U	0.20 U	0.21 UJ	0.20 UJ	0.21 U	0.21 UJ	0.24 U	0.21 U	0.22 U	0.21 R	0.22 U	0.21 U	0.21 U	0.20 U
SW8260	METHYL ETHYL KETONE	uglkg	1.2 U	1.4 U	1.2 U	1.4 U	1.30	1.3 U	1.2 R	1.30	1.2 U	1.2 U	1.2 U					
SW8260	METHYL ISOBUTYL KETONE	ugkg	0.78 U	0.87 U	0.77 U	0.74 U	0.76 U	0.75 U	0.75 U	0.76 U	0.90 U	0.78 U	0.82 U	0.76 R	0.80 U	0.77 U	0.76 U	0.75 U
SW8260	METHYL N-BUTYL KETONE	uglkg	1.10	1.3 U	1.10	1.10 J	1.10	1.10	1.10	1.10	1.30	1.10	1.2 U	1.12	1.2 U	1.10	1.10	1.10
SW8260	METHYLBENZENE	ugkg	0.46 U	0.51 U	0.46 U	0.44 U	0.45 U	0.45 U	0.45 U	0.45 U	0.72 J	0.46 U	0.49 U	0.45 R	0.48 U	0.46 U	0.45 U	0.44 U
SW8260	METHYLCYLOHEXANE	uglkg	0.48 U	0.54 U	0.48 U	0.46 U	0.47 U	0.47 U	0.47 U	0.47 U	0.56 U	0.49 U	0.51 U	0.47 R	0.50 U	0.83 J	0.47 U	0.46 U
SW8260	O-XYLENE	ugkg	0.44 U	0.49 U	0.44 U	0.42 U	0.43 U	0.43 U	0.43 U	0.43 U	0.51 U	0.44 U	0.47 U	0.43 R	0.45 U	0.44 U	0.43 U	0.42 U
SW8260	STYRENE (MONOMER)	ugkg	0.47 U	0.53 U	0.47 U	0.45 U	0.46 U	0.46 U	0.46 U	0.46 U	0.55 U	0.48 U	0.50 U	0.46 R	0.49 U	0.47 U	0.46 U	0.45 U
SW8260	TERT-BUTYL METHYL ETHER	uglkg	0.35 U	0.39 U	0.35 U	0.34 U	0.34 U	0.34 U	0.34 U	0.35 U	0.41 U	0.36 U	0.37 U	0.34 R	0.36 U	0.35 U	0.34 U	0.34 U
SW8260	TETRACHLOROETHYLENE	ugkg	0.44 U	0.49 U	0.44 U	0.42 U	0.43 U	0.43 U	0.43 U	0.43 U	0.51 U	0.44 U	0.47 U	0.43 R	0.45 U	0.44 U	0.43 U	0.42 U
SW8260	TRANS-1,2-DICHLOROETHENE	uglkg	0.42 U	0.47 U	0.41 U	0.40 U	0.41 U	0.40 U	0.41 U	0.41 U	0.48 U	0.42 U	0.44 U	0.41 R	0.43 U	0.42 U	0.41 U	0.40 U
SW8260	TRANS-1,2-DICHLOROPROPENE	ugkg	0.33 U	0.37 U	0.33 U	0.32 U	0.38 U	0.33 U	0.35 U	0.32 R	0.34 U	0.33 U	0.32 U	0.32 U				
SW8260	TRIBOMOMETHANE	ugkg	0.43 U	0.48 U	0.42 U	0.41 U	0.42 U	0.42 U	0.42 U	0.42 U	0.50 U	0.43 U	0.46 U	0.42 R	0.44 U	0.43 U	0.42 U	0.41 U
SW8260	TRICHLOROETHYLENE	uglkg	0.44 U	0.49 U	0.44 U	0.42 U	0.43 U	0.43 U	0.43 U	0.43 U	0.51 U	0.44 U	0.47 U	0.43 R	0.45 U	0.44 U	0.43 U	0.42 U
SW8260	VIINYL CHLORIDE	ugkg	0.27 U	0.30 U	0.26 U	0.25 U	0.26 U	0.26 U	0.26 U	0.26 U	${ }^{0.31 \mathrm{U}}$	0.27 U	0.28 U	0.26 R	0.27 U	0.26 U	0.26 U	0.26 U
SW8270	2,4,5-TRICHLOROPHENOL	uglkg	15 U	15 U	14 U	14 U	45 J	14 U	14 U	14 U	160 U	15 U	15 U	14 U	15 U	150 U	14 U	14 U
SW8270	2,4,6-TRICHLOROPHENOL	ugkg	40 U	42 U	39 U	38 U	39 U	38 U	38 U	39 U	430 U	40 U	40 U	39 U	41 U	400 U	39 U	38 U
SW8270	2,4-DICHLOROPHENOL	ugkg	19 U	20 U	19 U	18 U	19 U	18 U	18 U	19 U	200 U	19 U	19 U	19 U	20 U	190 U	19 U	18 U
SW8270	2,4-DIMETHYLPHENOL	ugkg	21 U	22 U	210	20 U	30 J	20 U	20 U	210	230 U	21 U	24 J	48 J	61 J	210 U	21 U	20 U
SW8270	2,4-DIIITROPHENOL	ugkg	14 UJ	14 U	13 U	13 U	13 U	13 UJ	13 U	13 UJ	150 U	14 UJ	14 U	13 UJ	14 U	140 U	13 U	13 U
SW8270	2,4-DINITROTOLUENE	uglkg	11 U	12 U	11 U	11 U	82 J	11 U	11 U	11 U	120 U	11 U	11 U	11 U	11 U	110 U	11 U	11 U
SW8270	2,6-DINITROTOLUENE	ugkg	40 U	42 U	39 U	38 U	39 U	38 U	38 U	39 U	${ }_{4}^{430 \mathrm{U}}$	40 U	40 U	39 U	41 U	400 U	39 U	38 U
SW8270	2-CHLORONAPHTHALENE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\mathrm{ug} k \mathrm{~kg}}$	$\frac{18}{20}$	19 U	$\underline{180}$	17 U	17 U	17 U	17 U	18 U	${ }_{200}^{190}$	$\frac{18}{20}$	$\frac{18}{20}$	$\underline{170}$	$\frac{18}{210}$	${ }^{1800 \mathrm{U}}$	${ }_{2} 17 \mathrm{U}$	17 U
SW8270	2-METHYLPHENOL (O-CRESOL)	ugkg	14 U	14 U	13 U	13 U	13 U	130	13 U	13 U	150 U	14 U	14 U	13 U	14 U	140 U	13 U	13 U
SW8270	2-NITROANILINE	ugkg	24 UJ	26 U	24 U	23 U	30 J	24 UJ	24 U	24 UJ	260 U	25 UJ	25 U	24 U	25 UJ	240 U	24 UJ	23 U
SW8270	2-NITROPHENOL	ugkg	16 U	17 U	15 U	$170 \cup$	16 U	16 U	15 U	16 U	160 U	15 U	15 U					
SW8270	3,3-DICHLOROBENZIIINE	ugkg	37 U	40 U	37 U	36 U	37 U	36 U	36 U	37 U	400 U	38 U	38 U	37 U	39 U	370 U	37 UJ	36 U
SW8270	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	uglkg	15 U	15 U	14 U	160 U	15 U	15 U	14 U	15 U	150 U	14 UJ	14 U					
SW8270	3-NITROANILINE	uglkg	19 U	20 U	19 U	18 U	37 J	18 U	18 U	19 U	200 U	19 U	19 U	19 U	20 U	190 U	19 U	18 U
SW8270	4,6-DINITRO-2-METHYLPHENOL	uglkg	11 UJ	11 U	10 U	9.8 U	60 J	9.9 UJ	9.90	11 UJ	120 U	11 U	11 U	10 UJ	11 U	110 U	10 U	9.8 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ug/kg	11 U	12 U	11 U	11 U	53 J	11 U	11 U	11 U	120 U	11 U	11 U	110	110	1100	11 U	11 U
$\frac{5}{\text { SW8270 }}$	$\frac{\text { 4-CHLORO-3-METHYLPHENOL }}{\text { 4-CHLOROPHENYL }}$	ugkg	$\frac{18 \mathrm{U}}{24 \mathrm{U}}$	$\frac{190}{26 U}$	$\frac{18 \mathrm{U}}{24}$	$\frac{17}{23}$	$\frac{34 \mathrm{~J}}{35}$	$\frac{174}{24}$	$\frac{17}{24 U}$	$\frac{18 \mathrm{U}}{24}$	$\underline{190 U}$	$\frac{18 \mathrm{U}}{25}$	$\frac{18 \mathrm{U}}{25}$	$\frac{17 \mathrm{U}}{24 \mathrm{U}}$	$\frac{18 \mathrm{U}}{25}$	$\frac{180 \mathrm{U}}{240 \mathrm{U}}$	$\frac{17 \mathrm{U}}{24}$	$\frac{17 U}{23 U}$
SW8270	4-METHYLPHENOL (MPP-CRESOL)	ugkg	29 U	30 U	28 U	28 U	$\underline{280}$	28 U	28 U	28 U	310 U	29 U	290	29 J	30 U	290 U	28 U	28 U
SW8270	4-NITROPHENOL	uglkg	19 UJ	20 UJ	19 UJ	18 U	190	18 U	18 U	19 U	200 U	19 UJ	19 UJ	19 U	20 UJ	190 U	19 UJ	18 U
SW8270	BENZYL BUTYL PHTHALATE	ugkg	20 U	21 U	20 U	19 U	180 J	25 J	19 U	20 U	220 U	20 U	20 U	20 U	21 U	200 U	20 U	19 U
SW8270	BIPHENYL	ugkg	$170 \cup$	180 U	160 U	1800 U	$170 \cup$	$170 \cup$	160 U	170 U	1700 U	160 U	160 U					
SW8270	BIS(2-CHLORETHOXY)METHANE	uglkg	19 U	20 U	19 U	18 U	19 U	18 U	18 U	19 U	200 U	19 U	19 U	19 U	20 U	190 U	19 U	18 U
SW8270	BIS(2-CHLOROETHYL) ETHER	uglkg	17 U	18 U	16 U	16 U	16 UJ	16 UJ	16 U	16 UJ	180 U	17 U	17 U	16 U	17 UJ	170 UJ	16 U	16 UJ
SW8270	BIIS(2-CHLOROISOPROPYL) ETHER	ugkg	23 U	25 UJ	23 UJ	22 U	23 U	23 U	23 U	23 U	250 U	23 UJ	24 UJ	23 U	24 U	230 U	23 UJ	22 U
SW8270	BiS(2-ETHYLHEXYL)PHTHALATE	ugkg	83 J	19 U	18 U	17 U	190 J	$\frac{29 \mathrm{~J}}{310 \mathrm{~J}}$	$\frac{17 \mathrm{U}}{600}$	$\frac{18 \mathrm{U}}{180}$	$\stackrel{190 \mathrm{U}}{2000 \mathrm{~J}}$	$\frac{18 \mathrm{U}}{18 \mathrm{U}}$	$\frac{160 \mathrm{~J}}{510}$	$\frac{170 \mathrm{~J}}{950}$	75 J	$\frac{180 \mathrm{U}}{1500 \mathrm{~J}}$	$\frac{21 \mathrm{~J}}{550}$	$\frac{17 \mathrm{U}}{62 \mathrm{~J}}$
SW8270	CARBAZOLE ${ }_{\text {IIBENZFURAN }}$	$\frac{\mathrm{ug} k \mathrm{~kg}}{\mathrm{ug} k g}$	$\stackrel{98}{110}$	750 J	82 J	17 U	$\frac{880 \mathrm{~J}}{140}$	$\frac{310 \mathrm{~J}}{63 \mathrm{~J}}$	600 140	${ }^{180 \mathrm{~J}}$	${ }_{2}^{2000 \mathrm{~J}}$	18 U	510	950 350	1300 340	${ }_{500 \mathrm{~J}}^{10}$	${ }_{130}$	14 U
SW8270	DIETHYL PHTHALATE	ugkg	14 U	14 U	13 U	13 U	64 J	13 U	13 U	13 U	150 U	14 U	14 U	13 U	14 U	140 U	13 U	13 U
SW8270	DIMETHYL PHTHALATE	uglkg	11 U	12 U	11 U	11 U	36 J	11 U	11 U	11 U	120 U	11 U	11 U	11 U	11 U	110 U	11 U	11 U
SW8270	D-N-BUTYL-PHTHALATE	uglkg	67 U	710	65 U	64 U	190 J	65 U	65 U	66 U	${ }^{720 \mathrm{O}}$	67 U	68 U	65 U	69 U	670 U	65 U	64 U
SW8270	DI-N-OCTYL-PHTHALATE	uglkg	17 U	18 U	16 U	16 U	180 J	21 J	16 U	16 U	180 U	17 U	17 U	16 U	17 U	170 U	16 U	16 U
SW8270	HEXACHLORO-1,3-BUTADIENE	ugkg	19 U	20 U	19 U	18 U	19 U	18 U	18 U	19 U	200 U	19 U	19 U	19 U	20 U	190 U	19 U	18 U
SW8270	HEXACHLOROBENZENE	ugkg	9.1U	9.6U	8.90	8.70	78 J	8.8 U	8.8 U	8.9 U	98 U	$\underline{9.14}$	9.2U	${ }^{8.8 \mathrm{U}}$	9.4 U	91 U	8.94	8.70
SW8270	HEXACHLOROCYCLOPENTADIENE	ugkg	12 U	13 U	12 U	12 U	12 UJ	$\frac{12 \mathrm{UJ}}{18 \mathrm{U}}$	$\frac{12 \mathrm{UJ}}{18}$	$\frac{12 \mathrm{UJ}}{10 \mathrm{u}}$	${ }^{1300}$	13UJ	13 U	12UJ	13 U	120 UJ	12 U	$\frac{12 \mathrm{UJ}}{18}$
SW8270	HEXACHLOROETHANE	ugkg	19 U	20 U	19 U	18 U	19 U	18 U	18 UJ	19 U	200 U	19 U	19 U	19 U	20 U	190 U	19 U	18 U
SW8270	NTROBENZENE	ugkg	22 U	23 U	22 U	21 U	22 U	22 U	22 U	22 U	240 U	22 U	22 U	22 U	23 U	220 U		21 U
SW8270 SW8270	$\frac{\text { N-NTROSO-DI-N.PROPYLAMINE }}{\text { N-NITROSOOIPHENYLAMINE }}$		$\frac{20 U}{12 \mathrm{U}}$	$\frac{210}{130}$	20 U	19 U	$\frac{20 \mathrm{U}}{86}$	$\frac{190}{12 U}$	$\frac{19 \mathrm{U}}{12 \mathrm{U}}$	$\frac{20 U}{120}$	$\frac{220 U}{130 \mathrm{U}}$	$\frac{20 U}{130}$	$\frac{20 U}{130}$	$\frac{20 U}{120}$	$\frac{21 U}{13 U}$	$\frac{200 \mathrm{U}}{120 \mathrm{U}}$	$\frac{20 \mathrm{UJ}}{12 \mathrm{u}}$	19 U
SW8270	P.CHLOROANILINE	ug/kg	29 U	30 U	28 U	28 UJ	28 U	28 U	28 U	28 U	310 U	29 U	29 U	28 U	30 U	290 U	28 U	28 U
SW8270	PHENOL	ugkg	18 U	19 U	18 U	17 U	17 U	17 U	17 U	18 U	190 U	18 U	18 U	17 U	18 U	180 U	17 U	17 U
SW8270	P-NITROANILINE	ugkg	14 U	14 U	13 U	13 U	70 J	13 U	13 U	13 U	150 U	14 U	14 U	13 U	14 U	140 U	13 U	13 U

Notes:
mgkg: miligrams per kilogram
nglkg: nanograms per kilogram
igikg: micrograms per kilogram
tilics are new results from Vista laboratory

		$\begin{array}{r} \text { Location } \\ \text { Sample il } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{array}{c\|} \hline \hline \text { SSO78 } \\ \text { SSo78B } \\ 0.25-0.5 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	SS079BA 0.25-0.5 feet 11/30/2006	$\begin{array}{\|c\|} \hline \hline \text { SSO80 } \\ \text { SSo80BA } \\ 0.25-0.5 \text { feet } \end{array}$ 12/06/2006	$\begin{array}{\|c\|} \hline \hline \text { SSO8080 } \\ 0.25-0.5 \mathrm{BE} \text { feet } \\ 121 / 06 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \hline \text { SSO81 } \\ \text { SSo81BA } \\ 0.25-0.5 \text { feet } \\ 12 / 01 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \hline \text { SSO822 } \\ \text { SSo82BA } \\ 0.25-0.5 \text { feet } \\ 12 / 07 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { SSO833 } \\ \text { SSo83BA } \\ 0.25-0.5 \text { feet } \\ 12 / 101 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO84 } \\ \text { SS084BA } \\ 0.25-0.5 \text { feet } \\ 12 / 08 / 2006 \end{array}$ $12 / 08 / 2006$	$\begin{array}{\|c\|\|} \hline \hline \text { SSO855 } \\ \text { SSO85BA } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO866 } \\ \text { SSO86BA } \\ 0.25-0.5 \text { feet } \\ 12109 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|\|} \hline \hline \text { SSO866 } \\ \text { SSO86BB } \\ 0.25-0.5 \text { feet } \\ 12 / 09 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO87 } \\ \text { SSo87BA } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS088 } \\ \text { SSO8BA } \\ 0.25-0.5 \text { feet } \\ 12 / 09 / 2006 \end{gathered}$ 12/09/2006	$\begin{array}{c\|} \hline \hline \text { SSO89 } \\ \text { Sso8gBA } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO909 } \\ \text { SSo900BA } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \hline \text { SSO900 } \\ \text { Sso90BC } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$
Lab Method	Analyte	Units																
SNASIM	2-METHYLNAPHTHALENE	ugkg	1.6 U	79 U	16 U	16 U	110 J	11000	220	120	300 J	110	100	43 J	35 J	230 J	160 U	160 U
	ACENAPHTHENE	ugkg	2.90	150 U		29 U	40 J	190000	68 J	110	300 U	96	110	29 UJ	30 U	2900	290 U	290 U
SNASIM	ACENAPHTHYLENE	uglkg	9.3	1300	180	28 U	680 J	7000	680	610	5600	950	990	370 J	370	4400	2500	2200
SNASIM	ANTHRACENE	uglkg	18	1800	86	140 J	1100 J	240000	1300	1100	13000	1900	1800	630	520	10000	13000	12000
BNASIM	BENZO(A)ANTHRACENE	ugkg	23	2800	200 J	67 J	950 J	120000	1600	920	10000	1800	2100	980 J	660	9700	2700	2100
BNASIM	BENZO(A)PYRENE	ugkg	27	3100	290 J	84 J	1500 J	43000	1300	1100	12000	2200	2500	870 J	890	8100	2900	2400
BNASIM	BENZO(B)FLUORANTHENE	uglkg	71 J	5900	310 J	140 J	2600 J	63000	2900	1800	25000	7600	8200	1900 J	1700	16000	5400	4400
BNASIM	BENZO(G,H,U)PERYLENE	ugkg	28	3500	190 J	59 J	1500 J	8900	1500	960	11000	1800	1800	1000 J	760	7100	3400	2900
BNASIM	BENZO(K)FLIUORANTHENE	uglkg	35	4300	270 J	120 J	1700 J	58000	2000	1500	15000	3500	4300	1400 J	1300	11000	4400	3500
SNASIM	CHRYSENE	uglkg	38	4000	240 J	120 J	1500 J	110000	2200	1200	16000	2600 J	4600 J	1400 J	960	13000	3900	2900
BNASIM	DIBENZO(A,H)ANTHRACENE	ugkg	9.2	1000	64 J	17 J	500 J	4400	480	320	4000	620	600	310 J	230	2400	790	690
SNASIM	FLUORANTHENE	uglkg	38	4400	190 J	120 J	1700 J	600000	2800	1000	14000	4000	4000	1900	1000	17000	4400	3300
BNASIM	FLUORENE	ugkg	1.6 U	790	16 U	16 U	55 J	170000	68 J	78	510	81	100	16 UJ	22 J	340 J	200 J	210 J
BNASIM	INDENO(1,2,3,-CD)PYRENE	ugkg	27	3700	240 J	69 J	1600 J	13000	1800	1100	14000	2000	2100	1200 J	870	8400	3700	3100
SNASIM	NAPHTHALENE	uglkg	0.54 U	130 J	18 J	5.4 U	160 J	5500	380	210	450	140	130	71 J	51	300 J	230 J	190 J
SNASIM	PENTACHLOROPHENOL	uglkg	5.8 J	1800 J	7.5 U	98 J	120 J	3300 J	990	910	13000	3100 J	2800 J	530	580 J	12000	1900 J	1500 J
SNASIM	PHENANTHRENE	uglkg	3.5 U	760	45 J	35 U	550 J	460000	780	180	1800	610	620	340	230	2300	650 J	550 J
SNASIM	PYRENE	ugkg	45	4900	230 J	140 J	1700 J	430000	2500	1200	15000	4600	4900	1900 J	1100	16000	4500	3400
E160.3	RESIDUE, TOTAL	percent	96	96	94	95	93	90	87	95	92	95	94	96	92	96	95	96
E1613/E1668	1,2,2,4,4,6,7,8-HEPTACHLORODIBENZOFURAN	ngkg			${ }^{35.543}$	27.847	606	14100		2920		15200	12186.386 J		2618.801			
E1613/1668	1,2,3,4,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	nglkg			296.827	223.555	9050	168000		28000		145000	112843.563		15559.273 J			
E16131/1668	1, 1,2,4,4,7,8,9-HEPTACHLORODIBENZOFURAN	ng lkg			1.7 J	1.233 J	42.1 J	1050		233		1090	1324.952		217.296			
E1613/16688	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	nglkg			0.826 J	0.657 J	27.95	491		97.6		559	625.519		95.335			
E1613/1668	$1,2,3,4,7,8$-HEXACHLORODIBENZO-P-DIOXIN	ng $/ \mathrm{kg}$			1.958 J	1.595 J	97.5	341		119		872	724.692		209.825			
E1613116688	1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	nglkg			0.605 J	0.442 J	13.8 J	105		38.9 J		263	${ }^{268.967}$		77.32			
E16131/1668	1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	nglkg			5.401	3.843 J	224	2100		483		3240	3070.395 J		582.23			
E1613/1668	1,2,3,7,8,9,-HEXACHLORODIBENZOFURAN	nglkg			0.123 U	0.122 U	${ }^{9.21 \mathrm{~J}}$	118		26.6 J		106	8.584		2.841 J			
E1613/1668	1, 2, 3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	nglkg			3.731 J	2.713 U	179	507		190		1420	1421.01		512.51			
E16131/1668	1,2,3,7,8-PENTACHLORODIBENZOFURAN	ngkg			0.095 J	0.035 U	0 O	${ }^{27.3 \mathrm{~J}}$		5.92 J		25.7 J	25.016		8.834 J			
E16131/1668	1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	nglkg			0.639 J	0.481 J	36.8 J	39.4 J		26.5 J		296	260.647		74.529			
E1613/16688	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	nglkg			0.614 J	0.534 J	26.5 J	193		84.8		529	180.515		119.488			
E1613/16688	2,3,4,7,8-PENTACHLORODIBENZOFURAN	nglkg			0.151 J	0.138 U	9.86 J	90		26 J		91.9	41.783		13.323			
E1613116688	2,3,7,8-TETRACHLORODIBENZOFURAN	nglkg			0.042 U	0.026 U	OU	5.34 J		3.92 J		${ }^{13.15}$	${ }^{11.757}$		${ }^{3.135}$			
E1613/1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	nglkg			0.023 U	0.021 U	OU	OU		OU		28.2	21.32		5.864			
E1613/1668	OCTACHLORODIBENZOFURAN	nglkg			160.471	114.554	2770	81000		16500		63200	46049.543 J		9810.755 J			
E163121668	OCTACHLORODIBENZO-P-DIOXIN	nglkg			2519.65	1886.565	-69000	1940000		332000		1970000	760786.871 J		184492.67			
	TOTAL HEPTACHLLORINATED DIBENZOFURANS	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$			${ }_{1}^{129.216}$	${ }_{10} 97.751$	$\frac{2500}{37300}$	$\frac{74200 ~}{119000}$		$\frac{14500}{157000}$		$\frac{70300}{517000}$	16141.056    134136.907		10215.001 60105.004			
E1613/16688	TOTAL HEXACHLORINATED DIBENZOFURANS	ng kg			${ }^{1529.944}$	$\frac{102.419}{}$	702	141400		$\underline{2920}$		17200	${ }^{134136.997}$		${ }^{601054.004}$			
E1613/161668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	nglkg			116.282	83.335	4890	$\frac{140300}{}$		${ }_{9240}$		36900	26425.781		6574.772			
E1613/1668	TOTAL PENTACHLORINATED DIBENZOFURANS	ngkg			6.614	5.044	84.5	547		280		1660 J	1399.558		510.838			
E1613/1668	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	nglkg			9.914	7.077	620	1330		282		1960	1660.777		437.467			
E16131/1668	TOTAL TETRACHLORINATED DIBENZOFURANS	nglkg			3.858	2.439	19.5	57.6		32.5		199 J	${ }^{196.136}$		68.061			
E1613/E1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	nglkg			1.636	1.764	115	219		6.27		238	177.619		35.828			
SW6020	ANTIMONY	mg/kg	0.35 uJ	0.90 J	0.36 UJ	0.35 UJ	0.35 U	0.71 J	1.15	0.35 UJ	1.7	$0_{0.43 \mathrm{~J}}$	0.57 J	0.33 U	0.73 J	1.3	0.69 J	${ }^{0.51 \mathrm{~J}}$
SW6020	ARSENIC	mg/kg	0.86 J	86 J	0.95	1.0	5.85	39	45 J	13	69 J	42	41	18 J	50	86 J	41 J	35 J
SW6020	BARIUM	mg/kg	8.6 J	12	10	13	23	59	13	16	55	21 J	14 J	12	26	24	13	
SW6020	CADMIUM	mglkg	${ }^{0.30 \mathrm{U}}$	${ }^{0.30 \mathrm{U}}$	0.314	0.30 U	0.30 U	${ }^{0.321}$	${ }^{0.32 \mathrm{U}}$	0.30 U	0.31 U	${ }^{0.30 \mathrm{U}}$	${ }^{0.31 \mathrm{U}}$	$0.28{ }^{32}$	$\frac{0.31 \mathrm{U}}{45}$	0.28 U	${ }_{0}^{0.30 \mathrm{U}}$	0.28 U
SW6020	CHROMUM	mglkg	7.2	$\frac{130 \mathrm{~J}}{80}$	3.5	${ }^{4.3}$	$\frac{20 \mathrm{~J}}{82}$	11	$\frac{57 \mathrm{~J}}{43}$	$\frac{13}{6}$	${ }_{4} 36$	69 J	$\frac{75 \mathrm{~J}}{50}$	32 J	45 J	110 J	43 J	38 J
SW6020	LEAD	mglkg	2.65	11	18	19	15	39	14	9.1	69	18	19	5.0	25	27	13	11
SW6020	SELENIUM	mg/kg	0.86 U	0.87 U	0.88 U	0.88 U	0.88 U	0.93 U	0.92 U	0.87 U	0.89 U	0.86 U	0.89 U	0.81 U	0.91 U	${ }^{0.81 U}$	0.88 U	${ }^{0.82 \mathrm{U}}$
SW6020	SILVER	mg/kg	0.39 U	0.40 U	0.40 U	0.40 U	0.40 U	0.42 U	0.41 U	0.39 U	0.40 U	0.39 UJ	0.40 UJ	0.37 U	0.41 UJ	0.37 U	0.40 U	0.37 U
SW6020	VANADIUM (FUME OR DUST)	mgkg	2.6 J	0.94 U	3.1	3.3	13	9.3	2.9	5.5	7.9	2.3 J	1.6 J	2.0	2.9	0.87 UJ	1.9 J	1.3 J
SW7471	MERCURY	mg/kg	0.029	0.099 J	0.043	0.042	0.66	0.83	0.23 J	0.13 J	0.35	0.69	0.57	0.17	0.14	0.42	0.27	0.26
SW8260	1,1,1-TRICHLOROETHANE	ugkg	0.13 U	0.15 U	0.17 U	0.13 U	0.14 U	0.14 U	0.13 U	0.13 U	0.14 U	0.13 U	0.14 UJ	$0.14 \mathrm{UJ}^{\text {a }}$				
SW8260	1,1,1,2,-TETRACHLOROETHANE	ugkg	0.070 U	0.070 U	0.071 U	0.070 U	0.071 U	0.083 U	0.094 U	0.070 U	0.073 U	0.073 U	0.071 U	0.070 U	0.073 U	0.069 UJ	0.072 UJ	0.077 UJ
SW8260	1,1,2-TRICHLOROETHANE	uglkg	0.14 U	0.17 U	0.19 U	0.14 U	0.15 U	0.15 U	0.14 U	0.14 U	0.15 U	0.14 UJ	0.15 UJ	0.16 UJ				
SW8260	1,1-DICHLOROETHANE	uglkg	0.066 U	0.066 U	0.067 U	0.067 U	0.068 U	0.079 U	0.089 U	0.067 U	0.070 U	0.070 U	0.068 U	0.067 U	0.069 U	0.066 U	0.069 UJ	0.073 UJ
SW8260	1,1-DICHLOROETHYLENE	uglkg	0.18 U	0.18 U	0.19 U	0.18 U	0.19 U	0.22 U	0.25 U	0.18 U	0.19 U	0.19 U	0.19 U	0.18 U	0.19 U	0.18 U	0.19 UJ	0.20 UJ
SW8260	1,2,4-TRICHLOROBENZENE	ugkg	0.16 U	0.16 U	0.16 U	0.16 U	0.17 U	0.19 U	0.22 U	0.16 U	0.17 UJ	$0.17{ }^{\text {U }}$	0.16 U	0.16 U	0.17 UJ	0.16 UJ		
SW8260	$\frac{1,2-\text {-DIBROMO-3-CHLOROPROPANE (DBCP) }}{\text { 1,2-DIBROMOETHANE }}$	$\frac{\mathrm{ug} \text { 伯g }}{\text { ugkg }}$	0.52 U	$\frac{0.52 \mathrm{U}}{0.059}$	${ }_{0}^{0.53 \mathrm{U}}$	0.52 ${ }_{0}^{0.060}$	$\stackrel{0.53 \mathrm{U}}{0.061 \mathrm{U}}$	$\frac{0.62 \mathrm{U}}{0.070 \mathrm{U}}$	$\frac{0.70 \mathrm{U}}{0.080 \mathrm{U}}$	0.52 U	$\frac{0.54 \mathrm{UJ}}{0.062 \mathrm{U}}$	0.54 U 0.062 U	$\frac{0.53 \mathrm{U}}{0.060 \mathrm{U}}$	$\frac{0.52 \mathrm{U}}{0.060 \mathrm{U}}$	0.54 0	0.051 UJ	$\frac{0.54 \mathrm{UJ}}{0.061 \mathrm{UJ}}$	${ }_{0}^{0.57 \mathrm{UJ}} 0$
SW8260	1,2-IICHLOROBENZENE	ugkg	0.082 U	0.082 U	0.083 U	0.083 U	0.084 U	0.098 U	0.12 U	0.083 U	0.086 UJ	0.086 U	0.084 U	0.083 U	0.086 UJ	0.082 JJ	$0.085 \mathrm{UJ}^{0}$	0.0991 JJ
SW8260	1,2-DICHLOROETHANE	uglkg	0.11 U	0.13 U	0.15 U	0.11 U	$0.11 \mathrm{O}^{0}$	0.11 UJ	0.12 UJ									
SW8260	1,2-IICHLOROPROPANE	uglkg	0.057 U	0.057 U	0.058 U	0.057 U	0.059 U	0.068 U	0.077 U	0.058 U	0.060 U	0.060 U	0.058 U	0.057 U	0.060 U	0.057 U	0.059 UJ	0.063 UJ
SW8260	1,4-DICHLOROBENZENE	uglkg	0.092 U	0.092 U	0.093 U	0.092 U	0.094 U	0.11 U	0.13 U	0.093 U	0.096 UJ	0.096 U	0.093 U	0.51 J	0.096 UJ	0.091 UJ	0.095 UJ	0.11 UJ
SW8260	ACETONE	ugkg	14 J	14J	2.7 U	2.7 U	57 J	3.2 U	3.6 U	18 J	2.8 UJ	160 J	63 J	150	47 J	2.7 UJ		
SW8260	BENZENE ${ }^{\text {BROMODICHHOROMETHANE }}$	uglkg	$\frac{0.41 \mathrm{U}}{031 \mathrm{U}}$	$\frac{0.41 \mathrm{U}}{031 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{031 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{031 \mathrm{U}}$	0.42 U	$\frac{2.93}{0.37 \mathrm{U}}$	0.56 U 0.41 U	$\frac{0.42 \mathrm{U}}{0}$	$\stackrel{0.43 \mathrm{U}}{0}$	$\frac{0.43 \mathrm{U}}{0}$	$\frac{0.42 \mathrm{U}}{031 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{031 \mathrm{U}}$	0.43U	0	$\frac{0.43 \mathrm{UJ}}{0.32 \mathrm{UJ}}$	$\frac{0.46 \mathrm{UJ}}{0.34 \mathrm{UJ}}$
SW8260	BROMOMETHANE	ugkg	0.34 UJ	0	0.35 UJ	0.34 UJ	${ }_{0}^{0.350}$	0.40 U	0.46 U	$\stackrel{0.34 \mathrm{U}}{0}$	${ }_{0}^{0.360 ~}$	${ }_{0}^{0.366}$	O.31 0	0.34 -	$\stackrel{0.35}{0}$	0	0.32 UJ	-0.34 0
SW8260	CARBON DISULFIDE	uglkg	1.7 U	1.70	1.8 U	1.7 U	1.8 U	2.00	2.30	1.7 U	1.8 U	1.8 U	1.8 U	1.7 U	1.8 U	1.70	1.8 UJ	1.9 UJ
SW8260	CARBON TETRACHLORIDE	ugkg	0.37 U	0.37 U	0.38 U	0.37 U	0.38 U	0.44 U	0.50 U	0.38 U	0.39 U	0.39 U	0.38 U	0.37 U	0.39 U	0.37 U	0.38 UJ	0.41 UJ
SW8260	CFC-11	uglkg	0.28 U	0.33 U	0.37 U	0.28 U	0.29 U	0.29 U	0.28 U	0.28 U	0.29 U	0.28 U	0.29 uJ	0.31 UJ				
SW8260	CFC-12	uglkg	0.34U	0.34U	0.35 U	0.34U	$\frac{0.35 \mathrm{U}}{0}$	0.40 UJ	0.46 U	0.34U	${ }_{0}^{0.360}$	$\frac{0.36 \mathrm{U}}{0}$	0.35 U	0.34U	$\stackrel{0.350}{ }$	0.34U	0.350 JJ	0.380 UJ
SW8260	CHLORINATED FLUOROCARBON (FREON 113) CHLOROBENZNE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \mathrm{lkg}}$	$\frac{0.38 \mathrm{U}}{0.42 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.42 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.44 \mathrm{U}}$	$\frac{0.45 \mathrm{U}}{0.50 \mathrm{U}}$	$\frac{0.51 \mathrm{U}}{0.57 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.40 \mathrm{U}}{0.44 \mathrm{U}}$	$\frac{0.40 \mathrm{U}}{0.44 \mathrm{U}}$	$\frac{0.39 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.43 \mathrm{U}}$	$\frac{0.40 \mathrm{U}}{0.44 \mathrm{U}}$	0.38 U 0.42 UJ	$\frac{0.40 \mathrm{UJ}}{0.44 \mathrm{UJ}}$	$\frac{0.42 \mathrm{UJ}}{0.47 \mathrm{UJ}}$
SW8260	CHLORODIBROMOMETHANE	uglkg	0.27 U	0.32 U	0.36 U	0.27 U	0.28 U	0.28 U	0.27 U	0.27 U	0.28 U	0.27 UJ	0.28 UJ	0.29 UJ				
SW8260	CHLOROETHANE	ugikg	0.38 U	0.38 U	0.39 U	0.38 U	0.39 U	0.45 U	0.51 U	0.39 U	0.40 U	0.40 U	$0.39{ }^{\text {U }}$	0.38 U	0.40 U	0.38 U	0.40 UJ	0.42 UJ
SW8260	CHLOROFORM		$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.49 \mathrm{U}}$	$\frac{0.43 \mathrm{U}}{0.57 \mathrm{U}}$	$\frac{0.49 \mathrm{U}}{0.64 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.50 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.50 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	$\frac{0.38 \mathrm{U}}{0.50 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.47 \mathrm{U}}$	$\frac{0.37 \mathrm{UJ}}{0.49 \mathrm{UJ}}$	$\frac{0.40 \mathrm{UJ}}{0.53 \cup \mathrm{~J}}$
SW8260	CII-1,1,-DICHLOROETHYLENE	uglkg	0.28 U	0.33 U	0.37 U	0.28 U	0.29 U	0.29 U	0.28 U	0.28 U	0.29 U	0.28 U	0.29 uJ	0.31 UJ				


		$\begin{array}{r} \text { Location } \\ \text { Sample II } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{gathered} \hline \text { SSO78 } \\ \text { Ssor8Ba } \\ 0.25-.5 \text { feet } \\ 1211120066 \\ \hline \end{gathered}$			$\begin{array}{\|c} \hline \hline \text { SSOOB } \\ \text { SSO808B } \\ 0.25-5.5 \mathrm{fet} \\ 12066 / 2006 \\ \hline \end{array}$	SSO81   SS081BA   $0.25-0.5$ feet   $12 / 01 / 2006$	$\begin{array}{\|c\|} \hline \hline \text { SSO82 } \\ \text { SSO82BA } \\ 0.25-0.5 \text { feet } \\ 12107 / 20066 \\ \hline \end{array}$	$\begin{gathered} \hline \text { SSO83 } \\ \text { Ssoz3BA } \\ 0.25-5.5 \text { feet } \\ 1201212006 \end{gathered}$	$\begin{array}{\|c\|} \hline \hline \text { SSO84 } \\ \text { SSO84BA } \\ 0.25-0.5 \text { feet } \\ 122108 / 2006 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline \hline \text { SSO86 } \\ \text { SSo86BB } \\ 0.25-0.5 \text { feet } \\ 12209 / 2006 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \hline \text { SSO888 } \\ \text { SSo88BA } \\ 0.25-0.5 \text { feet } \\ 12109 / 2006 \\ \hline \end{array}$			$\begin{array}{c\|} \hline \hline \text { SSO900 } \\ \text { SSO90BC } \\ 0.25-0.5 \text { feet } \\ 11 / 30 / 2006 \\ \hline \end{array}$
Lab Method	Analyte	Units																
SW8260	CIS-1,3-DICHLOROPROPENE	ugkg	0.31 U	0.31 U	0.31 U	0.31 U	0.32 U	0.37 U	0.41 U	0.31 U	${ }^{0.32 \mathrm{U}}$	0.32 U	0.31 U	0.31 U	0.32 U	0.31 UJ	0.32 UJ	0.34 UJ
SW8260	CYCLOHEXANE	ug lkg	0.40 U	0.40 U	0.41 U	0.41 U	0.41 U	0.48 U	0.54 U	0.41 U	${ }^{0.42 \mathrm{U}}$	0.42 U	0.41 U	0.41 U	0.42 U	0.40 U	0.42 UJ	0.45 UJ
SW8260	DICHLOROMETHANE	ugkg	0.41 U	0.41 U	0.42 U	0.42 U	0.42 U	0.49 U	0.56 U	0.42 U	0.43 U	0.43 U	0.42 U	0.42 U	0.43 U	0.41 U	0.43 UJ	0.46 UJ
SW8260	ETHYLBENZENE	ug lkg	0.44 U	0.44 U	0.45 U	0.45 U	0.46 U	20 J	0.60 U	0.45 U	0.47 U	0.47 U	0.45 U	0.45 U	0.46 U	0.44 UJ	0.46 UJ	0.49 UJ
SW8260	ISOPROPYLBENZENE	ugikg	0.49 U	0.49 U	0.49 U	0.49 U	0.50 U	0.58 U	0.65 U	0.49 U	0.51 UJ	0.51 U	0.49 U	0.49 U	0.51 UJ	0.48 UJ	0.50 UJ	0.54 UJ
SW8260	m,p-xylenes	ug lkg	0.92 U	0.92 U	0.93 U	0.92 U	0.94 U	26 J	1.30	0.93 U	0.96 U	0.96 U	0.93 U	0.92 U	0.96 U	0.91 UJ	0.95 UJ	1.10 UJ
SW8260	M-DICHLOROBENZENE	uglkg	0.053 U	0.053 U	0.054 U	0.053 U	0.054 U	0.063 U	0.071 U	0.053 U	0.055 UJ	0.055 U	0.054 U	0.053 U	0.055 UJ	0.053 UJ	0.055 UJ	0.058 UJ
SW8260	METHYL ACETATE	uglkg	0.20 U	0.20 UJ	0.21 U	0.21 U	0.21 U	0.24 U	0.27 U	0.21 UJ	0.21 U	0.20 U	0.21 UJ	0.23 UJ				
SW8260	METHYL ETHYL KETONE	uglkg	1.2 U	1.24	1.2 U	1.2 U	1.2 U	22	1.6 U	1.2 U	1.3 U	1.3 U	1.2 U	1.2 U	1.30	1.2 U	$\frac{1.2 \mathrm{UJ}}{}$	$1.3 \mathrm{UJ}^{1}$
SW8260	METHYL ISOBUTYL KETONE	uglkg	0.75 U	0.75 U	0.76 U	0.75 U	0.77 U	0.89 U	1.10	0.76 U	0.79 U	0.79 U	0.76 U	0.75 U	0.78 U	0.74 UJ	0.77 UJ	0.83 UJ
SW8260	METHYL N-BUTYL KETONE	ugkg	1.10	1.14	1.10	1.14	1.10	1.30	1.5 U	1.10	1.14	1.14	1.14	1.10	1.10	1.1 UJ	1.10 UJ	1.2 UJ
SW8260	METHYLBENZENE	ugkg	0.44 U	0.44 U	0.45 U	0.45 U	0.46 U	13 J	0.60 U	0.45 U	0.47 U	0.47 U	0.45 U	0.58 J	0.46 U	0.44 UJ	0.46 UJ	0.49 UJ
SW8260	METHYLCYLOHEXANE	ugkg	0.47 U	0.47 U	0.47 U	0.47 U	0.48 U	3.0 J	0.63 U	0.47 U	0.49 U	0.49 U	0.47 U	0.47 U	0.49 U	0.46 UJ	0.48 UJ	0.51 UJ
SW8260	O-XYLENE	ugkg	0.42 U	0.42 U	0.43 U	0.43 U	0.44 U	14 J	0.57 U	0.43 U	0.44 U	0.44 U	0.43 U	0.43 U	0.44 U	0.42 UJ	0.44 UJ	0.47 UJ
SW8260	STYRENE (MONOMER)	uglkg	0.46 U	0.45 U	0.46 U	0.46 U	0.47 U	4.4 J	0.61 U	0.46 U	0.48 U	0.48 U	0.46 U	0.46 U	0.47 U	0.45 UJ	0.47 UJ	0.50 UJ
SW8260	TERT-BUTYL METHYL ETHER	ugkg	0.34 U	0.34 U	0.35 U	0.34 U	0.35 U	0.40 U	0.46 U	0.34 U	0.36 U	0.36 U	0.35 U	0.34 U	0.35 U	0.34 U	0.35 UJ	0.38 UJ
SW8260	TETRACHLOROETHYLENE	ugkg	0.42 U	0.42 U	0.43 U	0.43 U	0.44 U	0.50 U	0.57 U	0.43 U	0.44 U	0.44 U	0.43 U	0.43 U	0.44 U	0.42 UJ	0.44 UJ	0.47 UJ
SW8260	TRANS-1,2-DICHLOROETHENE	uglkg	0.40 U	0.40 U	0.41 U	0.41 U	0.41 U	0.48 U	0.54 U	0.41 U	0.42 U	0.42 U	0.41 U	0.41 U	0.42 U	0.40 U	0.42 UJ	0.45 UJ
SW8260	TRANS-1,2-IICHLOROPROPENE	ugkg	0.32 U	0.32 U	0.32 U	0.32 U	0.33 U	0.38 U	0.43 U	0.32 U	0.33 U	0.33 U	0.32 U	0.32 U	0.33 U	0.32 UJ	0.33 UJ	0.35 UJ
SW8260	TRIBOMOMETHANE	ugkg	0.41 U	0.41 U	0.42 U	0.42 U	0.42 U	0.49 U	$0.56{ }^{\text {U }}$	0.42 U	0.43 U	0.43 U	0.42 U	0.42 U	0.43 U	0.41 UJ	0.43 UJ	0.46 UJ
SW8260	TRICHLOROETHYLENE	ugkg	0.42 U	0.42 U	0.43 U	0.43 U	0.44 U	0.50 U	0.57 U	0.43 U	0.44 U	0.44 U	0.43 U	0.43 U	0.44 U	0.42 U	0.44 UJ	0.47 UJ
SW8260	VINYL CHLORIDE	uglkg	0.26 U	0.30 U	0.34 U	0.26 U	0.27 U	0.27 U	0.26 U	0.26 U	0.27 U	0.25 U	0.27 UJ	0.28 UJ				
SW8270	2,4,5-TRICHLOROPHENOL	ugkg	14 U	290 J	15 U	14 U	15 U	14 U	14 U	14 U	15 U	14 U	14 U	14 U				
SW8270	2,4,6-TRRCHLOROPHENOL	ugkg	38 U	38 U	39 U	38 U	39 U	410 U	$\frac{42 \mathrm{U}}{20 \mathrm{U}}$	38 U	40 U	38 U	39 U	38 U	40 U	38 U	39 U	38 U
SW8270	2,4-DIMETHYLPHENOL	uglkg	20 U	20 U	21 U	20 U	21 u	1200	22 U	20 U	48 J	20 U	19 U	18 U	19 U	18 U	$\frac{18 \mathrm{U}}{21 \mathrm{u}}$	18 U
SW8270	2,4-DINITROPHENOL	ug/kg	13 U	13 UJ	13 U	13 U	13 U	140 U	14 UJ	130	14 UJ	13 U	130	13 UJ	14 U	13 UJ	13 UJ	13 UJ
SW8270	2,4-DINITROTOLUENE	ugkg	11 U	110 U	12 U	11 U												
SW8270	2,6-DINITROTOLUENE	ugkg	38 U	38 U	39 U	38 U	39 U	410 U	42 U	38 U	40 U	38 U	39 U	38 U	40 U	38 U	39 U	38 U
SW8270	2-CHLORONAPHTHALENE	ug/kg	17 U	17 U	18 U	17 U	18 U	180 U	19 U	17 U	18 U	17 U	18 U	17 U	18 U	17 U	17 U	17 U
SW8270	2-CHLOROPHENOL	ugkg	19 U	19 U	20 U	19 U	20 U	210 U	21 U	19 U	20 U	19 U						
SW8270	2-METHYLPHENOL (O-CRESOL)	uglkg	13 U	140 U	14 U	13 U	14 U	13 U	13 U	13 U	14 U	13 U	13 U	13 U				
SW8270	2-NITROANILINE	uglkg	24 U	24 UJ	24 U	24 U	24 UJ	250 U	26 UJ	24 U	24 U	24 U	24 U	23 U	24 U	23 U	24 U	24 U
SW8270	2-NITROPHENOL	uglkg	15 U	15 U	15 U	15 U	16 U	160 U	17 U	15 U	16 U	15 U	15 U	15 U	16 U	15 U	15 U	15 U
SW8270	3,3-DICHLOROBENZIDINE	ugkg	36 U	36 U	37 U	36 U	37 U	380 U	40 U	36 U	37 U	36 U	37 U	36 U	37 U	36 U	36 U	36 U
SW8270	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	ugkg	14 U	14 U	14 U	14 U	$\frac{14 \mathrm{UJ}}{19}$	150 U	15 U	14 U	15 U	14 U	14 U	14 U	15 U	14 U	14 U	14 U
SW8270	3-NTTROANILINE	ugkg	18 U	18 U	19 U	18 U	19 U	190 U	20 U	18 U	19 U	18 U	19 U	18 U	19 U	18 U	18 U	18 U
SW8270	4,6-DINITRO-2-METHYLPHENOL	uglkg	9.9 U	9.9 UJ	10 U	9.9 U	11 U	110 U	11 UJ	9.9 U	11 UJ	9.9 UJ	10 UJ	9.8 UJ	11 U	9.8 UJ	10 UJ	9.9 UJ
SW8270	4-BROMOPHENYL PHENYL ETHER	uglkg	11 U	110 U	12 U	11 U	11 U	11 UJ	11 UJ	11 U								
SW8270	4-CHLORO-3-METHYLPHENOL	uglkg	17 U	17 U	18 U	17 U	18 U	180 U	19 U	17 U	18 U	17 U	18 U	17 U	18 U	17 U	17 U	17 U
SW8270	4.CHLOROPHENYL PHENYL ETHER	uglkg	24 U	2500	26 U	24 U	24 U	24 U	24 U	23 U	24 U	$\frac{23 U}{280}$	$\frac{24 U}{280}$					
SW8270	4-METHYLPHENOL (MP-CRESOL)	uglkg	28 U	290 U	30 U	28 U	29 U	28 U	28 U	27 U	29 U	28 U	$\frac{28 \mathrm{U}}{18 \mathrm{U}}$	28 U				
SW8270	BENZYL BUTYL PHTHALATE	ugkg	19 U	26 J	20 U	19 U	20 U	210 U	21 U	19 U	20 U	19 U	20 U	19 U	20 U	19 U	23 J	19 U
SW8270	BIPHENYL	ugkg	160 U	160 U	160 U	160 U	$170 \cup$	3000 J	180 U	160 U	170 U	160 U	160 U	160 U	1700	160 U	160 U	160 U
SW8270	BIS(2-CHLORETHOXY)METHANE	uglkg	18 U	18 U	19 U	18 U	19 U	190 U	20 U	18 U	19 U	18 U	19 U	18 U	19 U	18 U	18 U	18 U
SW8270	BIS(2-CHLOROETHYL)ETHER	uglkg	16 U	16 UJ	16 U	16 U	17 U	1700	18 UJ	16 U	17 U	16 UJ	16 UJ	16 U	17 UJ	16 U	16 U	16 U
SW8270	BIS(2-CHLOROISOPROPYL ETHER	ugkg	23 U	22 U	23 UJ	23 UJ	23 UJ	240 UJ	25 U	23 UJ	23 U	23 U	23 U	22 U	23 U	22 U	23 U	22 U
SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	ugkg	17 U	31 J	18 U	17 U	18 U	180 U	26 J	17 U	48 J	17 U	18 U	37 J	18 U	35 J	26 J	27 J
SW8270	CARBAZOLE	uglkg	17 U	370	18 U	17 U	180 J	24000	140 J	65 J	1500	320 J	380 J	99 J	200	730	430	340
SW8270	DIBENZOFURAN	uglkg	14 U	80 J	14 U	14 U	72 J	46000	150 J	17 J	180 J	190	250	25 J	42 J	140 J	76 J	61 J
SW8270	DIETHYL PHTHALATE	ugkg	13 U	140 U	14 U	13 U	14 U	13 U	13 U	13 U	14 U	13 U	13 U	13 U				
SW8270	DIMETHYL PHTHALATE	uglkg	11 U	110 U	12 U	11 U												
SW8270	D-N-BUTYL-PHTHALATE	uglkg	65 U	64 U	65 U	65 U	66 U	680 U	710	65 U	67 U	65 UJ	65 UJ	64 U	67 U	64 U	65 U	64 U
SW8270	D-N-OCTYL-PHTHALATE	ugkg	16 U	25 J	16 U	16 U	17 U	$170{ }^{100}$	18 U	16 U	17 U	16 U	16 U	16 U	17 U	16 U		
SW8270	HEXACHLORO-1,3-BUTADIENE HEXACHLOROBENZENE		$\frac{18 \mathrm{U}}{8.8}$	$\stackrel{18 \mathrm{U}}{8.7 \mathrm{U}}$	$\frac{190}{8.90}$	$\frac{18 \mathrm{U}}{8.8}$	$\stackrel{190}{9.0 U}$	$\frac{190 U}{93 U}$	$\stackrel{20 U}{9.6 U}$	$\frac{18 \mathrm{U}}{8.8 \mathrm{U}}$	$\stackrel{19 \mathrm{U}}{9.1 \mathrm{u}}$	$\frac{18 \mathrm{U}}{8.8 \mathrm{UJ}}$	$\frac{190}{8.9 \mathrm{UJ}}$	$\frac{18 \mathrm{U}}{8.7}$	$\stackrel{19 \mathrm{U}}{9.1 \mathrm{u}}$	$\frac{18 \mathrm{U}}{8.7 \mathrm{U}}$	$\frac{18 \mathrm{U}}{8.8 \mathrm{U}}$	$\frac{184}{8.70}$
SW8270	HEXACHLOROCYCLOPENTADIENE	uglkg	12 U	12 UJ	12 U	12 U	12 U	130 U	13 UJ	12 U	12 UJ	12 U	12 UJ					
SW8270	HEXACHLOROETHANE	ugkg	18 U	18 U	19 U	18 U	19 U	190 U	20 U	18 U	19 U	18 U	19 U	18 U	19 U	18 U	18 U	18 U
SW8270	NITROBENZENE	ugkg	22 U	21 U	22 U	22 U	22 U	230 U	24 U	22 U	22 U	22 U	22 U	21 U	22 U	210	22 U	21 U
SW8270	N-NITROSO-DI-N-PROPYYAMINE	ugkg	19 U	19 U	20 U	19 U	20 UJ	210 U	21 U	19 U	20 U	19 U						
SW8270	N-NTROSODIPHENYLAMINE	ugkg	12 U	12 U	12 U	12 U	$\frac{12 U}{28}$	130 U	13 U	12 U	12 U	$\frac{12 \mathrm{UJ}}{284}$	$\frac{12 \mathrm{UJ}}{28 \mathrm{U}}$	12 U				
SW8270	P-CHLOROANILINE	$\frac{\mathrm{ug} \text { 伯g }}{\text { ugkg }}$	28 U	28 U	$\frac{28 \mathrm{U}}{18}$	28 U	$\frac{28 \mathrm{U}}{18 \mathrm{U}}$	$\frac{290 \mathrm{U}}{180 \mathrm{U}}$	$\frac{30 \mathrm{U}}{19}$	28 U	$\frac{29 U}{18 \mathrm{U}}$	28 U	$\frac{28 U}{18 \mathrm{U}}$	${ }_{17}^{27}$	$\underline{29 U}$	28 U	$\underline{28 U}$	$\frac{28 U}{17}$
SW8270	P-NITROANILINE	ug/kg	13 U	140 U	14 U	13 U	14 U	13 U	13 U	13 U	14 U	13 U	13 U	13 U				

Notes:
mgkg:
$\begin{array}{ll}\text { gikg: miligrams per kilogram } & U=\text { non-d } \\ J=\text { estime }\end{array}$
Dioxin values in italicis are new results from Vista laboratory

				$\begin{array}{\|c\|} \text { SD006 } \\ \text { SDOOBBA.55 } \\ \text { 2 feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { Ssoo1 } \\ \text { ssonca.5- } \\ 2 \text { feet } \\ 12 / 07 / 2006 \\ \hline \end{gathered}$	$\left\|\begin{array}{c\|} \text { SSOO3 } \\ \text { Sso3CA } 0.5- \\ \text { 2feet } \\ 12108120006 \end{array}\right\|$	$\begin{gathered} \text { Ssoo3 } \\ \text { ssocicB.5- } \\ 2 \text { feet } \\ 12 / 08 / 2006 \\ \hline \end{gathered}$		$\begin{gathered} \text { SS007 } \\ \text { SSOO7CA.5-5 } \\ 2 \text { feet } \\ 12 / 1212006 \end{gathered}$	$\begin{gathered} \text { SSO20 } \\ \text { SSO20CA 0.5- } \\ 2 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$		$\begin{gathered} \text { SSO22 } \\ \text { SSO22CA. } 0.5 \\ 2 \text { feet } \\ 12 / 12 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO24 } \\ \text { SSO24CA. } 5-5 \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO26 } \\ \text { SSO26CA. } 05 \\ 2 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{array}{c\|} \text { SSO26 } \\ \text { SSO26CC } 0.5-5 \\ 2 \text { feet } \\ 12 / 12 / 2006 \end{array}$	$\begin{array}{c\|} \text { SSO28 } \\ \text { S-SSO28CA.55 } \\ 2 \text { feet } \\ 12 / 07 / 2006 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { SSO29 } \\ \text { SSOO29A } 0.5- \\ 2 / \text { feet } \\ 1210712006 \\ \hline \end{array}$	$\begin{gathered} \text { SSOOBO } \\ \text { SSO30CA 0.5- } \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO31 } \\ \text { Sso31CA 0.5- } \\ \text { 2 feet } \\ 12 / 12 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO35 } \\ \text { SSO35CA 0.5- } \\ \text { 2feet } \\ \text { f2/106/2006 } \end{gathered}$	
Lab Method	Analyte	Units																			
BNASIM	2-METHYLNAPHTHALENE	ugkg	240 U	17 U	1.9 U	38	49	110	1.60	3.7 J	3.4 J	1.6 U	1.6 UJ	1.6 U	${ }^{1.6 \mathrm{U}}$	32 U	1.6 U	4.9 J	${ }^{2.4 \mathrm{~J}}$	${ }^{1.6 \mathrm{U}}$	170 J
BNASIM	ACENAPHTHENE	ugkg	${ }^{420 \mathrm{UJ}}$	30 U	3.44	30 U	30 U	140	5.73	${ }^{3.0 \mathrm{UJ}}$	${ }^{3.14 \mathrm{UJ}}$	2.84	2.8 UJ	2.90	2.90	58 U	2.90	2.8 R	2.9 UJ	2.90	${ }^{840} \mathrm{~J}$
BNASIM	ACENAPHTHYLENE	ugkg	1600	250	3.30	75 J	51 J	340	22	19	18	2.70	7.5	7.6	8.8	140 J	2.80	32	6.2 J	6.0 J	160 J
BNASIM	ANTHRACENE	uglkg	2200	470	1.15	200 J	110 J	340	33	32	28	2.9 J	9.2 J	16	18	220	0.96 J	62	10	4.2	730 J
BNASIM	BENZO(A)ANTHRACENE	ugkg	2900	410	3.1)	${ }^{410} \mathrm{~J}$	150 J	570	45	24	25	0.52U	28	14	17	680	0.54 U	170	9.0	9.2	1200 J
BNASIM	BENZO(A)PYRENE	ugkg	5200	600	3.3 J	360 J	200 J	660	59	32	33	1.2 U	20	21	27	680	1.2 U	150	11	11	430 J
BNASIM	BENZO(B)FLUORANTHENE	ugkg	9700	1200 J	5.5	630 J	360 J	840	110	70	79	0.83 U	44	46	53	1000	1.0 J	320	23	14	630 J
BNASIM	BENZO(G, H,I)PERYLENE	ugkg	5700	680	3.0 J	210	160	390	43	26	26	0.68 U	16	26	32	260	0.70 U	120	13	9.0	260 J
BNASIM	BENZO(K)FLUORANTHENE	ugkg	5700	670	4.7	520 J	250 J	680	52	34	35	0.68 U	24	23	29	870	0.78 J	150	14	13	620 J
BNASIM	CHRYSENE	ugkg	5000	580	4.5	590 J	250 J	700	59	35	37	0.50 U	31	20	23	950	0.82 J	220	12	12	1200 J
BNASIM	DIBENZO(A,H)ANTHRACENE	ugkg	1600	200	${ }^{0.64 U}$	74 J	43 J	240	16	9.7	9.8	${ }^{0.53 U}$	5.1	7.0	8.7	98	${ }^{0.55 U}$	48	${ }^{3.0 \mathrm{~J}}$	2.6 J	90 J
BNASIM	FLUORANTHENE	ugkg	6200	580	5.9	940 J	340	1100	51	35	36	2.15	24	18	20	830	1.6 J	470 J	13	13	6000 J
ENASIM	Fluorene	ugkg	240 U	17 U	1.9 U	23 J	17 U	170	3.3 J	$1.7 \mathrm{UJ}^{\text {d }}$	1.7 UJ	1.6 U	${ }^{1.64 \mathrm{JJ}}$	1.6 U	1.6 U	32 U	1.6 U	1.6 U	1.6 UJ	1.6 U	${ }^{870 \mathrm{~J}}$
BNASIM	INDENO(1,2,3,CD)PYRENE	uglkg	5400	620	3.4 J	250 J	180 J	490	46	29	29	0.91 U	17	21	25	370	0.93 U	120	11	10	320 J
BNASIM	NAPHTHALENE	ugkg	790	5.6 U	0.64 U	38	42	110	0.54 U	9.45	8.7 J	0.53 U	2.0 J	${ }^{0.54 U}$	0.54 U	110	0.55 U	${ }^{0.53 U}$	${ }^{0.54 U}$	0.54 U	${ }^{110 \mathrm{~J}}$
BNASIM	PENTACHLOROPHENOL	ugkg	1800 J	200 J	0.87 U	7.7 UJ	7.6 UJ	280 J	9.8 J	46	46	${ }^{0.73 U}$	2.23	13 J	14 J	66000	0.75 U	0.73 U	3.9 J	0.73 U	100 J
BNASIM	PHENANTHRENE	ugkg	1800	120	4.10	200 J	95 J	300	3.50	10 J	8.93	$3.5 \cup$	25	3.5 U	3.50	710	3.6 U	28 J	4.2 J	3.9 J	5200 J
BNASIM	PYRENE	ugkg	6800	750	5.4	1100 J	370 J	1300	82	49	52	1.7 J	48	27	30	1900	${ }^{0.56 U}$	440 J	15	14	3800 J
E160.3	RESIDUE, TOTAL	percent	65	92	81	92	93	93	96	91	90	97	97	96	96	94	94	97	95	96	95
E1613/E1668	1,2,3,4,4,6,7,-HEPTACHLORODIBENZOFURAN	ngkg	29000	2644.506	3.269 J	22.71	0.285 U	${ }^{615.288}$	53.51	405.048	344.523	8.979	22.8	31.17	36.05					${ }^{4.467 ~ J}$	
E1613/E1668	1, , , ,3,4,6,7,7,8HEPTACHLORODIBENZO-P-DIOXIN	nglkg	191000	15302.864	${ }^{26.107}$	${ }^{223.149}$	147.144	5481.337	${ }^{453.533}$	3906.032	3491.427	${ }^{97.435}$	185	${ }^{240.29}$	317.504					28.907	
E1613/E1668	$1,2,2,4,7,8,9$, -HEPTACHLORODIBENZOFURAN	ngkg	1790	159.856	${ }^{2.2055}$	${ }^{2.917 \mathrm{~J}}$	1.223 J	43.36	${ }^{3.0533}$	26.449	${ }^{21.923}$	0.519 J	${ }^{1.38 \mathrm{~J}}$	1.679 J	1.113 U					${ }_{0} 0.452 \mathrm{U}$	
E1613/E1668	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	ngkg	${ }^{732}$	57.445	0.116 U	${ }^{0.538 \mathrm{~J}}$	1.434 J	16.659	1.336 U	7.44	${ }_{6}^{6.369}$	0.429 U	.764 J	0.946 J	0.247 U					0.172 J	
E1613\|E1668	1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	ngkg	1790	142.34	0.202 J	1.074 J	0.659 J	42.411	1.124 J	17.747	${ }^{15.235}$	0.538 U	$1.57{ }^{\text {J }}$	0.674 J	1.345 J					0.221 J	
E1613/E1668	1,2,2,6,7,8-HEXACHLORODIBENZOFURAN	ngkg	580	50.702	0.066 U	0.324 U	0.743 J	12.897	0.198 U	${ }^{3.547 \mathrm{~J}}$	${ }^{3.206 ~ J}$	$0.271 \mathrm{U}^{0}$	. 539 J	0.279 J	0.286 U					0.117 J	
E1613/E1668	1,2,3,6,7,8.-HEXACHLOROOIBENZO-P-DIOXIN	nglkg	5360	387.719	0.684 J	$4.099{ }^{\text {J }}$	${ }^{2.875 \mathrm{~J}^{\text {J }}}$	119.628	${ }^{6.507}$	${ }^{82.991}$	${ }^{72.038}$	${ }^{5.017 \mathrm{~J}}$	4.17	4.369 J	${ }^{6.899}$					$0.771{ }^{0.710}$	
E1613/E1668	1,2,2,7,7,8,9-HEXACHLORODIBENZOFURAN	ngkg	174	1.544 U	0.085 U	0.347 U	0.749 J	$0.271 \mathrm{U}^{\text {a }}$	0.212 U	0.332 J	0.049 U	0.269 U	OU	0.019 U	0.328 U					0.048 U	
E1613/16688	1,2,3,7,8,9,-HEXACHLORODIBENZO-P-DIOXIN	ngkg	3060	357.74	0.648 J	4.312 J	1.831 J	81.824 J	7.151	40.162	32.112	2.459 U	2.88	2.006 J	2.253 U					0.619 J	
E1613\|E1668	1,2,3,7,8.PENTACHLORODIBENZOFURAN	ngkg	68.1	${ }^{4.441 \mathrm{~J}^{3}}$	0.035 U	0.051 U	0.598 J	1.309 J	0.144 U	0.528 J	0.418 J	0.119 J	ou	0.015 U	0.079 U					0.029 U	
E1613/E1668	1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	ngkg	491	${ }^{35.823}$	0.04 U	0.304 U	$0.09{ }^{0}$	11.592	0.124 U	${ }^{4.604 \mathrm{~J}}$	${ }^{3.618 \mathrm{~J}}$	${ }_{0}^{0.437 \mathrm{~J}}$	. 452 J	0.177 J	$0.178 \mathrm{U}^{0}$					${ }^{0.134 \mathrm{~J}}$	
E1613/E1668	2, 2, ,4,6,7,8,-HEXACHLORODIBENZOFURAN	ngkg	1150	100.672	${ }^{0.0655}$	0.134 U	$0.571 \mathrm{U}^{0}$	${ }^{9.601 \mathrm{~J}}$	0.19 U	${ }^{3.58 \mathrm{~J}^{\text {J }}}$	${ }^{2.794 \mathrm{~J}}$	0.413 U	${ }^{.907}{ }^{230}$	0.674 J	0.284 U					0.039 U	
E1613/E1668	2,3,4,7,8.PENTACHLORODIBENZOFURAN	nglkg	208	${ }^{7.016 \mathrm{~J}}$	0.037 U	${ }^{0.16 \mathrm{~J}}$	${ }^{0.466 \mathrm{~J}}$	${ }^{1.773 \mathrm{~J}^{\text {J }}}$	0.056 U	${ }^{0.411 \mathrm{~J}}$	0.405 J	0.167 J	. 239 J	0.019 U	0.089 U					0.033 U	
E1613\|E1668	2,3,7,8-TETRACHLORODIBENZOFURAN	ngkg	44.3	3.819	0.038 U	0.044 U	0.509 J	0.558 U	0.085 U	0.052 U	0.04 U	0.067 U	OU	0.012 U	0.085 U					0.034 U	
E1613/E1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	ngkg	32.8	2.104 J	0.023 U	0.044 U	0.045 U	0.599 J	0.065 U	0.045 U	0.028 U	0.064 U	ou	0.009 U	0.14					0.015 U	
E1613/E1668	OCTACHLORODIBENZOFURAN	ngkg	108000	11474.712	14.049	${ }^{119.868}$	${ }^{79.273}$	3389.941	397.625	2801.76	2387.342	35.444	90.2	188.931	231.698					14.778	
E1613/E1668	OCTACHLORODIBENZO-P-DIOXIN	ngkg	1580000	147043.842 J	240.163	2061.955	1403.442	47246.051 J	${ }^{4573.662 ~ J}$	27080.157	31249.589	${ }^{733.328}$	1820	3535.861	${ }^{4691.993 \mathrm{~J}}$					243.969	
E1613/E1668	TOTAL HEPTACHLORINATED DIBENZOFURANS	nglkg	115000	9142.612	${ }^{12.073}$	${ }^{94.906}$	${ }^{56.04}$	2543.505	${ }^{313.53}$	1901.222	1666.031	${ }^{34.607}$	81.6	${ }^{153.16}$	184.764					14.204	
E1613/E1668	TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	ngkg	598000	53619.728	103.956	1123.599	${ }^{768.936}$	21113.42	3200.596	${ }^{7029.33}$	6067.376	339.239	929	915.285	1218.773					118.262	
E113131668	TTTAL HEXACHLORINATED DIBENZOFURANS	nglkg	28700 J	${ }^{2430.126}$	2.954	20.905	${ }^{19.229}$	645.003	${ }^{49.412}$	306.056	259.458	12.318	22.7	${ }^{30.925}$	${ }^{33.207}$					3.466	
E1613/E1668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	ng/kg	57400	4539.607	8.411	79.429	${ }^{54.351}$	1882.393	169.564	${ }^{434.257}$	375.972	42.182	75	46.052	56.995					10.556	
E1613/E1668	TOTAL PENTACHLORINATED DIBENZOFURANS	ngkg	4880 J	334.253	0.79	8.731	11.677	108.984	4.44	20.924	17.518	7	3.1	1.594	2.094					0.179	
E1613/E1668	TTTAL PENTACHLORINATED DIBENZO-P-DIOXINS	ngkg	4100	266.092	${ }^{0.295}$	${ }^{3.685}$	1.549	122.601	3.29	21.498	${ }^{16.206}$	${ }^{0.724}$	3.29	0.96	$0.178 \mathrm{U}^{0}$					0.63	
E1613/E1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ngkg	681	${ }^{33.916}$	0.413	3.32	5.54	13.867	0.384	2.128	1.537	3.757	. 209	0.012 U	0.085 U					0.14	
E1613/E1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	ngkg	346	15.612	0.199	0.044 U	0.389	${ }^{9.467}$	0.065 U	2.674	${ }^{2} .752$	${ }^{0.541}$	0 O	0.009 U	0.14					0.103	
SW6020	Antimony	mglkg	7.73	0.49 J	0.39 U	0.34 UJ	0.36 UJ	0.35 UJ	0.35 UJ	0.56 J	0.36 UJ	0.34 UJ	0.35 UJ	0.33 UJ	0.35 UJ	0.36 U	${ }^{0.35 U}$	0.34 UJ	0.34 UJ	0.33 UJ	${ }^{0.36 \mathrm{U}}$
SW6020	ARSENIC	mg/kg	270	52	100	19 J	14 J	4.3 J	1.4	9.2	9.9	0.96	0.42 UJ	26	35	0.66	0.53	1.15	0.41 UJ	${ }^{0.47)}$	0.53
SW6020	BARIUM	mglkg	86	22	5.7	12	11	${ }^{23}$	11	12	12	2.9	5.3	8.9	10	2.6	12	${ }^{9.75}$	9.0	9.4	9.7
SW6020	CADMIUM	mglkg	1.9	${ }^{0.30 \mathrm{U}}$	${ }^{0.34 U}$	0.29 U	0.30 U	${ }^{0.30 \mathrm{U}}$	${ }^{0.30 \mathrm{U}}$	${ }^{0.314}$	${ }^{0.30 \mathrm{U}}$	0.29 U	${ }^{0.30 \mathrm{U}}$	${ }^{0.29 \mathrm{U}}$	${ }^{0.30 \mathrm{U}}$	${ }^{0.314}$	${ }^{0.300}$	0.29 U	${ }^{0.29 U}$	${ }^{0.28 U}$	${ }^{0.30 \mathrm{U}}$
SW6020	CHROMIUM	mgkg	710	76 J	2.5	3.4 J	3.6 J	9.8 J	3.2	15	34	0.96 J	1.9	3.1	3.4	2.9	7.73	3.4	4.8	4.7	6.0
SW6020	COPPER	ngkg	320	41	${ }^{0.35 \mathrm{U}}$	2.15	2.15	5.8 J	${ }_{0}^{0.81 \mathrm{~J}}$	1.7	5.6	${ }^{0.300}$	${ }^{1.80 J}$	${ }_{0.49}$	${ }_{0}^{0.52 \mathrm{~J}}$	${ }^{0.33 \mathrm{~J}}$	0.31 UJ	2.5 J	0.84 J	${ }^{0.93 \mathrm{~J}}$	${ }^{0.58 \mathrm{~J}}$
SW6020	${ }_{\text {LAAD }}$	mg/kg	450	19	2.67	6.3 J	5.11	${ }^{13 \mathrm{~J}}$	5.4	4.8 J	6.6	1.1	2.0	4.3	5.0	2.7	5.0	7.35	4.4	5.9	3.8
( SW6020	${ }^{\text {SELENIUM }}$	$\frac{\mathrm{mg} / \mathrm{kg}}{\mathrm{mgkg}}$	$\stackrel{1.5}{0.56}$	${ }_{0}^{0.86 \mathrm{U}} 0$	0.97U	0.84 U 0.38 U	$\stackrel{0.88 \mathrm{U}}{0.40 \mathrm{U}}$	${ }_{0}^{0.88 \mathrm{U}} 0$	${ }_{0}^{0.86 \mathrm{U}} 0$	${ }_{0}^{0.96 \mathrm{~J}} 0$	$\stackrel{0.88 \mathrm{U}}{0.40 \mathrm{u}}$	0.84u	0.86 U 0.39 u	$\stackrel{0.83 \mathrm{U}}{0.37 \mathrm{u}}$	0.86 U 0.39 u	0.89 U 0.40 u	0.87U	0.85 u 0.38 u	${ }^{0.83 \mathrm{u}}$	${ }_{0}^{0.82 \mathrm{U}} 0$	0.88 U 0.40 u
SW6020	VANADIUM (FUME OR DUST)	mgkg	12	3.5 J	1.0 UJ	2.4 J	3.3 J	6.2	2.1	4.1. ${ }^{\text {J }}$	3.4	0.90 U	0.93 U	1.7	2.0	${ }_{0}^{0.950}$	5.3	${ }_{2} 2.2 \mathrm{~J}$	${ }_{0}^{0.900}$	1.6	3.9
SW7471	MERCURY	mgkg	${ }_{2.05}^{12}$	0.22	0.026 J	0.024 J	0.022 J	0.069 J	0.026	0.042	0.028	0.0072 J	0.012 J	0.030	0.038	0.035	0.026 J	0.032	0.026	0.025	0.027
SW8260	1,1,1,-TRICHLOROEETHANE	uglkg	${ }_{0}^{0.314}$	0.20 U	0.15 U	0.14 U	0.14 U	0.16 U	${ }^{0.13 U}$	0.14 U	0.14 U	0.13 U	0.13 U	${ }^{0.13 U}$	0.13 U						
SW8260	1,1,2,2,-TETRACHLOROETHANE	ugkg	0.17 U	0.11 U	0.082 U	0.072 U	0.076 U	0.087 U	0.069 U	0.073 U	0.074 U	0.069 U	0.068 U	0.070 U	0.070 U	0.071 U	0.071 U	0.069 U	0.070 U	0.069 U	0.070 U
SW8260	1,1,2-TRICHLOROETHANE	ugkg	0.34U	0.22 U	0.17 U	0.15 U	$0.15{ }^{0}$	0.18 U	0.14 U	0.15 U	0.15 U	0.14 U	0.14 U	0.14 U	0.14 U	${ }^{0.14 U}$	0.14 U	0.14 U	${ }^{0.144}$	0.14 U	0.14 U
SW8260	1,1-1-DICHLOROETHANE	ugkg	0.17 U	0.11 U	0.078 U	0.069 U	0.072 U	0.083 U	0.066 U	0.070 U	$0.071 u^{0}$	0.066 U	0.065 U	0.066 U	0.066 U	0.067 U	0.068 U	0.066 U	0.067 U	0.066 U	0.067 U
SW8260 SW8260	1,1--ICHLOROETHYLENE	ugkg	0.44 U	0.28 U	0.22 U	0.19 U	0.20 U	0.23 U	0.18 U	0.19 U	0.19 U	0.18 U	0.18 U	0.18 U	0.18 U	0.19 U	0.19 U	0.18 U	0.18 U	0.18 U	0.18 U
SW8260	1, 12,4-TR1CHLOROBENZENE	ugkg	${ }^{0.390 J}$	${ }_{0}^{0.2514}$	0.19 U	0.17U	$0.18 \mathrm{U}^{0.564}$	0.20	$0.16{ }^{0.5141}$	${ }_{0}^{0.174}$	0.17 U	${ }_{0}^{0.1614}$	$0.16{ }^{0.16}$	0.16 U	0.16U	${ }_{0}^{0.163 ~}$	${ }_{0}^{0.163}$	0	${ }_{0}^{0.15 \mathrm{U}}$	$0.16{ }^{0.14}$	${ }_{0}^{0.164}$
SW8260	${ }_{\text {1,2-DIBROMOETHANE }}$	ugkg	${ }_{0}^{1.35 \mathrm{U}}$	0.802 U	${ }_{0}^{0.610}$	0.540	0.5664	0.074	0.059 u	0.5402 U	0.053U	0.050	${ }_{0}^{0.5158}$	0.059	0.52 U	0.53 U 0.060 U	${ }_{0}^{0.530 \mathrm{U}} 0$	${ }_{0}^{0.510}{ }_{0}^{0.584}$	${ }_{0}^{0.552}$ 0.059	${ }_{0}^{0.515} 0$	0.52U
SW8260	1,2-2IICHLOROBENZENE	uglkg	${ }^{0.200 J}$	${ }^{0.13 U}$	0.097 U	0.085 U	0.089 U	0.11 U	0.082 U	0.086 U	0.087 U	0.081 U	0.081 U	0.082 U	0.082 U	0.083 U	0.084 U	0.081 U	0.082 U	0.082 U	0.082 U
SW8260	1,2-DICHLOROETHANE	ugkg	0.26 U	0.17 U	0.13 U	0.11 U	0.12 U	0.14 U	0.11 U	0.11 U	0.12 U	0.11 U	0.11 U	0.11 U	0.11 U	${ }_{0}^{0.11 U}$	0.11 U	0.11 U	${ }_{0}^{0.11}$	${ }_{0}^{0.11 \mathrm{U}}$	0.11 U
SW8260	1,2-DIICHLOROPROPANE	ug/kg	0.14 U	0.089 U	0.067 U	0.059 U	0.062 U	0.071 U	0.057 U	0.060 U	0.061 U	0.056 U	${ }^{0.056 U}$	0.057 U	0.057 U	0.058 U	0.058 U	0.056 U	0.057 U	0.057 U	0.057 U
SW8260	1,4-DICHLOROBENZENE	ugkg	0.23 UJ	0.15 U	0.11 U	0.095 U	0.099 U	0.12 U	0.091 U	0.096 U	0.097 U	0.091 U	0.090 U	0.092 U	0.092 U	0.093 U	0.093 U	0.091 U	0.092 U	0.091 U	0.092 U
SW8260	ACETONE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\mathrm{ug} k g}$	14 J 1.0 U	10 J 0.64 U	$\stackrel{3.10}{0.49}$	2.80 $0.43 U$	$\stackrel{2.9 U}{0.45}$	3.3 U 0.52 U	7.6 J 0.41 U	17 J 0.43 U	24 J 0.44 U	9.1] 0.41 U	5.0J 0.41 U	11 J 0.41 U	6.0 J 0.41 U	2.7 U 0.42 U	$2.7 \cup$ $0.42 U$	59 J 0.41 U	11J 0.41 U	$\frac{2.7 U}{0.41 U}$	$\frac{2.7 U}{0.41 \cup}$
SW8260	BROMODICHLOROMETHANE	ugkg	0.74 U	0.48 U	0.36 U	0.32 U	0.33 U	0.38 U	0.31 U	0.32 U	0.33 U	0.31 U	0.30 U	${ }_{0}^{0.314}$	0.31 U						
Sw8260	BROMOMETHANE	ugkg	0.82 UJ	0.53 UJ	0.40 U	$0.35 \mathrm{UJ}^{\text {d }}$	0.37 UJ	0.42 UJ	0.34 UJ	0.36 UJ	0.36 UJ	0.34 UJ	0.33 UJ	0.34 UJ	$0.34{ }^{\text {UJ }}$	${ }^{0.35 U}$	0.35 U	0.34 UJ	0.34 UJ	0.34 UJ	0.34 UJ
SW8260	CARBON DISULFIDE	${ }_{\text {ug }}^{\substack{\text { ugkg } \\ \text { ugkg }}}$	4.1U	2.7U	2.04	1.8U	1.90	2.14	$\stackrel{1.7 U}{037}$	1.8U	1.84 0.391	$\underline{1.7 U}$	$\stackrel{1.7 U}{064}$	1.74	1.74 0.374	1.8 U	1.84	1.74	$\stackrel{1.7 U}{074}$	$\underline{1.7 U}$	$\stackrel{1.7 U}{074}$
SW8260	${ }_{\text {CARBON }}$ CFETETRACHLORIDE	$\mathrm{ug}_{\text {ugkg }}^{\text {ug }}$	0.90 U 0.67 U	$\stackrel{0.58 \mathrm{UJ}}{0.43 \mathrm{U}}$	$\stackrel{0.44 \mathrm{U}}{0.33 \mathrm{U}}$	0.39 U 0.29 u	$\stackrel{0.40 \mathrm{U}}{0.30 \mathrm{U}}$	$\stackrel{0.46 \mathrm{U}}{0.35 \mathrm{U}}$	0.37 U 0.28 U	0.39 U 0.29 u	0.39 U 0.29 u	$\stackrel{0.37 \mathrm{U}}{0.27 \mathrm{U}}$	0.36 U 0.27 U	0.37 U 0.28 U	0.37 U 0.28 u	$\stackrel{0.38 \mathrm{U}}{0.28 \mathrm{U}}$	0.38 U 0.28 U	0.37 U 0.27 U	$\stackrel{0.37 \mathrm{U}}{0.28 \mathrm{U}}$	0.37 U 0.28 U	0.37 U 0.28 U
SW8260	CFC-12	ugkg	0.82 U	0.53 U	0.40 UJ	0.35 U	0.37 U	0.42 U	0.34 U	${ }_{0}^{0.360}$	${ }_{0}^{0.36 \mathrm{U}}$	0.34 U	0.33 U	0.34 U	0.344	0.35 UJ	0.35 U	${ }_{0}^{0.34 U}$	0.34 U	${ }_{0}^{0.34 U}$	0.34 U
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	jgikg	0.92 U	0.60 U	0.45 U	0.40 U	0.41 U	0.48 U	0.38 U	0.40 U	0.41 U	0.38 U	0.37 U	0.38 U	0.38 U	0.39 U	0.39 U	0.38 U	0.38 U	0.38 U	0.38 U
( SW8260	CHLOROBENZENE	ugkg	1.14	${ }^{0.666}$	${ }^{0.50 \mathrm{U}}$	0.44U	${ }^{0.460}$	$\stackrel{0.53}{ }{ }^{\text {a }}$	${ }^{0.420 ~}$	0.44U	0.45 U	${ }^{0.420 ~}$	0.42 U	${ }^{0.422 ~}$	0.42U	${ }^{0.43 U^{27}}$	0.43U	0.42U	${ }^{0.43 U^{2}}$	0.42	${ }^{0.420}$
SW8260	CHLORODIBROMOMETHANE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\mathrm{ug} \mathrm{kg}}$	0.64U	$\stackrel{0.42 \mathrm{U}}{0.60 \mathrm{U}}$	$\stackrel{0.31 \mathrm{U}}{0.45 \mathrm{U}}$	$\stackrel{0.28 \mathrm{U}}{0.40 \mathrm{U}}$	$\frac{0.29 \mathrm{U}}{0.41 \mathrm{U}}$	$\stackrel{0.33 \mathrm{U}}{0.48 \mathrm{U}}$	${ }_{0}^{0.26 \mathrm{U}} 0$	$\frac{0.28 \mathrm{U}}{0.40 \mathrm{UJ}}$	$\frac{0.28 \mathrm{U}}{0.41 \mathrm{UJ}}$	0.26 U 0.38 UJ	0.26 U 0.37 UJ	0.27 U 0.38 UJ	0.27 U 0.38 UJ	0.27 U 0.39 u	0.27 U 0.39 u	0.26 U 0.38 U	${ }_{\text {0, }}^{0.27 \mathrm{U}} 0$	0.27 U 0.38 U	0.27 U 0.38 U
SW8260	CHLOROFORM	ugkg	0.87 U	0.56 U	0.43 U	0.37 U	0.39 U	0.45 U	0.36 U	0.38 U	0.38 U	0.36 U	0.35 U	0.36 U	${ }^{0.36 U}$	0.37 U	0.37 U	0.36 U	0.36 U	0.36 U	0.36 U
18260	CHLOROMETHANE	ıgkg	1.2 U	0.74 U	0.56 U	0.49 U	0.52 U	0.59 U	0.47 U	0.50 U	0.51 U	0.47 U	0.47 U	0.48 U	0.48 U	0.48 U	0.48 U	0.47 U	0.48 U	0.47 U	0.48 U


			SDOO4   SDOCABA. $5-$   2 feet   12/12/2006	$\begin{gathered} \text { SD006 } \\ - \text { SDOO6BA } 0.5 \\ 2 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { SSO01 } \\ \text { SsoonCA.5-5 } \\ 2 \text { feet } \\ 12 / 07 / 2006 \\ \hline \end{array}$	Ss003   SSo 03 CA. 05   2 feet   $12 / 08 / 2006$	$\begin{array}{\|c\|} \text { SS003 } \\ \text { Ssoo3CB } 0.5- \\ \text { 2 feet } \\ 12 / 108 / 2006 \end{array}$	$\begin{gathered} \text { Ssoos } \\ \text { SsocoscA.5- } \\ 2 \text { feet } \\ 12 / 08 / 2006 \\ \hline \end{gathered}$	$\begin{array}{c\|} \text { SS007 } \\ \text { SSOOTCA } 0.5 \\ \text { 2feet } \\ 12 / 1212006 \end{array}$	$\begin{array}{c\|} \text { SSO20 } \\ \text { SSO20CA.5- } \\ \text { 2feet } \\ 12 / 1212006 \\ \hline \end{array}$	$\begin{array}{c\|} \text { ssooz } \\ \text { ssorocc } 0.5 \\ 2 \text { feet. } \\ 12 / 12 / 2006 \end{array}$	$\left.\begin{array}{\|c\|} \hline \text { SSO22 } \\ 5 \text { SSO2CA. } \\ \text { 2feet } \\ 1212120006 \end{array} \right\rvert\,$	$\begin{array}{c\|} \text { SSO24 } \\ \text { SSO24CA } 0.5- \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{c\|} \text { sso26 } \\ \text { s-026CA.5- } \\ 2 \text { feet } \\ 12 / 122 / 2006 \end{array}$	$\begin{gathered} \text { Sson6 } \\ - \text { Ssococcc } 0.5-s \\ 2 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS028 } \\ \text { SSO28CA.5-5 } \\ 2 \text { feet } \\ 12 / 107 / 2006 \end{gathered}$	SSO29   SSO29CA.5-   2 feet   12/07/2006	$\begin{array}{\|c\|} \text { SSO30 } \\ - \text { Sso30CA } 0.5- \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS031 } \\ \text { Sso31CA.5-5 } \\ 2 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { SSO35 } \\ \hline \text { SSO35CA } 0.5- \\ \text { 2 feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SSO36 } \\ \text { sso36CA } 0.5- \\ \text { 2 feet } \\ 12106 / 2006 \\ \hline \end{gathered}$
Lab Method	Analyte	Units																			
SW8260	CIS-1,-IICHLOROETHYLENE	${ }_{\text {ug }}^{\text {ugkg }}$	$\stackrel{0.67 \mathrm{U}}{0.74 \mathrm{u}}$	0.43 U 0.48 u	0.33 U 0.36 u	${ }_{0}^{0.29 \mathrm{U}} 0$	0.30 U 0.33 u	0.35 U 0.38 u	${ }_{0}^{0.28 \mathrm{U}} 0$	$\frac{0.29 \mathrm{U}}{0.32 \mathrm{u}}$	0.29 U 0.33 u	$\frac{0.27 \mathrm{U}}{0.31 \mathrm{u}}$	$\frac{0.27 \mathrm{U}}{0.30 \mathrm{u}}$	$\frac{0.28 \mathrm{U}}{0.31 \mathrm{U}}$	0.28 U 0.31 u	$\frac{0.28 \mathrm{U}}{0.31 \mathrm{u}}$	${ }_{0}^{0.28 \mathrm{U}}$	${ }_{0}^{0.27 \mathrm{U}} 0$	${ }_{0}^{0.28 \mathrm{U}} 0$	0.28 U 0.31 u	$\frac{0.28 \mathrm{U}}{0.31 \mathrm{u}}$
SW8260	CYCLOHEXANE	ugkg	0.97 U	0.63 UJ	0.47 U	0.42 U	0.44 U	0.50 U	0.40 U	${ }^{0.42 \mathrm{U}}$	${ }^{0.43 U}$	0.40 U	0.40 U	0.40 U	0.40 U	0.41 U	0.41 U	0.40 U	0.40 U	0.40 U	0.40 U
SW8260	DICHLOROMETHANE	ugkg	1.00	0.64 U	0.49 U	0.43 U	0.45 U	0.52 U	0.41 U	6.2 J	7.7 J	0.41 U	7.9 J	0.41 U	0.41 U	0.42 U	0.42 U	0.41 U	0.41 U	0.41 U	0.41 U
SW8260	ETHYLBENZENE	ugkg	1.10	0.69 U	0.52 U	0.46 U	0.48 U	0.56 U	0.44 U	0.47 U	0.47 U	0.44 U	0.44 U	0.44 U	0.44 U	0.45 U	0.45 U	0.44 U	0.45 U	0.44 U	0.45 U
SW8260	ISOPROPYLBENZE	ugkg	1.2 UJ	0.76 U	0.57 U	0.51 U	0.53 U	0.61 U	0.48 U	0.51 U	0.52 U	0.48 U	0.48 U	0.49 U	0.49 U	0.49 U	0.50 U	0.48 U	0.49 U	0.48 U	0.49 U
SW8260	m,p-xylenes	L91kg	2.34	1.50	1.14	0.95 U	0.99 U	1.2 U	0.91 U	0.96 U	0.97 U	0.91 U	0.90 U	0.92 U	0.92 U	0.93 U	0.93 U	0.91 U	0.92 U	0.91 U	0.92 U
SW8260	M-DICHLOROBENZENE	ugkg	0.13 UJ	0.083 U	0.062 U	0.055 U	0.057 U	${ }^{0.066 U}$	0.052 U	0.055 U	0.056 U	0.052 U	0.052 U	0.053 U	0.053 U	0.054 U	0.054 U	0.052 U	0.053 U	0.053 U	0.053 U
SW8260	METHYL ACETATE	ugkg	0.49 U	0.32 U	${ }^{0.24 U}$	0.21U	${ }^{0.22 U}$	${ }^{0.25 U}$	0.20	0.21U	0.22U	0.20	0.20	0.20	0.20	${ }^{0.214}$	0.21U	${ }_{0}^{0.200}$	0.20	${ }^{0.200}$	0.20
SW8260	METHYL ETHYL KETONE	ugkg	2.9 U	1.9 U	1.4 U	1.24	1.3 U	1.5 U	1.24	1.30	1.3 U	1.2 U									
SW8260	METHYL ISOBUTYL KETONE	ugkg	1.90	1.24	0.88 U	0.78 U	0.81 U	0.94 U	0.74 U	0.78 U	0.80 U	0.74 U	0.73 U	0.75 U	0.75 U	$0.76{ }^{\text {U }}$	$0.76{ }^{\text {U }}$	$0.74{ }^{\text {U }}$	0.75 U	0.74 U	0.75 U
SW8260	METHYL NBUTYL KETONE	ugkg	2.60	1.70	1.3 U	1.1 UJ	1.2 UJ	1.4 UJ	1.1 UJ	$1.10{ }^{\text {1 }}$	1.2 UJ	1.1 UJ	1.10	1.14 UJ	1.10 u	1.14	1.14	1.14	1.10	1.14	1.10
SW8260	METHYLBENZENE	ugkg	2.2 J	0.69 U	0.52 U	0.46 U	0.48 U	0.56 U	0.44 U	0.47 U	0.47 U	0.44 U	0.72 J	0.44 U	0.52 J	0.45 U	0.45 U	0.44 U	0.49 J	0.44 U	0.45 U
SW8260	METHYLCYLOHEXANE	ugkg	1.20	0.73 UJ	0.55 U	0.48 U	0.51 U	0.58 U	0.46 U	0.49 U	0.49 U	0.46 U	0.46 U	0.47 U	0.47 U	0.47 U	0.47 U	${ }^{0.464}$	0.47 U	0.46 U	0.47 U
SW8260	O-XYLENE	ugkg	1.14	${ }^{0.666}$	$0.50{ }^{0.50}$	${ }^{0.444}$	${ }^{0.46 \mathrm{U}}$	0.53 U	${ }^{0.420}$	0.44 U	0.45 U	${ }^{0.424}$	${ }^{0.420}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.425}$	${ }^{0.43 U}$	${ }^{0.43 U}$	${ }^{0.424}$	${ }^{0.43 U}$	${ }^{0.424}$	${ }^{0.42 \mathrm{U}}$
SW8260	STYRENE (MONOMER)	ugkg	1.10	0.71 U	0.54 U	0.47 U	0.49 U	0.57 U	0.45 U	0.48 U	${ }^{0.48 \mathrm{U}}$	0.45 U	0.45 U	0.46 U	0.45 U	0.46 U	${ }^{0.46 \mathrm{U}}$	0.45 U	0.46 U	0.45 U	0.46 U
SW8260	TERT-BUTYL METHYL ETHER	ugkg	0.82 U	0.53 U	0.40 U	0.35 U	0.37 U	${ }^{0.42 U}$	0.34 U	0.36 U	${ }^{0.36 \mathrm{U}}$	0.34 U	0.33 U	0.34 U	0.34 U	0.35 U	0.35 U	0.34 U	0.34 U	0.34 U	0.34 U
SW8260	TETRACHLOROETHYLENE	Lgkg	1.10	0.66 U	0.50 U	0.44 U	0.46 U	0.53 U	0.42 U	0.44 U	0.45 U	0.42 U	0.42 U	0.42 U	0.42 U	0.43 U	0.43 U	0.42 U	0.43 U	0.42 U	0.42 U
SW8260	TRANS-1,2-DICHLOROETHENE	ugkg	0.97 U	0.63 U	0.47 U	0.42 U	0.44 U	0.50 U	0.40 U	0.42 U	0.43 U	${ }^{0.40} \mathrm{U}^{\text {a }}$	0.40 U	0.40 U	0.40 U	${ }^{0.414}$	0.41 U	0.40 U	0.40 U	0.40 U	0.40 U
SW8260	TRANS-1,2-DICHLOROPROPENE	ugkg	$0.77{ }^{\text {U }}$	${ }^{0.500}$	0.38 U	${ }^{0.334}$	${ }^{0.355}$	${ }^{0.400}$	${ }^{0.324}$	${ }_{0}^{0.334}$	${ }^{0.34 U}$	${ }^{0.324}$	0.31 U	${ }^{0.3214}$	${ }_{0}^{0.324}$	${ }^{0.322}$	${ }^{0.322}$	${ }^{0.321}$	${ }^{0.321}$	${ }^{0.321}$	${ }^{0.3214}$
SW8260	TRIBOMOMETHANE	ugkg	1.00	0.64 U	0.49 U	${ }^{0.43 U}$	0.45 U	0.52 U	0.41 U	0.43 U	0.44 U	0.41 U	0.41 U	0.41 U	0.41 U	0.42 U	0.42 U	0.41 U	0.41 U	0.41 U	0.41 U
SW8260	TRICHLOROETHYLENE	ugkg	1.14	${ }^{0.666}$	0.50 ${ }^{\text {U }}$	${ }^{0.44 U}$	${ }^{0.46 U^{4}}$	0.53 U	${ }^{0.42 \mathrm{U}}$	${ }^{0.44 U}$	${ }^{0.45 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$	${ }^{0.43 U}$	${ }^{0.43 U}$	${ }^{0.42 \mathrm{U}}$	0.43 U	${ }^{0.42 \mathrm{U}}$	${ }^{0.42 \mathrm{U}}$
SW8260	VINYL CHLORIDE	ugkg	0.62 U	0.40 U	0.30 U	0.27 U	0.28 U	${ }^{0.32 U}$	0.25 U	0.27 U	0.27 U	0.25 U	0.25 U	0.26 U	0.26 U	0.26 U	${ }^{0.26 U}$	0.25 U	0.26 U	0.25 U	0.26 U
SW8270	2,4,5-TRRICHLOROPHENOL	ugkg	200 u	15 U	17 U	15 U	14 U	14 U	14 U 38	150	15 U	14 U 38 U	14 U 38	14 U 38 U	$\frac{14}{38}$	14 U	$\frac{14 U}{39}$	$\frac{14 U}{38 \mathrm{U}}$	14 U 38 U	14 U 38 u	14 U 38 U
SW8270	${ }_{\text {2, }}^{\text {2,4,-TRRICHLOROPHENOL }}$	$\underline{\text { ugkg }}$	560 U 270 U	40U	45U	40 U	39U	39 U	38 U   18 u	19 U	19 U	38 U 18 U	39 U 19 U	39 U	38 U 18	38 U   18	38 U 18 U	38 U 18 u			
SW8270	2,4-DIMETHYLPHENOL	ugkg	300 U	210	24 U	210	210	210	20 U	210	22 U	20 U	20 U	20 U	20 U	210	21 U	20 U	20 U	20 U	20 U
SW8270	2,4-IINITROPHENOL	ugkg	190 U	14 U	15 U	14 U	13 U	13 U	13 U	14 U	14 U	13 U									
Sw8270	2,4-DIIITROTOLUENE	ugkg	160 U	11 U	13 U	11 U															
SW8270	2,6-DINITROTOLUENE	ugkg	560 U	40 U	45 U	40 U	39 U	39 U	38 U	40 U	40 U	38 U	38 U	38 U	38 U	39 U	39 U	38 U	38 U	38 U	38 U
SW8270	2-CHLORONAPHTHALENE	ugkg	250 U	18 U	20 U	18 U	18 U	18 U	17 U	18 U	18 U	17 U	17 U	17 U	17 U	18 U	18 U	17 U	17 U	17 U	17 U
SW8270	2 2-CHLOROPHENOL	ugkg	280 U	20 U	23 U	20 U	20 U	20 U	19 U	20 U	20 U	19 U	19 U	19 U	19 U	20 U	20 U	19 U	19 U	19	19 U
SW8270	2-METHYLPHENOL (O-CRESOL)	ugkg	190 U	14 U	15 U	14 U	13 U	13 U	13 U	14 U	14 U	13 U									
Sw8270	2-NITROANLINE	ugkg	340 U	24 U	28 U	24 U	24 U	24 U	23 U	25 U	25 U	23 U	23 U	23 U	23 U	24 U	24 U	24 U	24 U	23 U	24 U
SW8270	2-NITROPHENOL	ugkg	220 U	16 U	18 U	16 U	16 U	16 U	15 U	16 U	16 U	15 U									
SW8270	3,3'-DICHLLOROBENZIDINE	ugkg	530 U	37 U	42 U	37 U	374	374	36 U	38 U	38 U	36 U	36 U	36 U	36 U	37 U	374	36 U	36 U	36 U	36 U
SW8270	${ }^{\text {3,5,5-TRRMMETHYL-2-CYCLOHEXENE--ONE }}$	ugkg	200 U	15 U	17 U	15 U	14 U	14 U	14 U	15 U	15 U	14 U									
SW8270	4,6-DINTITRO-2-METHYLPHENOL	$\frac{\mathrm{ug} \text { kg }}{\text { ugkg }}$	$\frac{270 \cup}{150}$	19 U 11 U	${ }_{12} 210$	19U	19 l	19 U	$\stackrel{18}{9.8}$	19 l	19 U	18 U   9.7	18 U 9.7 U	18 U 9.8 u	$\stackrel{18 \mathrm{U}}{ }$	19 UJ	19 U	18.9 U	18.9	${ }_{9}^{18.8}$	$\underline{9.9 \mathrm{U}}$
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	160 U	11 U	13 U	11 UJ	11 U														
SW8270	4-CHLORO-3-METHYLPHENOL	ugkg	250 U	18 U	20 U	18 U	18 U	18 U	17 U	18 U	18 U	17 U	17 U	17 U	17 U	18 U	18 U	17 U	17 U	17 U	17 U
SW8270	4-CHLOROPHENYL PHENYL ETHER	ugkg	340 U	24 U	28 U	24 U	24 U	24 U	23 U	25 U	25 U	23 U	23 U	23 U	23 U	24 U	24 U	24 U	24 U	23 U	24 U
SW8270	4-METHYLPHENOL (M/P-CRESOL)	ugkg	400 U	29 U	33 U	29 U	28 U	28 U	28 U	29 U	29 U	27 U	27 U	28 U							
SW8270	4-NITROPHENOL	ugkg	270 U	19 U	214	19 U	19 U	19 U	18 U	19 U	19 U	18 U	18 U	18 U	18 U	19 uJ	19 U	18 U	18 U	18 UJ	18 U
SW8270	BENZYL BUTYL PHTHALATE	ugkg	300 J	20 U	${ }_{23} 23$	20 U	20 U	20 U	19 U	20 U	20 U	19 U	19 U	19 U	19 U	20 U	20 U	19 U	19 U	19 U	19 U
SW8270	BIPHENYL	ugkg	2200 U	1700	190 U	1700	$170 \cup$	170 U	160 UJ	1700	1700	160 U									
SW8270	BIIS(2-CHLORETHOXY)METHANE	ugkg	270 U	19 U	21 U	19 U	19 U	19 U	18 U	19 U	19 U	18 U	18 U	18 U	18 U	19 U	19 U	18 U	18 U	18 U	18 U
SW8270	BIS(2-CHLOROETHYL ETHER	uglkg	240 U	17 U	19 U	17 U	17 U	17 U	16 U	17 U	17 U	16 U									
SW8270	BIS(2-CHLOROISOPROPYL) ETHER	ugkg	330 U	23 U	26 UJ	23 U	23 U	23 U	22 U	24 U	24 U	22 U	22 U	22 U	22 U	23 UJ	23 uJ	230	23 U	22 UJ	23 U
SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\text { ugkg }}$	670 J 730 J	${ }_{48}^{18 \mathrm{~J}}$	20 U	$\frac{18 \mathrm{U}}{42 \mathrm{~J}}$	18 U 34	50J	17 U	18 U	18 U 18 U	17 U	17 U 17 U	$\begin{array}{r}17 \mathrm{U} \\ 17 \\ \hline 1\end{array}$	17 U 17	18 U 18 UJ	$\frac{18}{18 \mathrm{U}}$	17 U 17 U	17 U	174 174	${ }_{48} 17 \mathrm{~J}$
SW8270	DIBENZOFURAN	ugkg	280 J	16 J	17 U	22 J	24 J	29 J	14 U	66 J	15 U	59 J	14 U	240							
Sw8270	DIETHYL PHTHALATE	ugkg	190 U	14 U	15 U	14 U	13 U	13 U	13 U	14 U	14 U	13 U									
SW8270	DIMETHYL PHTHALATE	ugkg	160 U	11 U	13 U	110	11 U														
Sw8270	DI-N-BUTYL-PHTHALATE	ugkg	940 U	67 U	76 U	67 U	66 U	66 U	64 U	68 U	68 U	63 U	63 U	64 U	64 U	65 UJ	65 U	65 U	65 U	64 U	65 U
SW8270	DI-N-OCTYL-PHTHALATE	ugkg	240 U	17 U	19 U	17 U	17 U	17 U	16 U	17 U	17 U	16 U									
SW8270	HEXACHLORO-1,3-3UTADIENE	ugkg	270 U	19 U	210	194	19 U	19 U	18 U	19 U	19 U	18 U	18 U	18 U	18 U	19 U	19 U	18 U	18 U	18 U	18 U
SW8270	HEXACHLLOROBENZENE	ugkg	130 U 170 O	9.14 120	11 U	9.14	9.00	9.0U	$\stackrel{8.7 \mathrm{UJ}}{12 \mathrm{U}}$	${ }^{9.24}$	9.3U	8.6U	8.6U	$\stackrel{8.74}{124}$	8.74   124	$\stackrel{8.9 \mathrm{UJ}}{12 \mathrm{u}}$	${ }_{8}^{8.9 \mathrm{U}}$	$\stackrel{8.8 U}{124}$	$\stackrel{8.8 U}{12 \mathrm{U}}$	${ }^{8.74}$	${ }_{8}^{8.8 U}$
SW8270	HEXACHLOROETHANE	ugkg	270	19 U	21 U	19 U	19 U	19 U	18 U	19 U	19 U	18 U	18 U	18 U	12 U	12 U	12 U	18 U	18 U	18 U	18 U
SW8270	Nitrobenzene	ugkg	310 U	22 U	25 U	22 U	22 U	22 U	210	22 U	23 U	21 U	210	21 u	214	22 U	22 U	22 U	22 U	21 V	22 U
SW8270	N-NITROSO-DI-N-PROPYLAMINE	ugkg	280 U	20 U	23 U	20 U	20 U	20 U	19 U	20 U	20 U	19 U	19 U	19 U	19 U	20 U	20 U	19 U	19 U	19 U	19 U
SW8270	N-NITROSODIPHENYLAMINE	ugkg	170 U	12 U	14 U	12 U	12 U	12 U	12 U	13 U	13 U	12 UJ	12 U								
SW8270	P-CHLOROANLINE	uglkg	400 U	29 U	33 U	29 UJ	28 UJ	28 UJ	28 U	29 U	29 U	27 U	27 U	28 UJ	28 UJ	28 U	28 U	28 U	28 UJ	28 U	28 U
SW8270	${ }^{\text {Prenenol }}$		250 U 190 U	18 U 14 U	20 U 150	18 U	18 U 13	18 U 13 U	$\stackrel{17 \mathrm{U}}{13 \mathrm{UJ}}$	18 U 14 UJ	18 U	17 U 13 UJ	${ }_{13}^{170}$	${ }_{13}^{17 \mathrm{U}}$	${ }_{13}^{17 \mathrm{U}}$	18 U 13 U	18 l	${ }_{13}^{17 U}$	${ }_{17}^{13 \mathrm{UJ}}$	${ }_{13}^{17 U}$	${ }_{13}^{17 U}$
sw9060	TOTAL ORGANIC CARBON	mg/kg	5900	2900																	


		$\begin{array}{r} \text { Location } \\ \text { Sample } \\ \text { Depth } \\ \text { Sample Date } \end{array}$	$\begin{gathered} \text { SSO38 } \\ \text { SSO38AC 0.5- } \\ 2 \text { feet } \\ 12 / 07 / 2006 \end{gathered}$	$\begin{gathered} \text { Sso39 } \\ \text { Sso39CA } 0.5 \\ \text { 2 feet } \\ 12 / 07 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { SS041 } \\ \text { SSO41CA.55 } \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \text { SSO45 } \\ \text { SSO5CC } 0.5- \\ \text { ffet } \\ 12 / 11120006 \end{array} \right\rvert\,$	$\begin{gathered} \text { sso46 } \\ \text { SSOCCA. } 0.5 \\ 2 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|} \text { SSO47 } \\ \text { SSOTCO.5 } \\ \text { 2feet } \\ 1211120006 \end{array} \right\rvert\,$	$\begin{array}{c\|} \text { Ss048 } \\ \text { SSO48CA.5-5 } \\ 2 \text { feet } \\ 12 / 06 / 2006 \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \text { SSO49 } \\ \text { SSO9CO } 0.5 \\ \text { 2fee } \\ 12 / 11120006 \end{array} \right\rvert\,$	$\begin{gathered} \text { SS052 } \\ \text { SSO52CA 0.5- } \\ 2 \text { feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO57 } \\ \text { SSO5CA. } \\ 2 / \text { feet } \\ 12 / 0612006 \end{gathered}$	$\begin{gathered} \text { SSO57 } \\ \text { SSO57CC 0.5- } \\ 2 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{gathered}$	$\begin{array}{c\|} \text { SSO62 } \\ \text { SSO62CA } 0.5- \\ 2 \text { feet } \\ 12 / 08 / 2006 \end{array}$	$\begin{gathered} \text { SSO62 } \\ \text { Sso62CC } 0.5 \\ 2 \text { feet } \\ 12 / 108 / 2006 \end{gathered}$	$\begin{array}{c\|} \text { SSO64 } \\ \text { SSO64A } 0.5-5 \\ 2 \text { feet } \\ 12 / 08 / 2006 \end{array}$	$\begin{gathered} \text { SSO66 } \\ \text { SSO66C 0.5- } \\ \text { 2 feet } \\ 121 / 08 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO68 } \\ \text { SSO68CA } 0.5- \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO70 } \\ \text { SSOT0CA. } 05 \\ 2 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO72 } \\ \text { SSO72CA } 0.5- \\ 2 \text { feet } \\ 12107 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { SSO72 } \\ \text { Ssor2co } 0.5 \\ \text { 2fet } \\ 1210712006 \\ \hline \end{array}$
Lab Method	Analyte	Units																			
SNASIM	2-METHYLNAPHTHALENE	ugkg	1.70	1.6 U	1.6 U	1.6 UJ	2.4 J	62 J	5.4	16 U	16 UJ	2.5 J	2.0 J	17 U	120	${ }_{1}^{1.7 \mathrm{~J}}$	${ }^{3.2} \mathrm{~J}$	6.9 J	19 J	330	330
SNASIM	ACENAPHTHENE	ugkg	2.90	2.90	2.90	2.9 UJ	2.9 JJ	370	4.15	29 U	29 UJ	2.90	2.90	29 U	36 J	2.90	2.8 U	${ }^{3.15}$	30 UJ	78 J	150 U
SNASIM	ACENAPHTHYLENE	${ }_{\text {uglkg }}^{\text {uglkg }}$	10 24	2.8 U   6.6	46 88	9.2   8.8	25 5	750 2000	11 20	440 930	200 550	2.8 U 0.64 u	2.8 U 0.65 u	370 930	530 1400	14   1	3.8 J 8.0	16 22	270 680	640 1600	1200 3000
BNASIM	BENZO(A)ANTHRACENE	ugkg	10	4.4	48	7.4	56	2200	20	1300	470	${ }_{0}^{0.53 U}$	${ }_{0}^{0.53 U}$	2100	4300	44	9.5	25	620	1000	2500
ENASIM	BENZO(A)PYRENE	ugkg	10	5.2	68	7.8	57	3400	23	1600	480	1.20	1.20	3800	6700	29	7.6	24	790	1000	2500
BNASIM	BENZO(B)FLUORANTHENE	ugkg	23	12	1603	20	140	7000	44	2800 J	1200	${ }_{0}^{1.84 U}$	${ }_{0}^{1.85 U}$	6300	11000	59	16	58 J	1600	2200	4700
ENASIM	BENZO(G,H,H)PERYLENE	ugkg	34	8.2	110	6.3	50	1800	29	1600	530	0.68 U	0.69 U	1500	2000	33	9.8	29	630	1500	
SNASIM	BENZO(k)FLLORANTHENE	ugkg	14	9.3	79	9.7	75	2100	41	1600	570	0.68 U	0.69 U	3500	6300	54	14	31	840	1400	3800
ENASIM	CHRYSENE	ugkg	12	6.8	66	12	80	2500	41	1700	750	6.9	${ }^{0.51 \mathrm{U}}$	2800	5500	57	14	39	880	1200	3000
SNASIM	DIBENZO(A,H)ANTHRACENE	ugkg	5.9	1.90	29	2.23	17	820	8.1	530	150	${ }^{1.15}$	1.31	660	950	10	2.45	9.3	210	450	900
ENASIM	FLUORANTHENE	ugkg	15	7.9	66	9.1	92	2100	32	1600	1100	10	8.1	2100	4500	94	25	49	800	2400	5200
SNASIM	FLUORENE	ugkg	1.70	1.6 U	1.6 U	1.6 UJ	1.6 UJ	520 J	1.9 J	16 U	16 UJ	1.60	1.6 U	28 J	41	1.60	4.1	1.6 R	22 J	55 J	100 J
SNASIM	INDENO(1,2,3-CD) PYRENE	ugkg	26	8.5	91	6.0	51	2000	31	1500	450	0.91 U	0.92 U	1900	2600	38	10	26	610	1700	3400
BNASIM	NAPHTHALENE	ugkg	${ }_{0}^{0.55 U}$	$\stackrel{.54 U}{ }$	${ }^{0.53 \mathrm{U}}$	4.0 J	9.15	83 J	11	5.40	9.8 J	${ }^{0.54 U}$	${ }^{0.54 U}$	5.5 u	360	${ }_{0} 0.54 \mathrm{U}$	11	${ }^{0.54 U}$	34 J	320	550
ENASIM	PENTACHLOROPHENOL	ugkg	17 J	13 J	29 J	1.15	47	600	18 J	130 J	110 J	11 J	11 J	7.50	7.90	44	16 J	8.8 J	440	1600	3300
ENASIM	PHENANTHRENE	ugkg	3.6 J	3.5 U	3.5 U	3.5 UJ	11 J	1700	9.5	350	88 J	4.0 J	3.5 U	270	440	10	21	3.6 J	120	650	1200
ENASIM	PYRENE	ugkg	15	8.5	91	15	110	6400	32	2000	1100	8.5	6.9	4000	6700	84	23	48	1300	1900	4500
E160.3	RESIDUE, TOTAL	percent	93	96	96	96	95	91	94	96	95	96	95	94	89	96	97	95	92	92	90
E1613/11668	1,2,3,4,4,7,8,-HEPTACHLORODIBENZOFURAN	ngkg	13.792		325.736		242.142					33.134	18.315	38.542 J	52.045 J			58.028			
E16131/1668	1, 2, 3,4,6,7,8,-HEPTACHLORODIBENZO-P-DIOXIN	ngkg	102.582		3062.676		2729.809					181.875	104.332	253.772	388.59 J			416.238			
E1613/E1668	1,2,3,4, , , ,9,-HEPTACHLORODIBENZOFURAN	nglkg	${ }^{1.601 \mathrm{~J}}$		19.87		17.108					${ }^{1.302 \mathrm{~J}}$	${ }^{0.762 \mathrm{~J}}$	${ }^{2.215}$	${ }^{2.962 ~ J}$			${ }^{3.209 ~ J}$			
E1613/16668	$1,1,2,4,7,8$-HEXACHLORODIBENZOFURAN	ngkg	${ }_{0} .601 \mathrm{~J}$		${ }_{9} 9.755$		${ }^{1.553}$					${ }_{0}^{1.604 \mathrm{~J}}$	0.331 J	${ }_{1}^{2.465 \mathrm{~J}}$	1.834 J			${ }^{1.823 \mathrm{~J}}$			
E1613/E1668	1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	ngkg	0.828 J		20.604		${ }^{17.245}$					${ }^{1.204 \mathrm{~J}}$	0.669 J	${ }^{1.001 \mathrm{~J}}$	1.845 J			${ }^{3.921 \mathrm{~J}}$			
E1613/16168	$1,1,2,3,6,7,8$-HEXACHLORODIBENZOFURAN	ngkg	0.209 U		6.97		2.82 J					0.517 J	0.289 J	1.832 J	2.343 J			3.48 J			
E1613/16688	1, 2, ,3,6,7,8.-HEXACHLORODIBENZO-P-DIOXIN	ngkg	${ }^{2.814 \mathrm{~J}}$		${ }^{65.196}$		48.572					${ }_{4}^{4.2015}$	${ }^{2.476 \mathrm{~J}^{2}}$	${ }^{13.364 \mathrm{~J}}$	${ }^{19.6433}$			14.649			
E1613/E1668	1, 1,2,7,7,9,9-HEXACHLORODIBENZOFURAN	ngkg	0.232 U		0.4210		0.122 U					0.152 U	${ }_{0}^{0.063 \mathrm{U}}$	${ }^{0.2727}$	${ }^{0.2093}$			$0.19{ }^{\text {U }}$			
E1613/16168	1,2,3,7,8,9,-HEXACHLORODIBENZO-P-DIOXIN	ngkg	2.002 J		60.991		48.077					3.345 J	1.851 J	2.942 J	3.038 J			9.35			
E1613/E1668	1,2,3,7,8.PENTACHLORODIBENZOFURAN	ngkg	0.153 U		0.829 J		0.397 J					0.032 U	0.017 U	0.465 J	0.483 J			0.294 U			
E16131/1668	1,2,3,7,8.-PENTACHLORODIBENZO-P-DIOXIN	ngkg	0.5 J		5.381		${ }^{3.207 \mathrm{~J}}$					0.464 J	0.256 J	${ }^{1.042 \mathrm{~J}}$	1.28 J			1.454 J			
E1613]E1668	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	ngkg	0.2 U		${ }^{16.563}$		9.02					0.596 J	0.251 U	1.572 J	2.2 J			3.255 U			
E1613/1668	2,3,4, ,8-PENTACHLORODIBENZOFURAN	ngkg	0.194 U		${ }^{1.0653}$		$0.465 \mathrm{U}^{0}$					${ }^{0.038 ~ U ~}$	$0.021{ }^{0}$	$0.067{ }^{\text {O }}$	${ }^{0.7083}$			${ }_{0}^{0.324 U}$			
E1613/E1668	2,3,7,8-TETRACHLORODIBENZOFURAN	ngkg	0.033 U		0.431 U		0.465 U					0.035 U	0.04 U	0.357 U	0.324 U			0.281 U			
E1613/E1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	ng/kg	0.094 U		0.046 U		0.056 U					0.024 U	0.021 U	0.069 U	${ }^{0.084 \mathrm{U}}$			$0.13{ }^{0}$			
E1613/E1668	OCTACHLORODIBENZOFURAN	ngkg	${ }^{59.536}$		1785.744		1596.339					85.021	51.537	184.811	272.801			263.162			
	OCTACHLORODIBENZO-P-DIIXIN	${ }_{\text {ng }}^{\text {ngkg }}$	${ }^{9972.283} 70.088$		35328.152 J   1308916   1		${ }_{2}^{25130.316} 1183936$					1694.104   98929	982.549 55887	2568.471   129.756	- 3947.587 J			${ }^{4663.337 \mathrm{~J}} \mathbf{2 2 6 3 9 8}$			
E1613/E1668	TOTAL HEPTACHLLORINATED Dibenzorurans	${ }_{\text {ng }}^{\text {ngkg }}$ ng	70.088 294.776		${ }_{1}^{13088946} \mathbf{1 3 9 2}$		${ }^{11838.936}{ }^{11923.002}$					98.592   545.016	${ }_{325.887}^{557}$	129.756   788.18	${ }^{180.148} 1113.461$			226.398			
E1613/16668	TOTAL HEXACHLORINATED DIBENZOFURANS	ngkg	10.999		${ }^{1337.953}$		${ }_{2} 42.066$					24.075	13.347	59.264	79.081			61.338			
E1613/E1668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	ngkg	23.761		995.378		${ }^{776.63}$					50.809	${ }^{28.892}$	141.939	${ }^{131.874}$			103.262			
E1613/E1668	TOTAL PENTACHLORINATED DIBENZOFURANS	ngkg	1.637		49.992		18.378					2.758	1.343	19.592	25.875			6.508			
E1613/E1668	TOTAL PENTACHLORINATED DIBENZO.-P.DIOXINS	ngkg	0.977		${ }^{36.153}$		${ }^{43.595}$					4.077	1.799	4.815	5.038			4.438			
E1613/E1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ngkg	${ }^{0.033 ~ U ~}$		${ }^{4.498}$		2.114					${ }^{0.446}$	${ }^{0.187}$	${ }^{4.924}$	4.015			${ }^{0.2814}$			
(1613/E1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	${ }_{\text {nglkg }}^{\text {mgkg }}$	${ }^{0.039 \mathrm{U}}$		1.186 0.33 UJ		1.347 0.33 UJ					0.126 0.35 u	0.021 U 0.34 u	0.769 0.36 UJ	1.062			0.13 U 0.34 UJ			
SW6020	${ }^{\text {ARSENIC }}$		0.61)	${ }_{3.7}^{0.330}$	${ }_{\text {en }}^{0.330 \mathrm{~J}}$	${ }_{6}^{0.3505}$	${ }_{0}^{0.3378}$	( 0.360 J	$\stackrel{0.36 \mathrm{U}}{0.43 \mathrm{U}}$	${ }_{2}^{0.340 J}$	${ }^{0.3505}$	${ }_{0}^{0.3560}$	$\stackrel{0.340}{0.410}$	${ }_{9.6}^{0.360 J}$	${ }_{\text {O }}^{13}$	${ }_{1}^{0.350 J}$	$\stackrel{0}{0.350}$	${ }_{31 \mathrm{~J}}^{0.340 \mathrm{~J}}$	${ }_{8}^{0.36 \mathrm{~J}}$	${ }^{0.360}$	16
SW6020	BARIUM	mgkg	3.6	6.3	12 J	4.5	8.7	10	13	12 J	13	13	16	20	38	24	6.8	8.8 J	11	24	23
SW6020	CADMIUM	mgkg	0.30 ${ }^{10}$	0.28U	0.28U	0.30	0.28 U	0.30 U	${ }^{0.31 \mathrm{U}}$	0.29 U	0.30 U	${ }^{0.30 \mathrm{U}}$	0.29 U	${ }^{0.31 U}$	${ }^{0.32 \mathrm{U}}$	0.30	0.30	0.29 U	${ }^{0.310}$	${ }^{0.30 \mathrm{O}}$	0.31U
SW6020	CHROMUM	mgkg	67 J	6.9 J	8.8	2.0	3.7	5.7	7.1	10	5.6	6.3	7.2	6.5	8.2	12	14 J	9.2	9.2	19	21
SW6020	COPPER	mgkg	1.9 J	1.15	2.4 J	${ }^{0.753}$	1.1	2.2	0.78 J	4.2 J	3.2	1.1	1.1	2.6	4.5	1.6	1.6 J	1.4 J	7.0	20	21
SW6020	LEAD	mgkg	1.9	1.8	4.7 J	1.3	3.5	5.1	3.6	${ }^{11 J}$	7.5	7.2	8.4	9.0	12	5.6	1.7 J	4.8 J	6.8	24	27
SW6020	SELENIUM	mgkg	${ }_{0}^{0.86 \mathrm{U}}$	0.82 U	0.80 U	${ }^{0.87 U}$	0.81 U	0.88 U	0.89 U	0.84 U	0.88 U	0.87 U	0.84 U	0.89 U	0.93 U	0.87 U	${ }^{0.86 \mathrm{U}}$	${ }^{0.83 U}$	0.88 U	0.88 U	0.89 U
SW6020	SILVER	mgkg	0.39 U	0.37 U	0.36 U	0.39 U	${ }^{0.38 \mathrm{U}}$	0.40 U	0.40 U	${ }^{0.38 \mathrm{U}}$	0.40 U	0.39 U	0.38 U	0.40 U	${ }^{0.42 \mathrm{U}}$	0.39 U	0.39 U	0.38 U	0.40 U	0.40 U	0.40 U
SW6020	VANADIUM (FUME OR DUST)	mgkg	0.92 UJ	2.0	4.43	${ }^{0.93 U}$	1.6	0.94U	4.7	2.75	0.94 U	3.9	4.3	3.4	4.6	1.5	1.4	$\underline{1.85}$	0.950	5.2	3.2
SW7471	MERCURY $1,1,1$ TRICHLOROETHANE	$\mathrm{mg}_{\mathrm{mg} \text { kg }}^{\text {ugk }}$	${ }_{0}^{0.015 \mathrm{~J}}$	${ }_{0.022 \mathrm{~J}}^{0.13 \mathrm{u}}$	$\stackrel{0.037}{0.13 U}$	${ }_{0}^{0.013 \mathrm{~J}}$	${ }_{0}^{0.053}$	0.30 J 0.14 u	${ }_{0}^{0.016 \mathrm{~J}}$	$\stackrel{0.059}{0.13 \mathrm{U}}$	0.041 J	$\frac{0.012 \mathrm{~J}}{0.13 \mathrm{u}}$	${ }_{0}^{0.012 \mathrm{~J}}$	${ }_{0}^{0.048 \mathrm{~J}}$	$\frac{0.061 \mathrm{~J}}{0.14 \mathrm{u}}$	${ }_{0}^{0.021 \mathrm{~J}} 0$	${ }_{0}^{0.014 \mathrm{~J}}$	${ }_{0}^{0.026 \mathrm{~J}}$	0.11 0.14 U	1.5 0.14 U	1.6 0.14 U
SW8260	1,1,2,2-TETRACHLOROETHANE	ugkg	0.071 U	0.069 U	0.069 U	0.069 U	0.070 U	0.073 U	0.071 U	0.069 U	${ }_{0}^{0.070 U}$	0.069 U	0.072 U	0.081 U	${ }_{0}^{0.075 \mathrm{U}}$	0.069 U	${ }_{0}^{0.069 ~ U ~}$	${ }_{0.070 \mathrm{U}}^{0}$	0.072 U	$\stackrel{0}{0.072 \mathrm{U}}$	$\stackrel{0}{0.074 \mathrm{U}}$
SW8260	1,1,2-TRICHLOROETHANE	ugkg	0.14 U	0.15 U	0.14 U	0.14 U	0.14 U	0.14 U	0.15 U	${ }_{0}^{0.16 U}$	0.15 U	0.14 U	0.14 U	0.14 U	0.15 U	0.15 U	0.15 U				
SW8260	1,1-DICHLOROETHANE	ugkg	0.068 U	0.066 U	0.066 U	0.066 U	0.067 U	$0.070{ }^{0}$	0.068 U	0.066 U	0.067 U	0.066 U	0.069 U	0.077 U	0.072 U	0.066 U	0.065 U	0.067 U	0.069 U	0.069 U	0.070 U
SW8260	1,1-1-ICHLOROETHYLENE	ugkg	0.19 U	0.18 U	0.18 U	0.18 U	0.18 U	0.19 U	0.19 U	0.18 U	0.18 U	0.18 U	0.19 U	0.21 U	0.20 U	0.18 U	0.18 U	0.18 U	0.19 U	0.19 U	0.19 U
SW8260	1,2,4-4TRICHLOROBENZENE	ugkg	0.17 U	0.16 U	0.16 U	0.16 U	0.16 U	0.17 U	0.16 U	0.16 U	0.16 U	0.16 U	0.17 U	0.19 U	0.17 U	0.16 U	0.16 U	0.16 U	0.17 U	$0.17{ }^{\text {U }}$	0.17 U
SW8260	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	ugkg	0.53 U	0.52 U	0.51 U	0.51 U	0.52 U	0.55 U	0.53 U	0.51 U	0.52 U	0.51 U	0.53 U	0.60 U	0.56 U	0.52 U	0.51 U	0.52 U	0.54 U	0.54 U	0.55 U
SW8260	1,2-DIBROMOETHANE	ugkg	0.061 U	0.059 U	0.059 U	0.059 U	0.060 U	0.062 U	0.060 U	0.059 U	0.060 U	0.059 U	0.061 U	0.069 U	0.064 U	0.059 U	0.058 U	0.059 U	0.061 U	0.061 U	0.062 U
SW8260	1.2-DICHLOROBENZENE		${ }_{0}^{0.084 \mathrm{U}}$	0.082 U	0	0	0.083 U	${ }^{0.086 \mathrm{U}}$	${ }^{0.084 \mathrm{U}}$	${ }_{0}^{0.082 \mathrm{U}}$	$0.083{ }^{0.0114}$	0	${ }^{0.085}$	0.096 U		0.082 U	${ }_{0}^{0.081 \mathrm{U}}$	0	0.085 U	0.085 U	0.087 U
SW8260	1, 12-IICHLOROETHANE	$\frac{\mathrm{ug} k \mathrm{~kg}}{\mathrm{ug} k g}$	0.11U	0.11U	0.11 U 0.057 U	0.11U	$\stackrel{0.11 \mathrm{U}}{0.058 \mathrm{U}}$	$\frac{0.12 \mathrm{U}}{0.060 \mathrm{U}}$	0.11 U 0.058 U	$\frac{0.11 \mathrm{U}}{0.057 \mathrm{U}}$	$\stackrel{0.11 \mathrm{U}}{0.057 \mathrm{U}}$	0.11U	0.11U	$\stackrel{0.13 U}{0.066 U}$	$\frac{0.12 U}{0.061 U}$	0.11U	0.11U	$\frac{0.11 \mathrm{U}}{0.057 \mathrm{U}}$	0.11U	$\frac{0.11 \mathrm{U}}{0.059 \mathrm{U}}$	0.12 U   0.060 U
SW8260	1,4-DICHLOROBENZENE	ugkg	0.094 U	0.091 U	0.091 U	0.091 U	0.092 U	0.096 U	0.093 U	0.091 U	0.092 U	0.091 U	0.095 U	0.11 U	0.099 U	0.091 U	0.090 U	0.092 U	0.095 U	0.095 U	0.097 U
SW8260	ACETONE	ugkg	2.70	2.7 U	10 J	5.15	14 J	7.15	150	39 J	10 J	2.7 U	2.8 U	3.10	2.90	2.70	2.6 U	4.2 J	7.0 J	2.8 U	2.8 U
SW8260	BENZENE	ugkg	${ }^{0.42 U}$	${ }^{0.414}$	${ }^{0.410}$	${ }^{0.41 U}$	${ }^{0.42 U}$	${ }^{0.43 U}$	${ }^{0.42 U}$	${ }^{0.41 U}$	${ }^{0.42 U}$	${ }^{0.414}$	${ }^{0.43 U}$	${ }^{0.48 \mathrm{U}}$	${ }^{0.44 U}$	${ }^{0.414}$	${ }^{0.414}$	${ }^{0.414}$	0.43 U	${ }^{0.43 U}$	0.44 U
SW8260	BROMODICHLOROMETHANE	uglkg	0.32	0.314	${ }_{0}^{0.31 \mathrm{U}}$	0.314	0.314	0.32	0.31U	0.31 u	0.314	0.314	0.32U	-0.36	0.33U	0.314	0.30U	0.31U	0.32U	0.32U	-0.33
SW8260	BROMOMETHANE CARBON DISULIIE	${ }_{\text {ug }}^{\text {ugkg }}$	0.35 U   1.8 u	0.34U	0.34 UJ 1.7 U	0.34 UJ   1.7 U   0.0	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	0.36 UJ 1.8 u	$\frac{0.35 \mathrm{uJ}}{1.8 \mathrm{u}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{u}}$	0.40 U 2.0 U	$\frac{0.37 \mathrm{U}}{1.9 \mathrm{u}}$	0.34 U   17   17 U	$\frac{0.33 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{U}}$	0.35 U 1.8 U	0.36 U 1.8 U
SW8260	CARBON TETRACHLORIDE	ugkg	${ }_{0}^{0.38 \mathrm{U}}$	0.37 U	${ }_{0}^{1.37 \mathrm{U}}$	0.37 U	${ }_{0}^{1.37 \mathrm{U}}$	0.39 U	${ }_{0}^{1.38 \mathrm{U}}$	0.37 U	0.37 U	0.37 U	0.38 U	${ }_{0}^{2.43 U}$	0.40 U	0.37 U	${ }_{0}^{0.37 \mathrm{U}}$	${ }_{0}^{0.37 \mathrm{U}}$	${ }_{0.38 \mathrm{U}}$	${ }_{0}^{0.39 \mathrm{U}}$	${ }_{0}^{1.39 \mathrm{U}}$
SW8260	CFC-11	ugkg	${ }^{0.28 U}$	0.28 U	0.27 U	0.28 U	0.28 U	0.29 U	${ }^{0.28 \mathrm{U}}$	0.28 U	0.28 U	0.28 U	0.29 U	0.32 U	${ }_{0} 0.30 \mathrm{U}$	0.28 U	0.27 U	0.28 U	0.29 U	0.29 U	0.29 U
SW8260	CFC-12	ugkg	0.35 UJ	0.34 UJ	0.34 U	0.34 U	0.34 U	0.36 U	0.35 U	0.34 U	0.34 U	0.34 U	0.35 U	0.40 U	0.37 U	0.34 U	0.33 U	0.34 U	0.35 U	0.35 UJ	0.36 UJ
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	ugkg	0.39 U	0.38U	0.38 U	0.38 U	0.39 U	0.40 U	0.39 U	0.38 U	0.38 ${ }^{0.30}$	${ }^{0.384}$	0.39 U	${ }^{0.44 U}$	0.41 U	${ }^{0.38 \mathrm{U}}$	${ }^{0.384}$	${ }^{0.38 \mathrm{U}}$	0.40 U	${ }^{0.40 \mathrm{U}}$	0.40 U
SW8260	CHLOROBENZENE	ugkg	${ }^{0.43 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{ }$	${ }^{0.426}$	${ }^{0.42 U^{4}}$	$\stackrel{0.43 \mathrm{U}}{0}$	- 0.45 U	${ }^{0.43 U^{2}}$	$\stackrel{0.42 \mathrm{U}}{0}$	$\stackrel{0.43 \mathrm{U}}{ }$	$\stackrel{0.424}{027}$	0.44U	$\stackrel{0.49 \mathrm{U}}{0}$	0.46 U 0.29 U	${ }_{0}^{0.42 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{ }$	$\stackrel{0.42 \mathrm{U}}{\substack{074 \\ \hline}}$	${ }^{0.444}$	0.44U	${ }^{0.455}$
SW8260	CHLORODIEROMOMETHANE	ugkg	$\stackrel{0.27 \mathrm{U}}{0.39 \mathrm{U}}$	$\stackrel{0.27 \mathrm{U}}{0.38 \mathrm{U}}$	$\stackrel{0.26 \mathrm{U}}{0.38 \mathrm{U}}$	0.27 U 0.38 UJ	0.27 0	0.28 U 0.40 UJ	$\stackrel{0.27 \mathrm{U}}{0.39 \mathrm{u}}$	$\stackrel{0.27 \mathrm{U}}{0.38 \mathrm{U}}$	- 0.278 UJ	$\stackrel{0.27 \mathrm{U}}{0.38 \mathrm{U}}$	0.288 0.390	-0.310	-0.290	0.274 0.38 U	$\stackrel{0.260}{0.38 \mathrm{u}}$	0.27 U 0.38 U	0.28 ${ }_{0}^{0.40 \mathrm{UJ}}$	0.280	0.280 0.40 U
SW8260	CHLOROFORM	ugkg	0.37 U	${ }_{0}^{0.36 \mathrm{U}}$	${ }_{0}^{0.36 U}$	${ }_{0} 0.36 \mathrm{U}$	0.36 U	0.38 U	0.37 U	${ }_{0}^{0.36 U}$	${ }_{0}^{0.36 \mathrm{U}}$	0.36 U	0.37 U	0.42 U	0.39 U	0.36 U	0.36 U	0.36 U	0.37 U	0.37 U	0.38 U
SW8260	CHLOROMETHANE	ugkg	0.49 U	0.48 U	0.47 U	0.47 U	0.48 U	0.50 U	0.48 U	0.47 U	0.48 U	0.47 U	0.49 U	0.55 U	0.51 U	0.47 U	0.47 U	0.48 U	0.49 U	0.49 U	0.50 U


			$\begin{gathered} \text { SSO38 } \\ \text { SSO38CA } 0.5- \\ 2 \text { feet } \\ 12 / 107 / 2006 \end{gathered}$	SSO39   SSO39CA 0.5-   2 feet   $12 / 107 / 2006$	SSO41 SSO41CA $0-$ 2 feet $12 / 11 / 2006$	$\begin{gathered} \text { SSOO5 } \\ \text { SSO45CA. } 5- \\ \text { 2 feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO46 } \\ \text { SSOCCA.5-5 } \\ 2 \text { feet } \\ 12 / 12 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO47 } \\ \text { SSO4CA } 0.5- \\ 2 \text { feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { sso48 } \\ \text { SSO48CA } 0.5-\mathrm{s} \\ 2 \text { feet } \\ 12 / 106 / 2006 \end{gathered}$	$\begin{gathered} \text { SS049 } \\ \text { SSO49CA. } 0.5 \\ 2 \text { feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO52 } \\ \text { SSO52CA. } 5- \\ 2 \text { feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { SS057 } \\ \text { SSO57CA.5- } \\ 2 \text { feet } \\ 12 / 06 / 2006 \\ \hline \end{gathered}$		$\begin{gathered} \text { SSO62 } \\ \text { SSO62CA. } \\ \text { 2feet } \\ 12 / 108 / 2006 \\ \hline \end{gathered}$	SS062 sso62cc 0.5 2feet $12 / 108 / 2006$	SSO64   SSO64CA 0.   2feet   $12 / 08 / 2006$	$\begin{array}{c\|} \text { SSO66 } \\ \text { SSO66CA 0.5- } \\ 2 \text { feet } \\ 121 / 08 / 2006 \end{array}$	$\begin{array}{c\|} \text { SSO68 } \\ \text { SSO68CA } 0.5- \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	SS070   SS070CA 0.5-   2 feet   $12 / 12 / 2006$	$\begin{gathered} \text { SSO72 } \\ \text { SSOT2CA } 0.5- \\ 2 \text { feet } \\ 121 / 07 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SSO72 } \\ \text { Ssor2co. } \\ \text { 2fet } \\ 1207 / 2006 \\ \hline \end{array}$
Lab Method	Analyte	Units																			
SW8260	CIS-1,-2ICHLOROETHY	ugkg	${ }_{0}^{0.28 \mathrm{U}}$	$\stackrel{0.28 \mathrm{U}}{0.314}$	$\stackrel{0.27 U}{0314}$	$\stackrel{0.28 \mathrm{U}}{0}$	$\stackrel{0.28 \mathrm{U}}{0.31 \mathrm{u}}$	$\frac{0.29 \mathrm{U}}{0.32 \mathrm{u}}$	${ }_{0}^{0.28 \mathrm{U}}$	0.28U	$\stackrel{0.28 \mathrm{U}}{0.31 \mathrm{u}}$	$\frac{0.28 \mathrm{U}}{0.31 \mathrm{u}}$	${ }_{0}^{0.29 \mathrm{U}}$	${ }_{0}^{0.32 \mathrm{U}} 0$	${ }_{0}^{0.30 \mathrm{U}} 0$	${ }_{0}^{0.28 \mathrm{U}} 0$	0.27 U 0.30 u	$\frac{0.28 \mathrm{U}}{0.31 \mathrm{U}}$	${ }_{0}^{0.29 \mathrm{U}} 0$	$0.29 \cup$	0.29 U 0.33 u
SW8260	CIS-1,3-ICHLOROPROPENE	$\underline{\mathrm{ug} k g}$	0.32 U 0.41 U	$\stackrel{0.31 \mathrm{U}}{0.40 \mathrm{U}}$	${ }_{0}^{0.310}$	0.31 U 0.40	$\stackrel{0.31 \mathrm{U}}{0.41 \mathrm{U}}$	$\stackrel{0.32 \mathrm{U}}{0.42 \mathrm{U}}$	${ }_{0}^{0.410}$	${ }_{0}^{0.3100}$	${ }_{0}^{0.311}$	${ }_{0}^{0.310}$	$\stackrel{0.32 \mathrm{U}}{0}$	$\stackrel{0.37 \mathrm{U}}{0.4}$	0.33 U 0.43 u	${ }_{0}^{0.310} 0$	$\stackrel{.0 .400}{ }$	${ }_{0}^{0.40 \mathrm{U}}$	${ }_{0}^{0.32 \mathrm{U}}$	${ }_{0}^{0.32 \mathrm{U}}$	${ }_{0}^{0.433}$
SW8260	DICHLOROMETHANE	ugkg	0.42 U	0.41 U	0.41 U	0.41 U	0.42 U	0.43 U	0.42 U	0.41 U	0.42 U	0.41 U	0.43 U	0.48 U	0.44 U	0.41 U	0.41 U	0.41 U	0.43 U	0.43 U	0.44 U
sw8260	EthYLBENZENE	ugkg	0.46 U	0.44 U	0.44 U	0.44 U	0.45 U	0.47 U	0.45 U	0.44 U	0.45 U	0.44 U	0.46 U	0.52 U	0.48 U	0.44 U	0.44 U	0.45 U	0.46 U	0.46 U	0.47 U
SW8260	ISOPROPYLBENZENE	ugkg	0.50 U	0.49 U	0.48 U	0.48 U	0.49 U	0.51 U	${ }^{0.49}$	0.48 U	${ }^{0.49 U^{4}}$	0.48 U	$0.50{ }^{0}$	0.57 U	0.52 U	0.49 U	0.48 U	0.49 U	${ }^{0.500}$	${ }^{0.514}$	$0.51{ }^{0}$
SW8260	m,p-Xylenes	ugkg	0.94 U	0.91 U	0.91 U	0.91 U	0.92 U	0.96 U	0.93 U	0.91 U	0.92 U	0.91 U	0.95 U	1.14	0.99 U	0.91 U	0.90 U	0.92 U	0.95 U	0.95 U	0.97 U
SW8260	M-DICHLOROBENZ	ugkg	0.054 U	0.053 U	0.052 U	0.053 U	0.053 U	0.056 U	0.054 U	0.053 U	0.053 U	0.053 U	0.055 U	0.062 U	0.057 U	0.053 U	0.052 U	0.053 U	0.055 U	0.055 U	0.056 U
SW8260	METHYL ACETATE	ugkg	0.21 U	0.20 U	0.20 U	0.20 U	0.21 U	0.21 U	0.21 U	0.20 U	0.21 U	0.20 U	0.21 U	0.24 U	0.22 U	0.20 U	0.20 U	0.20 U	0.21 U	0.21 U	0.22 U
SW8260	METHYL ETHYL KETONE	ugkg	1.24	1.2 U	1.2 U	1.24	1.2 U	1.3 U	1.20	1.24	1.24	1.20	1.20	1.4 U	1.34	1.2 U	1.2 U	1.24	1.24	1.24	1.34
SW8260	METHYL LSOBUTYL KETONE	ugkg	0.77 U	${ }^{0.75 U}$	$0.74{ }^{1}$	$0.74{ }^{1}$	$0.76{ }^{1.16}$	0.79 U	${ }^{0.764}$	$0.74{ }^{1.14}$	$0.75{ }^{1.7}$	$0.74{ }^{1 .}$	$0.77{ }^{1.16}$	${ }^{0.874}$	${ }^{0.814}$	0.754	${ }^{0.744}$	0.754	$0.77{ }^{1.7}$	$0.78{ }^{1.16}$	$0.79{ }^{1}$
SW8260	METHYL N-BUTYL KETONE	ugkg	1.14	1.10	1.14	1.10	1.10	1.24	1.14	1.14	1.10	1.14	1.14	1.34	1.24	1.14	${ }^{1.1 .10 J}$	1.14	1.14	1.14	1.24
SW88260	M METHLBENLENE	ugkg	$\stackrel{0.46 \mathrm{U}}{0.48}$	0.446   0.46	0.446   0.46	$\stackrel{0.56 \mathrm{U}^{0}}{0.46}$	0.89   0.47	1.29 0.49	0.457   0.47	$0.44 \mathrm{U}^{0}$ 0.46 U	$\stackrel{0.89 \mathrm{U}}{0}$	$0.44 \mathrm{U}^{0}$ 0.46 U	0.460 0.48 U	$\stackrel{0.544}{ }$	$\stackrel{0.50 \mathrm{U}}{ }$	0.464   0.46	$0.44 \mathrm{U}^{0}$ 0.46 U	$0.45)$   0.47	0.480 U 0	$0.46 \mathrm{U}^{0}$ 0.48 U	0.49   0.49
SW8260	O-XYLENE	ugkg	0.43 U	0.42 U	0.42 U	0.42 U	0.43 U	0.45 U	0.43 U	0.42 U	0.43 U	0.42 U	0.44 U	0.49 U	${ }^{0.46 U}$	0.42 U	0.42 U	0.42 U	0.44 U	0.44 U	0.45 U
SW8260	STYRENE (MONOMER)	ugkg	0.47 U	0.45 U	0.45 U	0.45 U	0.46 U	0.48 U	${ }^{0.46 U}$	0.45 U	0.46 U	0.45 U	0.47 U	${ }^{0.53 U}$	0.49 U	0.45 U	0.45 U	${ }^{0.464}$	0.47 U	0.47 U	0.48 U
sw8260	TERT-BUTYL METHYL ETHER	ugkg	0.35 U	0.34 U	0.34 U	0.34 U	0.34 U	0.36 U	${ }^{0.35 U}$	0.34 U	0.34 U	0.34 U	0.35 U	0.40 U	0.37 U	0.34 U	0.33 U	0.34 U	0.35 U	0.35 U	0.36 U
sw8260	TETRACHLOROETHYLENE	ugkg	0.43 U	0.42 U	0.42 U	0.42 U	0.43 U	0.45 U	0.43 U	0.42 U	0.43 U	0.42 U	0.44 U	0.49 U	0.46 U	0.42 U	0.42 U	0.42 U	0.44 U	0.44 U	0.45 U
SW8260	TRANS-1,2-DICHLOROETHENE	ugkg	0.41U	0.40	0.40	0.40	0.41 U	0.42 U	${ }^{0.410}$	0.40	0.41U	0.40	0.42	0.47 ${ }^{\text {U }}$	0.43U	0.40	0.40	0.40	0.42 ${ }^{033}$	0.42 U	0.43U
SW8260	TRANS-1,2-IICHLOROPROPENE	$\underline{\text { ugkg }}$	0.33 U 0.42 u	0.32U	0.32U	$\stackrel{0.32 \mathrm{U}}{0.41 \mathrm{U}}$	0.32 U 0.42 U	$\stackrel{0.34 \mathrm{U}}{0.43 \mathrm{U}}$	$\stackrel{0.32 \mathrm{U}}{0.42 \mathrm{u}}$	-0.32	$\stackrel{0.32 \mathrm{U}}{0.42 \mathrm{u}}$	-0.32	$\stackrel{0.33 \mathrm{U}}{0.43 \mathrm{U}}$	0.37 U 0.48 U	$\stackrel{0.34 \mathrm{U}}{0.44 \mathrm{U}}$	0.32 U $0.41 \mathrm{O}^{\prime}$	-0.310	0.32 U 0.41 u	$\stackrel{0.33 \mathrm{u}}{0.43 \mathrm{u}}$	0.33 U 0.43 u	0.344 0.44 u
SW8260	TRICHLOROETHYLENE	ugkg	${ }^{0.43 U}$	0.42 U	0.42 U	0.42 U	0.43 U	${ }^{0.45 U}$	${ }^{0.43 U}$	0.42 U	${ }^{0.43 U}$	0.42 U	0.44 U	0.49 U	0.46 U	0.42 U	0.42 U	0.42 U	0.44 U	0.44 U	0.45 U
SW8260	VINYL CHLORIDE	ugkg	0.26 U	0.26 U	0.25 U	0.25 U	0.26 U	0.27 U	0.26 U	0.25 U	0.26 U	0.25 U	0.26 U	0.30 U	0.28 U	0.26 U	0.25 U	0.26 U	0.27 U	0.27 U	0.27 U
SW8270	2.,4,-TRICHLOROPHENOL	ugkg	14 U	15 U	14 U	15 U	14 U	14 U	14 U	14 U	15 U	14 U	14 U	14 U	15 U	15 U	15				
SW8270	2,4,6-TRICHLOROPHENOL	ugkg	39 U	38 U	38 U	38 U	$38 \cup$	40 U	39 U	40 U	38 U	38 U	38 U	39 U	410	38 U	38 U	38 U	40 U	40 U	40 U
SW8270	2.4-DICHLOROPHENOL	${ }_{\text {uglkg }}$	19 U	18 U	18 U	18 U	18 U	19 U	19 U	19 U	18 U	18 U	18 U	19 U	20 U	18 U	18 U	18 U	19 U	19 U	190
sw8270	2,4-DIMETHYLPHENOL	ugkg	214	20 U	20 U	20 U	20 U	214	214	214	20 U	20 U	20 U	214	24 J	20 U	20 U	${ }^{20 U}$	214	210	22 U
SW8270	2,4-DIINTROTOLUENE	ugkg	11 U	12 U	11 U																
SW8270	2,6-DINITROTOLUENE	ugkg	39 U	38 U	38 U	38 U	38 U	40 U	39 U	40 U	38 U	38 U	38 U	39 U	41 U	38 U	38 U	38 U	40 U	40 U	40 U
sw8270	2.CHLORONAPHTHALENE	ugkg	18 U	17 U	17 U	17 U	17 U	18 U	18 U	18 U	17 U	17 U	17 U	18 U	18 U	17 U	17 U	17 U	18 U	18 U	18 U
SW8270	2-CHLOROPHENOL	ugkg	20 U	19 U	19 U	19 U	19 U	20 U	20 U	20 U	19 U	19 U	19 U	20 U	210	19 U	19 U	19 U	20 U	20 U	20 U
SW8270	2-METHYLPHENOL (O-CRESOL)	ugkg	13 U	14 U	13 U	14 U	13 U	13 U	13 U	13 U	14 U	13 U	13 U	13 U	14 U	14 U	14 U				
SW8270	2-NITROANLINE	ugkg	24 U	23 U	23 U	23 U	24 U	25 U	24 U	24 U	24 U	23 U	24 U	24 U	25 U	23 U	23 U	24 U	24 U	24 U	25 U
SW8270	2-NITROPHENOL	ugkg	16 U	15 U	15 U	15 U	15 U	16 U	15 U	16 U	15 U	15 U	15 U	15 U	16 U	15 U	15 U	15 U	16 U	16 U	16 U
SW8270	3,3'-IICHLOROBENZIDINE	ugkg	37 U	36 U	36 U	36 U	36 U	38 U	37 U	374	36 U	36 U	36 U	37 U	39 U	36 U	36 U	36 U	37 U	37 U	38 U
SW8270	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	ugkg	14 U	15 U	14 U	15 U	14 U	14 U	14 U	14 U	15 U	14 U	14 U	14 U	15 U	15 U	15 U				
SW8270 SW8270	3-NITROANLINE 4 - 6 -DINTRO-2-METHYLPHENOL	ugkg	19 U	18 U	18 U	18 U	18 U	19 U	19 U	194	18 U	18 U	18 U	19 U	20 U	18 U	18 U	18 U	19 U	19 U	190
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	11 U	11 U	${ }_{11 \mathrm{U}}$	11 U	12 U	${ }_{11 \mathrm{U}}$	11 U												
SW8270	4-CHLORO-3-METHYLPHENOL	ugkg	18 U	17 U	17 U	17 U	17 U	18 U	18 U	18 U	17 U	17 U	17 U	18 U	18 U	17 U	17 U	17 U	18 U	18 U	18 U
SW8270	4-CHLOROPHENYL PHENYL ETHER	ugkg	24 U	23 U	23 U	23 U	24 U	25 U	24 U	24 U	24 U	23 U	24 U	24 U	25 U	23 U	23 U	24 U	24 U	24 U	25 U
SW8270	4-METHYLPHENOL (MP-CRESOL)	ugkg	28 U	29 U	28 U	29 U	28 U	28 U	28 U	28 U	30 U	28 U	27 U	28 U	29 U	29 U	29 U				
SW8270	4-NITROPHENOL	uglkg	19 U	18 U	18 U	18 U	18 U	19 U	19 U	19 U	18 U	18 U	18 U	19 UJ	20 UJ	18 U	18 U	18 U	19 U	19 UJ	19 UJ
SW8270	BENZYL BUTYL PHTHALATE	ugkg	20 U	19 U	19 U	19 U	19 U	20 U	20 U	20 U	19 U	19 U	19 U	20 U	210	19 U	19 U	19 U	20 U	20 U	20 U
SW8270	BIPHENYL	ugkg	$170 \cup$	160 U	160 U	160 U	160 U	$170 \cup$	160 U	170 U	160 U	160 U	160 U	160 U	170 U	160 U	160 U	160 U	170	170 U	170 U
SW8270	BIS(2-CHLORETHOXY)METHANE	ugkg	19 U	18 U	18 U	18 U	18 U	19 U	19 U	19 U	18 U	18 U	18 U	19 U	20 U	18 U	18 U	18 U	19 U	19 U	19 U
SW8270	BIS(2-CHLOROETHYLETYER	ugkg	$\frac{17 \mathrm{U}}{23}$	${ }_{16}^{16 \mathrm{U}} 2$	16 U	$\frac{16 \mathrm{U}}{22 \mathrm{U}}$	16 U	17 U	$\frac{16 \mathrm{U}}{23}$	17 U 230	$\frac{16 \mathrm{U}}{23 \mathrm{U}}$	16 U 22 UJ	${ }_{16}^{16 \mathrm{U}}$	${ }_{26}^{16 \mathrm{U}}$	${ }_{27}^{17 \mathrm{U}}$	$\frac{16 \mathrm{U}}{22 \mathrm{U}}$	$\frac{16 \mathrm{UJ}}{22 \mathrm{U}}$	$\stackrel{16 \mathrm{U}}{23 \mathrm{U}}$	17 U	$\stackrel{174}{2341}$	$\stackrel{17}{24} \mathrm{U}$
SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	ugkg	18 U	17 U	$17 \cup$	17 U	17 U	18 U	18 U	18 U	17 U	17 U	17 U	18 U	18 U	17 U	17 U	17 U	18 U	48 J	45 J
SW8270	CARBAZOLE	ugkg	18 U	17 U	17 U	17 U	17 U	300	18 U	140 J	130 J	17 U	17 U	470	930	17 U	17 U	17 U	160 J	360	380
SW8270	dibenzofuran	ugkg	14 U	14 U	17 J	14 U	54 J	170 J	14 U	43 J	130 J	14 U	14 U	97 J	180 J	14 U	14 U	29 J	17 J	350	420
SW8270	DIETHYL PHTHALATE	ugkg	13 U	14 U	13 U	14 U	13 U	13 U	13 U	13 U	14 U	13 U	13 U	13 U	14 U	14 U	14 U				
SW8270	DIMETHY P PHTHALATE	ugkg	110	110	11 U	110	110	110	110	110	110	110	11 U	11 U	12 U	110	11 U	110	110	110	110
SW8270	Di-N-BUTYL-PHTHALATE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \mathrm{kg}}$	${ }_{17}^{66 U}$	${ }_{164} 16$	${ }^{646}$	${ }_{164} 16$	$\underline{650}$	$68 \cup$   17	65 U 16 U	${ }_{17} 67$	65 U 16 U	64 U 16 U	65 U 16 U	65 U 16 U	$\underline{170}$	${ }^{646}$	163	${ }_{165} 16$	67 U 17	${ }_{17} 6$	680 170
SW8270	HEXACHLORO-1,3-BUTADIENE	ugkg	19 U	18 U	18 U	18 U	18 U	19 U	19 U	19 U	18 U	18 U	18 U	19 U	20 U	18 U	18 U	18 U	19 U	19 U	19 U
SW8270	HEXACHLOROBENZENE	ugkg	9.0 U	8.74	8.74	8.74	8.80	9.2 U	8.90	9.10	8.8 U	8.74	8.8 U	8.9 U	9.4 U	8.74	8.6 U	8.8 U	9.14	9.14	9.3 U
Sw8270	HEXACHLOROCYCLOPENTADIENE	ugkg	12 U	13 U	12 U	13 U	12 U	13 U													
SW8270	HEXACHLOROETHANE	ugkg	19 U	18 U	18 U	18 U	18 U	19 U	19 U	19 U	18 U	18 U	18 U	19 U	20 U	18 U	18 U	18 U	19 U	19 U	19 U
SW8270	NTTROBENZENE	ugkg	22 U	21 U	210	210	22 U	21 U	22 U	22 U	23 U	21 u	210	22 U	22 U	22 U	230				
SW8270	N-NITROSO-D-N-N-PROPYLAMINE	$\underline{u g k g}$	12 U	19 U	19 U	19 U	19 U	13 U	12 U	$\underline{12 U}$	19 l	19 U	19 U	$\underline{120}$	${ }_{13} 21$	19 U	19 U	19 U	$\underline{20 U}$	$\frac{20 U}{12 \mathrm{U}}$	
SW8270	P.CHLOROANILINE	ugkg	28 U	29 U	28 U	29 U	28 U	28 U	28 U	28 U	30 U	28 U	27 U	28 U	29 U	29 U	29 U				
SW8270	PHENOL	ugkg	18 U	17 U	17 U	17 U	17 U	18 U	18 U	18 U	17 U	17 U	17 U	18 U	18 U	17 U	17 U	17 U	18 U	18 U	18 U
SW8270	P-NITROANLINE	ugkg	13 U	14 U	13 U	14 U	13 U	13 U	13 U	13 U	14 U	13 U	13 U	13 U	14 U	14 U	14 U				
		mgkg																			


		Location Sample ID Depth Sample Date				$\begin{gathered} \text { SSO80 } \\ \text { SSOBOCA. } 5- \\ 2 \text { feet } \\ 12 / 06 / 2006 \\ \hline \end{gathered}$		$\begin{gathered} \text { SSO84 } \\ \text { SSO84CA0.5. } \\ 2 \text { feet. } \\ 12108120006 \end{gathered}$	SSO86   SSO86CA $0.5-$   2 feet   $12 / 11 / 2006$	$\begin{gathered} \text { SSO88 } \\ \text { SSO88CA. } 0.5- \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	SS091   Ss091CA $0.5-$   2 feet   $12 / 11 / 2006$	SSO94   SS094CA $0.5-$   2 feet   $12 / 11 / 2006$	$\begin{gathered} \text { SS095 } \\ \text { SSO95CA. } 5 \text { 2 feet } \\ 2 \text { feet } \\ 12 / 06 / 2006 \end{gathered}$		$\begin{gathered} \text { SS097 } \\ \text { SS097CA } .55 \\ 2 \text { feet } \\ 12 / 07 / 2006 \end{gathered}$	$\begin{array}{c\|} \text { SSO98 } \\ -9 \text { SSogcta.5 } \\ \text { 2feet } \\ 12 / 10812006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SS099 } \\ \text { SS099CA 0.5- } \\ 2 \text { feet } \\ 12 / 08 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SS100 } \\ \text { SS100CA 0.5- } \\ 2 \text { feet } \\ 12 / 08 / 2006 \\ \hline \end{array}$	SS101   SS101CA. $5-$   2 feet   $12 / 11 / 2006$
Lab Method	Analyte	Units																	
ENASIM	2-METHYLNAPHTHALENE	ugkg	130 J	15000 J	1.6 U	1.6 U	5100	11	7100 J	16 J	1.70	13000 J	2.3 J	32 U	1.9 U	1.70	19 U	150000	590000 J
BNASIM	ACENAPHTHENE	uglkg	30 R	46000	2.90	15	53000	11	27000	32 J	3.00	350000 J	3.15	57 U	3.30	7.6	97	200000	810000 J
SNASIM	ACENAPHTHYLENE	ugkg	430	7200	4.3 J	2.8 J	3500 J	23	700	35	30	1700	14	680	3.2 U	57	1000	11000	6500
BNASIM	ANTHRACENE	ugkg	300	28000	8.7	35	26000	46	39000	52	100	370000	43	1200	1.7 J	710 J	2300	230000	1400000
BNASIM	BENZO(A)ANTHRACENE	ugkg	730	28000	17	8.6	39000	22	13000	54	90	15000	6.3	1700	0.73 J	82	930	87000	910000
SNASIM	BENZO(A)PYRENE	ugkg	930	36000	12	8.8	19000	27	4600	54	89	6300	14	1800	1.4 U	28	2600	44000	370000
SNASIM	BENZO(B)FLUORANTHENE	ugkg	1300 J	55000 J	33 J	15	22000	46	6700 J	150 J	190 J	12000	20	2400	0.97 U	45	5000	55000	560000
SNASIM	BENZO(G, H, ) PERYLENE	ugkg	660	27000	11	7.5	6700	23	1400	60	74	3500	19	1400	0.79 U	27	2600	14000	13000
BNASIM	BENZO(K)FLUORANTHENE	uglkg	700	23000	18	13	23000	45	2900	71	97	5800	${ }^{0.714}$	2100	$0.79{ }^{0}$	35	2200	36000	17000
BNASIM	CHRYSENE	ugkg	850	33000	22	13	37000	29	12000	74	130	14000	7.4	1600	0.97 J	22	1100	84000	780000
SNASIM	DIBENZO(A,H)ANTHRACENE	ugkg	230	10000	3.6 J	2.03	510	7.5	630	19	27	1400	6.6	450	0.62 U	7.3	920	6400	6700
ENASIM	FLUORANTHENE	ugkg	940	100000	28	42	230000	0.63 U	66000	84	130	790000	6.7	1400	0.72 U	42	2200	330000	1000000
SNASIM	FLUORENE	ugkg	17 R	51000	1.6 U	29	35000	8.7	32000	43 J	1.70	330000	3.2 J	32 U	1.9 U	8.0	91	230000	810000
BNASIM	INDENO(1,2,3-CD)PYRENE	ugkg	660	24000	11	8.7	8800	25	1500	56	71	3700	24	1600	1.10	29	3800	15000	15000
SNASIM	NAPHTHALENE	ugkg	200 J	17000 J	0.54 U	${ }^{0.53 U}$	300 U	0.54 U	1400 J	22 J	0.57U	14000 J	${ }^{0.56 U}$	11 U	0.62 U	0.55 U	6.3 U	260000	930000 J
SNASIM	PENTACHLOROPHENOL	ugkg	39 J	310 J	2.75	0.73 U	770	0.74 U	1700	26 J	51	2900	26 J	580 J	0.85 U	0.76 U	15000	930 J	160000 J
BNASIM	PHENANTHRENE	ugkg	260	140000	3.5 U	110	74000	9.0	110000	150 J	3.70	1300000	5.0 J	71 J	4.2 J	15	410	1300000	2100000
SNASIM	PYRENE	ugkg	1100	74000	30	33	140000	0.55 U	49000	92	190	620000	6.1	2200	2.15	40	2000	260000	730000
E160.3	RESIDUE, TOTAL	percent	92	91	95	97	87	95	96	94	90	96	93	95	83	93	81	93	94
E1613/E1668	1, 2, 2, 4, ,6,7,8,-HEPTACHLORODIBENZOFURAN	ngkg				10.159	2280		533	186.77		3580	48.413	1310 J	1.482 J	60.902	31700	769	5590
E1613/1668	1,2,3,4,4,7,8,-HEPTACHLORODIBENZO-P-DIOXIN	ngkg				${ }^{72.795}$	119000		6970	1540.857		35500	355.88	10200	12.833 J	671.486	295000	6250	50100
E1613/1668	1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	ngkg				0.487 J	161		41.4	12.593		231	6.659 U	83.4	0.161 U	3.091 J	1550	43.3	330
E1613/1668	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	ngkg				0.212 J	49.6 J		14.5	3.957 J		100	2.256 J	31.7	0.157 U	3.335 J	459	19.8	150
E1613/1668	1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	ngkg				0.524 J	281		26.7	15.614		134	$3.376{ }^{3}$	82.3	0.074 U	5.154 J	631	30.5	108
E1613/11668	1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	nglkg				0.158 J	13.9 J		6.4	3.474 J		40.8 J	0.775 J	23.7	0.098 U	1.427 J	110	11.4	34.6
E1613/E1668	1, 1,2,3,7,8,-HEXACHLORODIBENZO-P-DIOXIN	nglkg				1.461 J	1640		89	${ }^{37.444}$		587	10.56	303	0.454 J	${ }^{11.626}$	5740	194	780
E1613/E1668	1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	ngkg				0.06 U	13.2 J		2.67	$0.174 \mathrm{U}^{\text {a }}$		21.8	0.248 U	8.11	0.12 U	0.274 U	87.5	7.57	30.8
E1613/1668	1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	ngkg				1.752 J	596		42.1	36.053		209	8.662	151	0.242 J	20.693	926	62.3	145
E1613/1668	1,2,3,7,8-PENTACHLORODIBENZOFURAN	nglkg				0.023 U	ou		. 919 J	0.493 J		5.04	0.04 U	2.85	0.024 U	0.306 J	9.91 J	3.65	5.23
E1613/1668	1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	ng/kg				0.037 U	10.8 J		7.62	4.882 J		26	1.252 U	25.3	0.037 U	1.202 J	103	8.76	9.72
E1613/1668	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	ngkg				0.133 J	25.5 J		11.7	8.82		80.4	0.802 J	49.1	0.098 U	1.231 J	275	30	73.2
E1613/11668	2,3,4,7,8-PENTACHLORODIBENZOFURAN	ngkg				0.026 U	7.04 J		${ }^{2.24 J}$	0.716 J		17.2	0.284 U	9.57	0.024 U	0.564 J	35.2 J	8.36	20.1
E1613/1668	2,3,7,8-TETRACHLORODIBENZOFURAN	ngkg				0.021 U	ou		. 825 J	0.091 U		1.13	0.041 U	1.08	0.044 U	0.319 U	OU	.92 J	. 93
E1613/E1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	nglkg				0.015 U	OU		. 854	0.397 U		2.22	0.034 U	1.61	0.029 U	0.101 U	16.2	. 809	1.9
E1613/E1668	OCTACHLORODIBENZOFURAN	ngkg				36.069	15600		3410	961.228 J		18600	173.37	5960	5.873 J	200.713	209000	4070	34200
E1613/11668	OCTACHLORODIBENZO-P.DIOXIN	nglkg				622.734	440000		70600	17446.92 J		463000	2961.454	101000	147.748	5262.498 J	5620000	71000	648000
E1613/E1668	TOTAL LEPTACHLORINATED DIBENZOFURANS	nglkg				${ }^{33.383}$	12300 J		2970	734.414		17300	173.182	${ }_{5110 \mathrm{~J}}$	${ }^{4.621}$	196.985	176000	${ }^{3420}$	29900
E1613/11668	TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	ng/kg				352.493	423000		49800	5707.211		301000	933.302	22400	42.255	4759.597	959000	20000	373000
E1613/E1668	TOTAL HEXACHLORINATED DIBENZOFURANS	nglkg				8.059	2010		477	184.934		3170 J	67.385	1300 J	1.018	57.472	26600 J	771J	4400 J
E1613/11668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	ngkg				29.634	44200		3140	427.789		14400	81.458	2070	3.804	308.913	86200	1300	20600
E16131/1668	TOTAL PENTACHLORINATED DIBENZOFURANS	nglkg				1.121	59.9		45.6 J	${ }^{27.074}$		${ }^{316 \mathrm{~J}}$	4.329	181 J	${ }^{0.174}$	${ }^{9.412}$	822 J	107 J	220 J
E1613/11668	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	nglkg				1.831	505		77.1	24.257		307	5.436	113	0.037 U	13.868	8140	58.4	302
E1613/E1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ngkg				0.163	15.2		12.1	1.632		28.5 J	0.788	23.8	0.044 U	0.689	79.5 J	8.45	23.9
E1613/11668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	ngkg				0.015 U	46.4		8.6	1.425		18.9	0.034 U	9.01	0.029 U	0.372	744	4.11	11.4
SW6020	ANTIMONY	mgkg	15 J	0.37 UJ	0.34 UJ	0.34 UJ	1.3	0.35 UJ	0.34 UJ	${ }^{0.38 \mathrm{~J}}$	0.37 UJ	0.34 UJ	42	${ }^{0.35 U}$	0.40 U	0.34 U	0.40 U	0.36 U	0.34 UJ
SW6020	ARSENIC	mg/kg	${ }^{23 J}$	14 J	0.99 J	${ }^{0.48 \mathrm{~J}}$	91	22	7.6	2.5	58 J	6.5	430	31	0.48 U	2.1	3.1	3.6 J	1.5
SW6020	BARIUM	mg1kg	32 J	24 J	12 J	12	21	4.7	3.5	15	43 J	13	5.7	8.8	5.9	13	18	11	8.9
SW6020	CADMIUM	mg/kg	0.31 U	0.32 U	0.29 U	0.29 U	${ }^{0.32 \mathrm{U}}$	0.30 U	0.29 U	0.30 U	0.32 U	0.29 U	0.31 U	0.30 U	0.34 U	0.29 U	0.34 U	0.31 U	0.29 U
SW6020	CHROMIUM	mg/kg	14	16	8.5	5.7	5.4	3.7	3.9	6.0	7.4	11	420	32 J	3.1	4.3	6.7	7.9 J	4.8
SW6020	COPPER	mg/kg	51 J	27 J	0.98 J	0.86 J	11	0.68 J	3.7	2.0	4.9 J	7.1	94	13 J	0.59 J	1.4	13	5.6 J	1.9
SW6020	LEAD	mg/kg	280 J	24 J	${ }^{3.65}$	8.1	36	2.0	62	5.9	5.2 J	6.0	4.5	4.4	3.0 J	3.7	9.3	4.8 J	5.2
( $\begin{aligned} & \text { SW6020 } \\ & \text { SW6020 }\end{aligned}$	SELENUM SIVER	$\frac{\mathrm{mg} \text { kg }}{\text { mglkg }}$	0.90 U 0.41 U	0.92 U 0.42 u	${ }_{0}^{0.84 \mathrm{U}}$	${ }_{0}^{0.85 \mathrm{U}}$	0.94 U 0.42 U	${ }_{0}^{0.86 \mathrm{U}}$	0.84 UJ 0.38 U	0.85 UJ	0.92 U 0.42 u	0.85 u 0.38 u	${ }_{0}^{0.90 \mathrm{U}}$	${ }^{0.86 \mathrm{U}}$	0.0 .99 u	0.844 0	0.98 U	0.89 u 0.40 u	0.84 U 038 u
SW6020	VANADIUM (FUME OR DUST)	mglkg	${ }^{0.4 .05}$	4.8.8	${ }_{5} 5.15$	3.2	5.0	${ }_{3} .8$	${ }_{1}^{0.000 ~}$	${ }^{3.05}$	4.03	${ }_{0}^{0.910}$	0.96 UJ	2.5	1.2	2.3	2.9	1.7	0.900
SW7471	MERCURY	mg/kg	0.051	0.068	${ }_{0.010 \mathrm{~J}}$	0.019 J	0.40	0.027 J	0.081	0.036	0.059	0.18 J	${ }_{0}^{0.031}$	0	${ }_{0}^{0.021 \mathrm{~J}}$	0.056	0.87 J	${ }_{0}^{0.052 \mathrm{~J}}$	0.099 J
SW8260	1,1,1,-TRICHLOROETHANE	ugkg	0.13 U	0.14 U	0.13 U	0.13 U	0.14 U	0.13 U	0.13 U	0.13 U	0.14 U	0.13 U	0.13 U	0.13 U	0.15 U	0.13 U	0.15 U	0.13 U	0.13 U
SW8260	1,1,2,2,-TETRACHLOROETHANE	ugkg	0.072 U	0.073 U	0.070 U	0.069 U	0.076 U	0.072 U	0.069 U	0.071 U	0.074 U	0.070 U	0.072 U	$0.070 \mathrm{U}^{0}$	0.080 U	0.071 U	0.082 U	0.071 UJ	0.071 UJ
SW8260	1,1,2-TRICHLOROETHANE	ugkg	0.15 U	0.15 U	0.14 U	0.14 U	0.15 U	0.15 U	0.14 U	0.14 U	0.15 U	0.14 U	0.15 U	0.14 U	0.16 U	0.14 U	$0.17{ }^{\text {U }}$	0.14 UJ	0.14 UJ
SW8260	1,1-DICHLOROETHANE	ugkg	0.069 U	0.070 U	0.067 U	0.066 U	0.073 U	0.069 U	0.066 U	0.068 U	0.070 U	0.066 U	0.069 U	0.067 U	0.077 U	0.068 U	0.078 U	0.068 U	0.067 U
SW8260	1,1-DICHLOROETHYLENE	ugkg	0.19 U	0.19 U	0.18 U	0.18 U	0.20 U	0.19 U	0.18 U	0.19 U	0.19 U	0.18 U	0.19 U	0.18 U	0.21 U	0.19 U	0.21 U	0.19 U	0.19 U
SW8260	1,2,4-TRICHLOROBENZENE	ugkg	0.17 U	0.17 R	0.16 U	0.16 U	0.18 U	0.17 U	0.16 U	0.16 U	0.17 U	0.16 U	0.17 U	0.16 U	0.19 U	0.17 U	0.19 U	0.17 R	0.16 UJ
SW8260	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	ugkg	0.54 U	0.54 R	0.52 U	0.51 U	0.57 U	0.54 U	$0.51 \mathrm{U}^{\text {u }}$	0.53 U	0.55 U	0.52 U	0.53 U	0.52 U	0.60 U	0.53 U	0.61 U	0.53 R	0.53 UJ
SW8260 SW8260	$\frac{1,2 \text {-IIRROMOETHANE }}{\text { 12-ICHLOROBENZENE }}$	ugkg	0.061 U	0.062 U	0.060 U	0.058 U	0.065 U	0.061 U	0.059 U	0.0080 U	0.062 U	0.059 U	0.061 U	0.060 U 0.083 U	${ }^{0.068 \mathrm{U}}$	${ }^{0.061 U}$	0.069 U	0.060 UJ	$\stackrel{0.060 \mathrm{UJ}}{0.083 \mathrm{JJ}}$
SW8260	1,2-DICHLOROETHANE	ugkg	0.0 .11 U	${ }_{0}^{0.111 \mathrm{U}}$	0.0	0.0	0.12 U	0.0011 U	0.11 U	${ }_{0}^{0.11 U}$	${ }_{0}^{0.12 \mathrm{U}}$	${ }_{0}^{0.11 \mathrm{U}}$	0.11 U	0.11 u	0.13 U	0.11 U	0.13 U	0.081 U	0.11 U
SW8260	1,2-DICHLOROPROPANE	ugkg	0.059 U	0.060 U	0.058 U	0.056 U	0.062 U	0.059 U	0.057 U	0.058 U	0.060 U	0.057 U	0.059 U	0.057 U	0.066 U	0.059 U	0.067 U	0.058 U	0.058 U
SW8260	1,4-4ICHLOROBENZENE	ugkg	0.095 U	0.096 R	0.092 U	0.091 U	0.10 U	0.095 U	0.091 U	0.093 U	0.097 U	0.092 U	0.095 U	0.092 U	0.11 U	0.094 U	0.11 U	0.094 R	0.093 UJ
SW8260	ACETONE	ugkg	14 J	48 J	19 J	2.6 U	78 J	2.8 U	17 J	100 J	4.15	20 J	2.8 U	2.7 U	3.14	2.7 U	35 J	62 J	89 J
SW8260	BENZENE	uglkg	${ }^{0.43 U}$	0.43 U	${ }^{0.42 U}$	0.41 U	0.53 J	0.43 U	0.41 U	0.42 U	0.44 U	2.6 J	0.43 U	0.42 U	0.48 U	0.42 U	0.49 U	0.42 U	110
SW8260	BROMODICHLOROMETHANE BROMOMETHANE	uglkg	${ }_{0}^{0.32 \mathrm{U}}$	${ }^{0.32 \mathrm{U}}$	${ }_{0}^{0.31 \mathrm{U}}$	${ }_{0}^{0.31 \mathrm{U}} 0$	0.34 U 0.37 U	${ }_{0}^{0.32 \mathrm{U}}$	$\frac{0.31 \mathrm{U}}{0.34 \mathrm{UJ}}$	${ }_{0}^{0.31 \mathrm{U}} 0$	${ }_{0}^{0.33 \mathrm{U}} 0$	${ }_{0}^{0.31 \mathrm{U}}$	$\frac{0.32 \mathrm{U}}{0.35 \mathrm{uj}}$	0.314	0.36U	0.3 .32 U	0.36 U	${ }^{0.32 \mathrm{U}}$	0.0 .31 U
SW8260	CARBON DISULFIDE	ugkg	$\stackrel{\text { 1.8U }}{ }$	1.8 U	1.7 U	1.7 U	1.9 U	1.8 U	1.70	1.8 U	1.8 U	1.70	1.8 U	1.7 U	2.00	1.8 U	2.0 U	1.8 U	${ }_{1}^{1.7} \mathbf{0}$ UJ
SW8260	CARBON TETRACHLORIDE	ugkg	0.38 U	0.39 U	0.37 U	0.37 U	${ }^{0.41 \mathrm{U}}$	0.38 U	0.37 U	0.38 U	0.39 U	0.37 U	0.38 U	0.37 U	0.43 U	0.38 U	0.44 U	0.38 U	0.38 U
SW8260	CFC-11	ug/kg	0.29 U	0.29 U	0.28 U	0.27 U	0.30 U	0.29 U	0.28 U	0.28 U	0.29 U	0.28 U	0.29 U	0.28 U	0.32 U	0.28 U	0.33 U	0.28 U	0.28 U
SW8260	CFC-12	ugkg	0.35 U	0.36 U	0.34 U	0.34 U	0.37 UJ	0.35 uJ	0.34 U	0.35 U	0.36 U	0.34 U	0.35 U	0.34 UJ	0.39 UJ	0.35 UJ	0.40 UJ	0.35 U	0.34 UJ
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	ugkg	0.39 U	0.40 U	0.39 U	$0.38{ }^{0}$	${ }^{0.420}$	${ }^{0.394}$	${ }^{0.384}$	0.39 U	0.40 U	0.38 U	0.39 U	0.38 U	0.44 U	${ }^{0.390}$	${ }^{0.455}$	${ }^{0.390}$	0.39 U
( $\begin{aligned} & \text { SW8260 } \\ & \text { SW8260 }\end{aligned}$	CHLOROBENZENE		0.44U	0.44 u 0.28 u	0.43 U 0.27 U	0.42U	0.46 U 0.29 u	0.44U	$\stackrel{0.42 \mathrm{U}}{0.26 \mathrm{U}}$	0.43 U 0.27 U	0.45 U 0.28 u	0.42 U 0.27 U	0.44U	0.43 U 0.27 U	$\frac{0.49 \mathrm{U}}{0.31 \mathrm{u}}$	0.43 U 0.27 U	$\frac{0.50 \mathrm{U}}{0.31 \mathrm{u}}$	(e.43 UJ	0.43 UJ 0.27 UJ
SW8260	CHLOROETHANE	ugkg	${ }_{0}^{0.390}$	${ }_{0}^{0.40 \mathrm{U}}$	${ }_{0}^{0.390}$	${ }_{0}^{0.38 \mathrm{U}}$	${ }_{0}^{0.42 U}$	0.39 U	${ }^{0.38 \mathrm{U}}$	0.39 U	0.40 U	0.38 UJ	0.39 U	0.38 U	0.44 U	0.39 U	0.45 U	0.39 U	${ }_{0}^{0.39 \mathrm{UJ}}$
SW8260	CHLOROOORM	uglkg	0.37 U	${ }^{0.380}$	${ }^{0.360}$	${ }^{0.36 \mathrm{U}}$	${ }^{0.390}$	0.37 U	${ }^{0.366}$	0.37 U	${ }^{0.380}$	$0.36{ }^{0}$	0.37 U	${ }^{0.366}$	0.42 U	${ }^{0.37 \mathrm{U}}$	${ }^{0.420 ~}$	0.37 U	${ }^{0.374}$


			$\begin{gathered} \text { SSO75 } \\ \text { Sso75CA } 0 . \\ \text { 2feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS077 } \\ \text { Sso7ch } 0.5-s \\ 2 / \text { feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { SSO78 } \\ \text { SSo78CA.5- } \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{array}{c\|} \text { SSO80 } \\ \text { SSO80CA } 0.5- \\ 2 \text { feet } \\ \text { 12/106/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SS082 } \\ \text { Sso82CA.55 } \\ \text { 2 feet } \\ 12 / 107 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS084 } \\ \text { Sso84CA.5- } \\ \text { 2 feet } \\ 12 / 108 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS086 } \\ \text { SSO86CA } 0.5- \\ 2 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS088 } \\ \text { SSO88CA.5- } \\ \text { 2 feet } \\ 12 / 11 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS001 } \\ \text { SSo91CA } 0.5- \\ \text { 2 feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { SS094 } \\ \text { SSO94CA } 0.5- \\ \text { 2 feet } \\ 12 / 11 / 2006 \end{gathered}$	$\begin{gathered} \text { Sso95 } \\ \text { ssog5CA. } 05 \\ \text { 2 feet } \\ 12 / 06 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO96 } \\ \text { SSo96cA 0.5- } \\ 2 \text { feet } \\ 12 / 107 / 2006 \end{gathered}$	$\begin{gathered} \text { SS007 } \\ \text { SSo97cA 0.5- } \\ \text { 2 feet } \\ \text { 12/107/2006 } \end{gathered}$	$\begin{gathered} \text { SSO98 } \\ \text { SSO98CA } 0.5- \\ \text { 2feet } \\ 12 / 108 / 2006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SSO99 } \\ \text { SSo99cA 0.5- } \\ \text { 2feet } \\ 12 / 108 / 2006 \end{gathered}$	$\begin{gathered} \text { SS100 } \\ - \text { SSI00CA } 0.5- \\ 2 \text { feet } \\ 12 / 108 / 2006 \end{gathered}$	$\begin{array}{\|c\|\|} \text { SS101 } \\ \text { SS101CA.5. } \\ \text { 2 feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$
Lab Method	Analyte	Units																	
SW8260	CIS-1,2-DICHLOROETHYLENE	ugkg	0.29 U	0.29 U	0.28 U	0.27 U	0.30 U	0.29 U	0.28 U	0.28 U	0.29 U	0.28 U	0.29 U	0.28 U	0.32 U	0.28 U	0.33 U	0.28 U	0.28 U
SW8260	CIS-1,1,-DICHLOROPROPENE	ugkg	0.32 U	0.32 U	0.31 U	0.31 U	0.34 U	0.32 U	0.31 U	0.31 U	0.33 U	0.31 U	0.32 U	0.31 U	0.36 U	0.32 U	0.36 U	0.32 UJ	0.31 UJ
SW8260	CYCLOHEXANE	ugkg	0.42 U	0.42 U	0.41 U	0.40 U	0.44 U	0.42 U	0.40 U	0.41 U	0.43 U	0.40 U	0.42 U	0.41 U	0.47 U	0.41 U	0.47 U	0.41 U	0.86 J
sw8260	DICHLOROMETHANE	ugkg	0.43 U	0.43 U	0.42 U	0.41 U	0.45 U	0.43 U	0.41 U	0.42 U	0.44 U	0.41 U	0.43 U	0.42 U	0.48 U	0.42 U	0.49 U	0.42 U	0.42 U
SW8260	ETHYLBENZENE	ugkg	0.46 U	0.47 U	0.45 U	0.44 U	5.0 J	0.46 U	0.44 U	0.45 U	0.47 U	33	0.46 U	0.45 U	0.51 U	0.46 U	0.52 U	83 J	1.4
SW8260	ISOPROPYLBENZENE	ugkg	0.50 U	0.51 R	0.49 U	0.48 U	0.53 U	0.50 U	0.48 U	0.50 U	0.51 U	0.49 U	0.50 U	0.49 U	0.56 U	0.50 U	0.57 U	0.50 R	0.49 UJ
SW8260	m,p-xylenes	ugkg	0.95 U	0.96 U	0.92 U	0.91 U	4.6 J	0.95 U	0.91 U	0.93 U	0.97 U	82	0.95 U	0.92 U	1.10	0.94 U	1.14	210 J	3.6
SW8260	M-DICHLOROBENZENE	ugkg	0.055 U	0.055 R	0.053 U	0.052 U	0.058 U	0.055 U	0.052 U	0.054 U	0.056 U	0.053 U	0.055 U	0.053 U	0.061 U	0.054 U	0.062 U	0.054 R	0.054 UJ
SW8260	METHYL ACETATE	ugkg	0.21 U	0.21 U	0.21 U	0.20 U	0.22 U	0.21 U	0.20 U	0.21 U	0.22 U	0.20 U	0.21 U	0.21 U	0.24 U	0.21 U	0.24 U	0.21 U	0.21 U
SW8260	METHYL ETHYL KETONE	ugkg	1.2 U	1.30	1.20	1.20	12	1.2 U	1.2 U	1.20	1.30	1.20	1.20	1.24	1.40	1.2 U	1.40	1.2 U	16
SW8260	METHYL ISOBUTYL KETONE	ugkg	0.77 U	0.78 U	0.75 U	0.74 U	${ }^{0.82 \mathrm{U}}$	0.77 U	0.74 U	0.76 U	0.79 U	0.75	0.77 U	0.75	${ }^{0.86 U}$	0.77 U	0.88 U	0.77 UJ	22 J
SW8260	METHYL N-BUTYL KETONE	ugkg	1.10	1.14	1.14	1.10	1.2 U	1.10	1.14	1.14	1.2 U	1.14	1.10	1.14	1.30	1.14	1.3 U	1.12 UJ	${ }^{1.1} \mathrm{UJJ}^{\text {a }}$
SW8260	METHYLBENZENE	uglkg	${ }^{0.46 \mathrm{U}}$	0.47 U	${ }^{0.454}$	0.44 U	1.3 J	${ }^{0.46 \mathrm{U}}$	${ }^{0.44 U}$	${ }^{0.454}$	0.47 U	35	0.46 U	${ }^{0.455}$	0.51 U	${ }^{0.460}$	0.52 ${ }^{0.514}$	$\stackrel{23 J}{0481}$	${ }^{0.85}$
SW8260	METHYLCYLOHEXANE	ugkg	0.48 U	0.49 U	0.47 U	0.46 UJ	${ }^{0.51 \mathrm{U}}$	0.48 U	0.46 U	0.47 U	0.49 U	${ }^{0.47 U}$	0.48 U	0.47 U	0.54 U	${ }^{0.48 \mathrm{U}}$	0.55 U	0.48 UJ	6.5 J
SW8260	O-XYLENE	ugkg	0.44 U	6.5	0.43 U	0.42 U	2.15	0.44 U	0.42 U	0.43 U	0.45 U	38	0.44 U	0.43 U	0.49 U	0.43 U	0.50 U	130 J	1.9
SW8260	STYRENE (MONOMER)	ugkg	0.47 U	2.85	0.46 U	0.45 U	0.50 U	0.47 U	0.45 U	0.46 U	0.48 U	9.7	0.47 U	0.46 U	0.53 U	0.47 U	0.53 U	50 J	56 J
SW8260	TERT-BUTYL METHYL ETHER	ugkg	0.35 U	0.36 U	0.34 U	0.34 U	0.37 U	0.35 U	0.34 U	0.35 U	0.36 U	0.34 U	0.35 U	0.34 U	0.39 U	0.35 U	0.40 U	${ }^{0.35 U}$	0.34 U
SW8260	TETRACHLOROETHYLENE	ugkg	0.44 U	0.44 U	0.43 U	0.42 U	0.46 U	0.44 U	0.42 U	0.43 U	0.45 U	0.42 U	0.44 U	0.43 U	0.49 U	${ }^{0.43 U}$	0.50 U	0.43 UJ	0.43 UJ
SW8260	TRANS-1,2-DICHLOROETHENE	ugkg	0.42 U	0.42 U	0.41 U	0.40 U	0.44 U	0.42 U	0.40 U	0.41 U	0.43 U	0.40 U	0.42 U	0.41 U	0.47 U	0.41 U	0.47 U	0.41 U	0.41 U
SW8260	TRANS-1,1-DICHLOROPROPENE	ugkg	0.33 U	${ }^{0.33 U}$	0.32 U	0.32 U	0.35 U	0.33 U	0.32 U	0.32 U	0.34 U	0.32 U	0.33 U	${ }^{0.322}$	0.37 U	${ }^{0.334}$	$0.37{ }^{0}$	0.33 UJ	-0.32 UJ
SW8260	TRRBOMOMETHANE	ugkg	0.43 U	${ }^{0.43 U}$	0.42 U	$0.41{ }^{\text {U }}$	0.45 U	0.43 U	0.41 U 0.42 u	${ }^{0.42 U}$	0.44 U	0.410	0.43 U 0.44 u	0.42 U 0.43 u	0.48U	0.42U	0.49U	$\frac{0.42 \mathrm{UJ}}{0.43 \mathrm{U}}$	$\frac{0.42 \mathrm{UJ}}{0.43 \mathrm{U}}$
sw8260	VINYL CHLORIDE	ugkg	$0.26{ }^{0}$	${ }_{0}^{0.27 \mathrm{U}}$	${ }_{0}^{0.264}$	$0.25{ }^{0}$	0.28 U	${ }_{0}^{0.260}$	0.25 U	${ }_{0}^{0.264}$	0.27 U	${ }_{0}^{0.264}$	0.26 U	${ }_{0}^{0.26 U}$	${ }_{0}^{0.30 \mathrm{U}}$	${ }_{0}^{0.26 ~ U ~}$	${ }_{0}^{0.30 \mathrm{U}}$	${ }_{0}^{0.26 \mathrm{U}}$	0.26 U
sw8270	2,4,5-TRICHLOROPHENOL	ug/kg	14 U	140 U	14 U	14 U	150 UJ	14 U	16 U	14 U	17 U	140 U	140 U						
SW8270	2,4,6-TRICHLOROPHENOL	ugkg	39 U	380 U	38 U	38 U	420 UJ	38 V	38 U	38 U	38 U	38 U	39 U	38 U	44 U	39 U	45 U	390 U	390 U
SW8270	2,4-DICHLOROPHENOL	ugkg	19 U	180 U	18 U	18 U	200 UJ	18 U	19 U	18 U	21 U	19 U	21 U	190 U	190 U				
SW8270	2,4-DIMETHYLPHENOL	ugkg	21 U	200 U	20 U	20 U	220 UJ	20 U	21 U	20 U	23 U	21 U	24 U	210 U	210 U				
SW8270	2,4-DINITROPHENOL	ugkg	13 U	130 U	13 U	13 U	140 UJ	13 U	15 U	13 U	15 U	130 U	130 U						
SW8270	2,4-DIIITROTOLUENE	ugkg	11 U	110 U	11 U	11 U	120 U	11 U	12 U	11 U	13 U	110 U	110 U						
SW8270	2,6-DIIITROTOLUENE	ugkg	39 U	380 U	38 U	38 U	420 U	38 U	39 U	38 U	44 U	39 U	45 U	390 U	390 U				
SW8270	2-CHLORONAPHTHALENE	ugkg	18 U	170 U	17 U	17 U	190 U	17 U	18 U	17 U	20 U	18 U	20 U	180 U	180 U				
SW8270	2-CHLOROPHENOL	ugkg	20 U	190 U	19 U	19 U	210 U	19 U	20 U	19 U	22 U	20 U	23 U	200 U	200 U				
SW8270	2-METHYLPHENOL (O-CRESOL)	ugkg	13 U	130 U	13 U	13 U	140 U	13 U	15 U	13 U	15 U	130 U	130 U						
SW8270	2-NITROANILINE	ugkg	24 U	230 U	23 U	23 U	260 U	24 U	23 U	24 U	24 U	23 U	24 U	24 U	27 U	24 U	28 U	240 U	240 U
SW8270	2-NITROPHENOL	ugkg	15 U	150 U	15 U	15 U	170 UJ	15 U	16 U	15 U	17 U	16 U	18 U	160 U	150 U				
SW8270	3,3-DICHLOROBENZIDINE	ugkg	37 U	360 U	36 U	36 U	400 U	36 U	37 U	36 U	41 U	37 U	42 U	370 U	3700				
SW8270	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	ugkg	14 U	140 U	14 U	14 U	150 U	14 U	16 U	14 U	17 U	140 U	140 U						
SW8270	3-NITROANILINE	ugkg	19 U	180 U	18 U	18 U	200 U	18 U	19 U	18 U	210	19 U	21 U	190 U	190 U				
SW8270	4,6-DINTRO-2-METHYLPHENOL	ugkg	10 U	97 U	9.8 U	9.7 U	110 UJ	9.9 U	9.8 UJ	9.90	9.9 U	9.8 UJ	11 U	9.90	12 U	11 U	12 U	110 UJ	110 UJ
SW8270	4-BROMOPHENYL PHENYL ETHER	ug/kg	11 U	110 U	11 U	11 U	120 U	11 U	11 UJ	11 U	11 U	11 UJ	11 U	11 U	12 U	11 U	13 U	110 UJ	110 UJ
SW8270	4-CHLORO-3-METHYLPHENOL	ugkg	18 U	170 U	17 U	17 U	190 UJ	17 U	18 U	17 U	20 U	18 U	20 U	180 U	180 U				
SW8270	4-CHLOROPHENYL PHENYL ETHER	ugkg	24 U	${ }^{2300}$	23 U	23 U	260 U	24 U	${ }^{23}{ }^{1}$	24 U	24 U	23 U	24 U	24 U	27 U	24 U	28 U	${ }^{240 \mathrm{U}}$	240 O
SW8270	4-METHYLPHENOL (M/P-CRESOL)	ugkg	28 U	270 U	28 U	27 U	300 U	28 U	32 U	28 U	33 U	280 U	3300						
SW8270	4-NITROPHENOL	uglkg	19 U	180 U	18 U	18 U	200 UJ	18 UJ	18 U	18 U	18 U	18 U	19 U	18 UJ	21 UJ	19 UJ	21 UJ	190 U	190 U
SW8270	BENZYL BUTYL PHTHALATE	ugkg	20 U	1900	19 U	19 U	210 U	19 U	19 U	19 U	19 U	190	20 U	19 U	22 U	20 U		200 U	
SW8270 SW8270	BIPHENYL	${ }_{\text {ug }}^{\mathrm{ug} k g}$	$\frac{160 U}{190}$	5700 180 U	$\frac{160 U}{18 \mathrm{U}}$	$\frac{160 U}{18 \mathrm{U}}$	$\frac{1800 \mathrm{U}}{200 \mathrm{U}}$	$\frac{160 U}{18 \mathrm{U}}$	$\frac{2400}{18}$	$\frac{160 U}{18 \mathrm{U}}$	$\frac{160 U}{18 \mathrm{U}}$	4800 18 U	$\frac{170 U}{19 U}$	$\frac{160 U}{18 \mathrm{U}}$	$\frac{190 U}{210}$	$\frac{170 U}{19 \mathrm{U}}$	$\frac{190 \mathrm{U}}{21 \mathrm{U}}$	38000 190 U	$\frac{110000}{190}$
sw8270	BIS(2-CHLOROETHYL)ETHER	ugkg	16 U	160 U	16 U	16 U	180 U	16 U	17 U	16 U	19 U	17 U	19 U	1700	160 U				
sw8270	BIS(2-CHLOROISOPROPYL) ETHER	ugkg	${ }^{23} \mathrm{UJ}$	220 UJ	22 UJ	22 UJ	250 UJ	23 UJ	22 U	230	23 U	22 U	23 U	23 UJ	26 UJ	${ }^{23 \mathrm{UJ}}$	26 UJ	230 U	230 U
SW8270	BIS(2-ETHYLHEXYL)PHTHALATE	ugkg	18 U	170 U	17 U	17 U	190 U	17 U	18 U	17 U	20 U	18 U	120 J	180 U	180 U				
SW8270	CARBAZOLE	ugkg	62 J	14000	17 U	17 U	4100	73 J	12000	17 U	17 U	19000	18 U	110 J	20 U	18 U	260	120000	130000
SW8270	Dibenzofuran	ugkg	38 J	33000	14 U	14 U	17000	17 J	37000	14 U	14 U	29000	14 U	18 J	16 U	14 U	130 J	220000	350000
SW8270	DIETHYL PHTHALATE	ugkg	13 U	130 U	13 U	13 U	140 U	13 U	15 U	13 U	15 U	130 U	130 U						
SW8270	DIMETHYL PHTHALATE	ugkg	11 U	110 U	11 U	11 U	120 U	11 U	12 U	11 U	13 U	110 U	110 U						
SW8270	D-N-BUTYL-PHTHALATE	ugkg	65 U	630 U	64 U	63 U	710 U	65 U	64 UJ	65 U	65 U	64 UJ	66 U	65 U	74 U	66 U	76 U	660 UJ	650 UJ
SW8270	DI-N-OCTYL-PHTHALATE	ugkg	16 U	160 U	16 U	16 U	180 U	16 U	17 U	16 U	19 U	17 U			160 U				
SW8270	HEXACHLORO-1,3-BUTADIENE HEXACHIOROBENZENE	ugkg	190	$\frac{180 \mathrm{U}}{86 \mathrm{U}}$	18 U 8.7 u	18 U 8.6 u	$\underline{200 U}$	18 U	18 U 8.7 UJ	18 U	18 U 88	$\frac{18 \mathrm{U}}{8.7 \mathrm{UJ}}$	$\underline{190}$	18 U 8.8 u	${ }_{10} 10$	$\underline{190}$	210	${ }^{190 \mathrm{U}}$	$\frac{190 U}{89 \mathrm{UJ}}$
SW8270	HEXACHLOROCYCLOPENTADIENE	ugkg	12 U	120 U	12 U	12 U	130 U	12 U	${ }^{12 \mathrm{UJJ}}$	12 U	12 U	${ }_{12 \mathrm{U}}$	12 U	${ }_{12} \mathrm{U}$	14 U	12 U	14 U	120 U	120 U
SW8270	HEXACHLOROETHANE	ugkg	19 U	180 U	18 U	18 U	200 U	18 U	18 UJ	18 U	18 U	18 U	19 U	18 U	210	19 U	210	190 U	190 U
sw8270	NITROBENZENE	ugkg	22 U	210 U	210	210	230 U	22 U	210	22 U	22 U	210	22 U	22 U	25 U	22 U	25 U	220 U	220 U
sw8270	N-NITROSO-DI-N-PROPYLAMINE	ugkg	20 U	190 U	19 U	19 U	210 U	19 U	20 U	19 U	22 U	20 U	23 U	200 U	200 U				
SW8270	N-NITROSODIPHENYLAMINE	ugkg	12 U	120 U	12 U	12 U	130 U	12 UJ	12 U	12 U	14 U	12 U	14 U	120 U	120 U				
SW8270	P.CHLOROANILINE	ugkg	28 U	270 U	28 U	27 U	300 U	28 U	32 U	28 U	33 U	280 UJ	280 U						
SW8270	PHENOL	uglkg	18 U	170 U	17 U	17 U	190 UJ	17 U	18 U	17 U	20 U	18 U	20 U	180 U	180 U				
SW8270	P-NITROANLINE	ug/kg	13 U	130 U	13 U	13 U	140 U	13 U	15 U	13 U	15 U	130 U	130 U						

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \&  \& \[
\begin{array}{|c|}
\hline \text { Sso01 } \\
\text { Sso01DA } \\
2-6 \text { feet } \\
12 / 07 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\hline \text { Sso03 } \\
\text { ssoo3DA } \\
2-6 \text { feet } \\
12 / 08 / 2006 \\
\hline
\end{array}
\] \&  \& \[
\begin{array}{|c|}
\hline \text { Ssoon } \\
\text { Sso07DA } \\
2-6 \text { feet } \\
12 / 12 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\text { SS007 } \\
\text { Sso07DB } \\
\text { 2-6 feet } \\
12 / 12 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\hline \text { SSO20 } \\
\text { SsonoDA } \\
2-6 \text { feet } \\
12 / 12 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\hline \text { SSO22 } \\
\text { Sson2DA } \\
2-6 \text { feet } \\
12 / 12 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{c|}
\hline \text { SS024 } \\
\text { SSO24DA } \\
2-6 \text { feet } \\
12 / 11 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\hline \text { ss026 } \\
\text { SSo26DA } \\
2-6 \text { feet } \\
12 / 12212006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\hline \text { SS028 } \\
\text { SSo28DA } \\
\text { 2-6 feet } \\
12107 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\hline \text { SSO28 } \\
\text { Ssone } \\
2-6 \text { feet } \\
12107 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\text { SSO29 } \\
\text { SSo29DA } \\
2-6 \text { feet } \\
12 / 107 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{c|}
\text { Sso30 } \\
\text { sso3oDA } \\
2-6 \text { feet } \\
12 / 11 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\text { Ss031 } \\
\text { sso31DA } \\
2-6 \text { feet } \\
12 / 12 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\text { Sso31 } \\
\text { Sso31DB } \\
2-6 \text { feet } \\
12 / 12 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\hline \text { SSO35 } \\
\text { Sso35DA } \\
2-6 \text { feet } \\
12106 / 2006
\end{array}
\] \& \[
\begin{array}{|c|}
\text { SSO36 } \\
\text { Ssosiba } \\
2-6 \text { feet } \\
12 / 06 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\hline \text { SSO38 } \\
\text { Sso38DA } \\
\text { 2-6 feet } \\
12107 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|}
\text { SSO38 } \\
\text { SSo38DB } \\
2-6 \text { feet } \\
12107 / 2006 \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\text { Sso39 } \\
\text { Sso39DA } \\
2-6 \text { feet } \\
1207 / 2006
\end{gathered}
\] \\
\hline Leab Method \&  \& \({ }^{\text {Units }}\) \& 1.6 U \& 4.5 \& 13 \& 1.6 U \& 1.6 U \& 3.0 J \& 3.6 J \& 36 J \& 1.7 U \& 16 U \& 17 U \& 1.7 U \& 1.6 R \& 2.3 J \& 1.6 U \& 1.74 \& 13 \& 1.8 U \& 1.8 U \& 1.7 U \\
\hline ENASIM \& (2-METHPLNAPHTHALENE \& ugkg \& \({ }^{1.90}\) \& \({ }^{4.15}\) \& 10 \& \({ }_{2} .8 .8\) \& 2.8 U \& \(\stackrel{3.10 \mathrm{JJ}}{3.1}\) \& 2.9 UJ \& 30 uJ \& 2.90 \& 29 U \& 30 U \& 3.14 \& 2.8 R \& \({ }^{2.9 \mathrm{uJ}}\) \& 2.9 U \& 2.90 \& 45 \& 3.30 \& \({ }_{3.10}^{1.10}\) \& \({ }_{3}^{1.00}\) \\
\hline ENASIM \& ACENAPHTHYLENE \& ugkg \& 2.8 U \& 16 \& 60 \& 3.2 J \& 4.5 J \& 19 \& 2.8 U \& 220 \& 8.0 \& 28 U \& 28 U \& 2.90 \& 2.7 U \& 7.2 J \& 4.45 \& 5.3 J \& 20 \& 3.14 \& 6.0 J \& 2.90 \\
\hline Evasim \& ANTHRACENE \& ugkg \& 0.65 U \& 23 \& 130 \& 6.2 J \& 7.4 J \& 24 \& 3.8 \& 410 \& 17 \& 6.6 U \& 6.6 U \& 0.74 J \& 0.63 U \& 16 J \& 9.9 J \& 4.3 \& 53 \& 2.6 J \& 11 J \& 1.8 J \\
\hline ENASIM \& BENZO(A)ANTHRACENE \& ugkg \& 0.85 J \& 20 \& 88 \& 5.8 \& 7.1 \& 23 \& 1.4 J \& 400 \& 15 \& 190 \& 150 \& \({ }^{0.56 U}\) \& 14 \& 13 J \& 6.1 J \& 8.3 \& 100 \& 3.0 J \& 5.6 \& 1.15 \\
\hline Evasim \& BENZO(A)PYRENE \& ugkg \& 1.2 U \& 37 \& 130 \& 7.1 J \& 10 J \& 31 \& 1.2 U \& 560 \& 23 \& 69 \& 25 J \& 1.3 U \& 16 \& 14 J \& 8.0 J \& 9.5 \& 44 \& 2.0 J \& 8.5 J \& 1.3 U \\
\hline SNASIM \& BENZO(B)FLUORANTHENE \& ugkg \& 1.8 J \& 75 \& 260 \& 14 \& 19 \& 71 \& \({ }^{3.15}\) \& 1200 \& 48 \& 170 \& 98 \& 0.90 U \& 32 J \& 36 J \& 19 J \& 13 \& 78 \& 5.7 J \& 21 J \& 3.0 J \\
\hline SNASIM \& BENZO(G,H,I)PERYLENE \& uglkg \& \({ }_{0}^{0.99 \mathrm{~J}}\) \& 49 \& 110 \& \({ }^{6.5} 5\) \& 8.90 \& 24 \& 0.99 J \& 560 \& 29 \& 47 \& 31 J \& \(0.73{ }^{0.734}\) \& 14 \& 16 J \& 9.75 \& 8.3 \& 33 \& 3.45 \& 15 J \& 1.8 J \\
\hline BNASIM \& BENZO(K)FLUORANTHENE \& ugkg \& 1.45 \& 33 \& 120 \& 8.6 \& 10 \& 34 \& 1.43 \& 590 \& 25 \& 130 \& 67 \& \(0.73 \mathrm{U}^{0}\) \& 17 \& 18 J \& 9.81 \& 12 \& 66 \& 4.5 J \& 14 J \& 2.4 J \\
\hline ENASIM \& CHRYSENE \& ug/kg \& 1.5 J \& 30 \& 110 \& 7.8 \& 9.7 \& 33 \& 1.93 \& 540 \& 21 \& 310 \& 260 \& 0.74 J \& 18 \& 16 J \& 8.15 \& 10 \& 120 \& 4.6 J \& 9.4 J \& 1.9 J \\
\hline ENASIM \& DIBENZO(A,H)ANTHRACENE \& ugkg \& 0.55 U \& 13 \& 37 \& 2.15 \& 2.8 J \& 9.1 \& 0.54 U \& 180 \& 7.6 \& 15 J \& 7.2 J \& 0.57 U \& 5.1 \& 5.2 \& 2.8 J \& 2.4 J \& 11 \& 0.91 J \& 4.0 \& 0.56 U \\
\hline SNASIM \& FLUORANTHENE \& ugkg \& \({ }_{0}^{0.63 ~}{ }^{1.615}\) \& 36 \& 150 \& 9.2 \& 9.1 \& 34 \& 4.4 \& \({ }_{280}\) \& 18 \& 53 \& 480 \& 1.5 J \& \({ }^{25}\) \& 15 J \& \({ }^{11 \mathrm{~J}}\) \& 10 \& 640 \& 7.2 J \& 12 J \& \({ }^{0.654}\) \\
\hline ENASIM \& FLuorene \& ugkg \& \(1.6{ }^{\text {U }}\) \& 6.5 \& 10 \& 1.6 U \& 1.6 U \& 1.8 UJ \& \({ }^{1.6 \mathrm{UJ}}\) \& 21 J \& 1.70 \& 164 \& 17 U \& \({ }^{1.77}\) \& 1.6 R \& \(\stackrel{1.6 \mathrm{UJ}}{15 \mathrm{~J}}\) \& 1.60 \& 1.70 \& 40 \& \({ }^{1.80}\) \& \({ }^{1.80}\) \& 1.70 \\
\hline ENASIM \& INDENO(1,2,3.CD) PYRENE \& ug/kg \& 1.15 \& 39 \& 110 \& 6.5 J \& 8.93 \& 26 \& 1.0 J \& 540 \& 23 \& 51 \& 27 J \& 0.97 U \& 14 \& 15 J \& 8.8 J \& 9.4 \& 40 \& 3.6 J \& 17 J \& 1.9 J \\
\hline BNASIM \& NAPHTHALENE \& ugkg \& 0.55 U \& 6.1 \& 20 \& 0.53 U \& \({ }^{0.53 U}\) \& 6.6 J \& 8.3 J \& 47 J \& \({ }^{0.55 U}\) \& 5.5 U \& 5.5 U \& 0.57 U \& \({ }^{3.15}\) \& 0.54 U \& 0.54 U \& 0.55 U \& 12 \& 0.61 U \& \({ }^{0.59 U}\) \& 0.56 U \\
\hline BNASIM \& PENTACHLOROPHENOL \& uglkg \& 0.75 U \& 2.5 J \& 12 J \& 0.72 U \& 0.72 U \& 36 J \& 0.75 U \& 100 J \& 8.75 \& 360000 \& 180000 \& 0.79 U \& 0.73 U \& 4.6 J \& 3.6 J \& 0.75 U \& 13 J \& 12 J \& 13 J \& 10 J \\
\hline ENASIM \& PHENANTHRENE \& ugkg \& 3.6 U \& 28 \& 51 \& 3.4 U \& 3.4 U \& 9.8 J \& 6.6 J \& 96 \& 3.6 U \& 36 U \& 36 U \& 3.7 U \& 4.8 J \& 3.5 UJ \& 3.50 \& 3.6 U \& 460 \& 4.00 \& 4.0 J \& 3.70 \\
\hline BNASIM \& PYRENE \& ug/kg \& 2.15 \& 40 \& 170 \& 12 \& 13 \& 48 \& 3.8 \& 770 \& 28 \& 1500 \& 1500 \& 0.58 U \& 27 \& 18 J \& 12 J \& 12 \& 420 \& 5.7 J \& 12 J \& 2.6 J \\
\hline E160.3 \& RESIDUE, TOTAL \& percent \& 94 \& 94 \& 85 \& 97 \& 98 \& 88 \& 95 \& 93 \& 94 \& 94 \& 93 \& 90 \& 97 \& 95 \& 95 \& 94 \& 92 \& 84 \& 87 \& 92 \\
\hline E1613/1668 \& 1,2,3,4,6,7,8,-HEPTACHLORODIBENZOFURAN \& ngkg \& 4.166 J \& 29.113 \& 124.468 \& 10.368 \& 9.013 \& 576.3 \& 5.156 J \& \({ }^{56.537}\) \& 72.425 \& \& \& \& \& \& \& 5.909 \& \& 44.263 \& 14.703 \& \\
\hline E1631E1668 \& 1,2,3,4,6,7,8,-HEPTACHLORODIBENZO-P-DIOXIN \& ngkg \& \({ }^{28.925}\) \& \({ }^{213.096}\) \& \({ }^{1228.708}\) \& \({ }^{83.183}\) \& \({ }^{66.393}\) \& 5138.25 \& \({ }^{59.804}\) \& \({ }^{431.35}\) \& 596.269 \& \& \& \& \& \& \& \({ }^{37.338}\) \& \& \({ }^{412.753}\) \& 171.062 \& \\
\hline E161311668 \& 1, 1, ,3,4,7,8,9.4HEPTACHLLROODIBENZOFURAN \& nglkg \& \({ }_{0}^{0.2453}\) \& \({ }^{1.0541 \mathrm{~J}}\) \& \(\frac{13.238 \mathrm{U}}{131261}\) \& 0.523 U \& \({ }_{0}^{0.5580}\) U \& \({ }^{37.668}\) \& \({ }_{0}^{0.412 \mathrm{~J}}\) \& \({ }^{3.4193} \mathrm{~J}\) \& \({ }^{2.662 \mathrm{~J}}\) \& \& \& \& \& \& \& \({ }_{0}^{0.31515}\) \& \& \begin{tabular}{l} 
3.981 \\
\hline 1555 \\
\hline
\end{tabular} \& \({ }_{\text {li.381 }}\) \& \\
\hline E161311668 \& 1,2,3,4,7,8-HEXACHLORODIBENZOFURAN \& ng/kg \& 0.063 U \& 0.541 J \& 3.126 J \& 0.52 J \& 0.509 J \& 12.517 \& 0.529 J \& 1.534 J \& 0.956 U \& \& \& \& \& \& \& 0.171 J \& \& 1.565 J \& 3.38 J \& \\
\hline E161311668 \& 1,2,3,4,7,8,-HEXACHLORODIBENZO-P-DIOXIN \& nglkg \& 0.102 U \& 1.014 J \& 7.061 \& 0.397 J \& 0.47 J \& 26.555 \& 0.585 J \& 3.33 J \& 0.602 U \& \& \& \& \& \& \& 0.277 J \& \& 2.507 J \& 0.781 J \& \\
\hline E163151668 \& 1, 2, ,3,6,7,8-HEXACHLORODIBENZOFURAN \& ngkg \& 0.072 U \& \({ }_{0}^{0.377 \mathrm{~J}^{3}}\) \& \({ }^{2.282 \mathrm{~J}}\) \& \({ }^{0.18815}\) \& \({ }_{0}^{0.24313}\) \& \({ }^{5.689}\) \& 0.383 U \& 0.821 U \& 0.3999 \& \& \& \& \& \& \& 0.094 U \& \& 1.1117 J \& \({ }^{1.185513}\) \& \\
\hline E1613/11668 \& 1 1, \(1.2,3,6,7,8\)-HEXACHLORODIBENZO-P-DIOXIN \& ngkg \& \({ }^{1.058 \mathrm{~J}}\) \& \({ }^{3.748 \mathrm{~J}}\) \& \({ }^{24.077}\) \& \({ }^{1.561 \mathrm{~J}}\) \& \({ }^{1.234 J}\) \& \({ }^{110.3837}\) \& \({ }^{1.4855} \mathrm{~J}\) \& \({ }^{9.7337}\) \& \(0.696 \mathrm{U}^{0.433}\) \& \& \& \& \& \& \& \({ }^{0.851 ~ J}\) \& \& \({ }^{14.606}\) \& \({ }^{2.761 \mathrm{~J}}\) \& \\
\hline E16131E1668 \& 1,2,3,7,8,9-HEXACHLORODIBENZOFURAN \& ngkg \& \(0.091{ }^{0}\) \& 0.137 U \& 0.234 U \& 0.135 U \& 0.096 J \& 0.473 U \& 0.045 U \& 0.096 U \& 0.433 U \& \& \& \& \& \& \& 0.067 U \& \& 0.063 U \& 0.106 U \& \\
\hline E161311668 \& 1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN \& nglkg \& \({ }^{0.517 ~ J}\) \& \({ }^{2.2955}\) \& 13.317 J \& \({ }^{1.451 ~ J}\) \& 1.357 J \& \({ }^{55.248}\) \& 1.159 J \& 10.429 \& 0.652 U \& \& \& \& \& \& \& 0.857 J \& \& 6.944 \& 2.067 J \& \\
\hline E161311668 \& 1, 1,2,3,7,-PENTACHLORODIBENZOFURAN \& nglkg \& 0.025 U \& 0.24 J \& \({ }^{0.324 \mathrm{~J}}\) \& 0.039 U \& 0.069 U \& 0.807 J \& 0.275 J \& 0.038 U \& 0.178 J \& \& \& \& \& \& \& 0.02 U \& \& 0.243 U \& 2.318 J \& \\
\hline E1613111668 \& 1,2,3,7,7.-PENTACHLORODIBENZO-P-DIOXIN \& ngkg \& 0.044 U \& 0.331 J \& 2.151 J \& 0.157 J \& 0.168 J \& 6.296 \& 0.388 J \& 1.08 J \& 0.81 J \& \& \& \& \& \& \& 0.026 U \& \& \({ }^{1.228 ~ J}\) \& \({ }_{0} 0.334 \mathrm{~J}\) \& \\
\hline E1613116688 \& 2, 3,4,6,7,8.8-HEXACHLORODIBENZOFURAN \& nglkg \& \({ }^{0.073 \mathrm{U}^{0}}\) \& \({ }_{0}^{0.422 ~ J}\) \& \({ }^{1.915 \mathrm{~J}}\) \& \({ }_{0}^{0.2955}\) \& 0.337 J \& \({ }^{4.8885}{ }^{\text {J }}\) \& 0.432 J \& \({ }_{2}^{2.371 \mathrm{~J}}\) \& 0.406 U \& \& \& \& \& \& \& \({ }^{0.1293}\) \& \& \(\stackrel{2.36 \mathrm{~J}}{\substack{\text { 209 }}}\) \& \({ }^{0.867 \mathrm{~J}}\) \& \\
\hline E1613/1668 \& 2,3,4,7,8.PENTACHLORODIBENZOFURAN \& ng/kg \& 0.028 U \& 0.229 J \& 0.299 J \& 0.044 U \& 0.135 J \& 0.805 J \& 0.457 J \& 0.174 U \& 0.102 U \& \& \& \& \& \& \& 0.022 U \& \& 0.309 J \& 0.997 J \& \\
\hline E1613/1668 \& 2,3,7,8-TETRACHLORODIBENZOFURAN \& ng/kg \& 0.053 U \& 0.03 U \& 0.352 U \& 0.071 U \& 0.012 U \& 0.361 U \& 0.289 U \& 0.046 U \& 0.107 U \& \& \& \& \& \& \& 0.023 U \& \& 0.49 U \& 1.823 \& \\
\hline E161311668 \& 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN \& ngkg \& 0.026 U \& 0.028 U \& 0.024 U \& 0.063 U \& 0.009 U \& 0.037 U \& 0.018 U \& 0.052 U \& 0.085 U \& \& \& \& \& \& \& 0.024 U \& \& 0.029 U \& 0.058 U \& \\
\hline E1631E1668 \& OCTACHLORODIBENZOFURAN \& ngkg \& 23.2 \& \({ }^{112.89}\) \& \({ }^{7} 704.675\) \& \({ }^{56.2711}\) \& \({ }^{44.452}\) \& \({ }^{3940.326}\) \& \({ }^{22.721}\) \& 261.395 \& 480.263 \& \& \& \& \& \& \& \({ }^{18.864}\) \& \& 146.644 \& \({ }^{60.223}\) \& \\
\hline E161311668 \& OCTACHLORODIBENZO-P-DIOXIN \& ng/kg \& 316.932 \& 1930.378 J \& 11326.673 J \& 803.722 \& 656.796 \& 45545.233 J \& 449.098 \& 4159.596 J \& 8236.203 J \& \& \& \& \& \& \& 331.024 \& \& 3387.12 \& 976.933 \& \\
\hline E16131E1668 \& TOTAL HEPTACHLORINATED DIBENZOFURANS \& ngkg \& \({ }^{20.849}\) \& 102.01 \& 515.244 \& \({ }^{45.899}\) \& \({ }^{34.568}\) \& \({ }^{2633.753}\) \& 18.879 \& \({ }^{216.278}\) \& 353.712 \& \& \& \& \& \& \& \({ }^{18.576}\) \& \& 183.428 \& 54.601 \& \\
\hline E1613116688 \& TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS \& ngkg \& \({ }^{65.667}\) \& 1048.549 \& 5598.262 \& 525.557 \& 393.112 \& \({ }^{9928.494}\) \& 243.621 \& \({ }_{2}^{2185.399}\) \& \({ }^{2390.283}\) \& \& \& \& \& \& \& 164.019 \& \& \({ }_{9}^{941.09}\) \& \({ }^{357.26}\) \& \\
\hline E1613111668 \& ToTAL HEXACHLORINATED DIBENZOFURANS \& \({ }_{\text {ngikg }}^{\text {ngkg }}\) \& \({ }_{4}^{4.353}\) \& \({ }_{74.791}^{15.791}\) \& \({ }_{\text {120.151 }}^{175461}\) \& \({ }^{11.278}\) \& 9.489

23594 \& ${ }_{4}^{425.359} 6$ \& 5.429 \& | 55.934 |
| :--- |
| 165514 | \& ${ }_{\text {cken }}^{65.616}$ \& \& \& \& \& \& \& ${ }_{4}^{4.316}$ \& \& ${ }^{51.521}$ \& ${ }_{\text {210.688 }}^{1295}$ \& <br>

\hline E1613|11668 \& TTOTAL HEXACHLORINATED DIBENZO-P.DIOXINS \& $\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$ \& 6.027
0.308 \& 74.312
0.99 \& 375.461

17.99 \& \begin{tabular}{l}
28.491 <br>
\hline 0.952 <br>
\hline

 \& ${ }_{\text {23, }}^{23.594}$ \& 

602.872 <br>
\hline 29.089

 \& $\xrightarrow{16.784} 1.733$ \& 

165.514 <br>
\hline 7.319

 \& 

30.967 <br>
\hline 5.601

 \& \& \& \& \& \& \& 

13.902 <br>
0.388 <br>
\hline

\end{tabular} \& \& \[

$$
\begin{aligned}
& \hline 83.766 \\
& 9.64 \\
& \hline
\end{aligned}
$$

\] \& | 22.952 |
| :--- |
| 7.101 | \& <br>

\hline E1613/1668 \& TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS \& ng/kg \& 0.044 U \& 1.874 \& 22.574 \& 0.671 \& 0.676 \& 27.682 \& 0.908 \& 3.658 \& 3.811 \& \& \& \& \& \& \& 0.549 \& \& ${ }^{3.347}$ \& 1.107 \& <br>
\hline E1613/1668 \& TOTAL TETRACHLORINATED DIBENZOFURANS \& ngkg \& 0.053 U \& 0.03 U \& 1.758 \& 0.071 U \& 0.012 U \& 3.852 \& 1.783 \& 0.455 \& 0.107 U \& \& \& \& \& \& \& 0.023 U \& \& 1.157 \& 3.238 \& <br>
\hline E161311668 \& TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS \& ngkg \& 0.026 U \& 0.028 U \& 1.415 \& 0.063 U \& 0.009 U \& 4.12 \& 0.404 \& 0.052 U \& 0.085 U \& \& \& \& \& \& \& 0.024 U \& \& 0.029 U \& 0.032 U \& <br>
\hline SW6020 \& Antimony \& mgkg \& 0.36 U \& 0.34 UJ \& 0.37 UJ \& 0.34 UJ \& 0.34 UJ \& 0.38 UJ \& 0.34 UJ \& 0.35 UJ \& 0.35 UJ \& ${ }^{0.340}$ \& ${ }^{0.36 \mathrm{U}}$ \& ${ }^{0.36 \mathrm{U}}$ \& 0.35 JJ \& ${ }^{0.35 \mathrm{UJ}}$ \& 0.34 J \& 0.35 UJ \& ${ }^{0.36 \mathrm{U}}$ \& 0.40 U \& 0.38 ${ }^{10}$ \& 0.36 U <br>
\hline SW6020 \& ARSENIC \& mg/kg \& 8.6 \& 5.4 J \& 14 J \& 0.42 U \& 0.44 J \& 3.8 \& 0.41 U \& 18 \& 0.44 J \& 0.97 \& 0.68 \& 0.73 \& 0.42 U \& 1.2 \& 0.41 U \& 0.45 J \& 0.43 U \& 19 J \& 120 J \& 1.4 <br>
\hline SW6020 \& BARIUM \& mgkg \& 12 \& 8.1 \& 12 \& 8.0 \& 8.9 \& 12 \& 3.3 \& 14 \& 9.8 \& 19 \& 19 \& 16 \& 5.3 J \& 6.3 J \& 8.0 \& 9.1 \& 8.4 \& 16 J \& 30 J \& 20 <br>
\hline SW6020 \& CADMIUM \& mg/kg \& ${ }^{0.31 \mathrm{U}}$ \& ${ }_{0}^{0.290}$ \& ${ }_{0}^{0.31 \mathrm{U}}$ \& ${ }^{0.291}$ \& 0.29 ${ }^{\text {U }}$ \& ${ }^{0.33 \mathrm{U}}$ \& ${ }_{0}^{0.29 u^{0 .}}$ \& ${ }^{0.300}$ \& 0.30 \& 0.290 \& 0.310 \& ${ }^{0.31 \mathrm{U}}$ \& 0.30 ${ }^{\text {a }}$ \& ${ }_{0}^{0.30 \mathrm{U}}$ \& ${ }^{0.290}$ \& 0.30 0 \& ${ }_{0}^{0.310}$ \& $\stackrel{0.344}{ }$ \& ${ }^{0.320}$ \& ${ }^{0.314}$ <br>
\hline SW6020 \& CHROMUM
COPPER \& $\mathrm{mg}_{\mathrm{g} / \mathrm{kg}}^{\mathrm{mg}}$ \& 7.3

0.38 J \& ${ }^{3.9 \mathrm{~J}}$ \& ${ }_{1.6 \mathrm{~J}}$ \& \[
\frac{3.1}{0.39 \mathrm{~J}}

\] \& \[

\frac{3.4}{0.47 \mathrm{~J}}

\] \& ${ }_{3.3}^{23}$ \& ${ }_{0}^{0.955}$ \& \[

\frac{14}{6.1}

\] \& \[

\frac{7.0}{0.58 \mathrm{~J}}

\] \& \[

\frac{8.0}{0.41 \mathrm{~J}}

\] \& ${ }^{7.9} 0$ \& \[

\frac{17 \mathrm{~J}}{0.47 \mathrm{~J}}

\] \& \[

\frac{2.4}{0.67 \mathrm{~J}}

\] \& ${ }^{4.4 .15}$ \& \[

$$
\begin{aligned}
& \hline 3.0 \mathrm{~J} \\
& \hline 0.62 \mathrm{~J}
\end{aligned}
$$

\] \& \[

\frac{7.8}{0.88 \mathrm{~J}}

\] \& \[

$$
\begin{gathered}
8.0 \\
0.49 \mathrm{~J}
\end{gathered}
$$

\] \& \[

\frac{33 \mathrm{~J}}{1.2 \mathrm{~J}}

\] \& \[

\frac{59 \mathrm{~J}}{1.6 \mathrm{~J}}
\] \& $\frac{14 \mathrm{~J}}{0.60 \mathrm{~J}}$ <br>

\hline SW6020 \& LEAD \& mgkg \& 6.8 J \& 3.15 \& 5.5 J \& 4.0 \& 4.0 \& 5.3 \& 0.88 \& 6.6 \& 15 \& 4.9 \& 5.0 \& 9.9 \& 2.3 J \& 5.6 J \& 5.1 \& 6.9 \& 5.9 \& 14 \& 11 \& 7.8 <br>
\hline SW6020 \& SELENIUM \& mgkg \& 0.89 U \& 0.83 U \& 0.91 U \& 0.85 U \& 0.85 U \& 0.94 U \& 0.85 U \& 0.87 U \& 0.88 U \& 0.85 U \& 0.90 U \& 0.89 U \& 0.86 U \& 0.86 U \& 0.85 U \& 0.88 U \& 0.89 U \& 0.99 U \& 0.93 U \& 0.88 U <br>
\hline SW6020 \& SILVER \& mgkg \& 0.40 U \& 0.38 U \& 0.41 U \& 0.39 U \& 0.38U \& ${ }^{0.42 \mathrm{U}}$ \& 0.38 U \& 0.39 U \& 0.40 U \& 0.38 U \& 0.41 U \& 0.40 U \& 0.39 U \& 0.39 U \& 0.38 U \& 0.40 U \& 0.40 U \& 0.45 U \& 0.42 U \& 0.40 U <br>
\hline SW6020 \& VANADIUM (FUME OR DUST) \& mgkg \& 4.0 \& 1.7 \& 2.6 \& 1.3 \& 2.2 \& 5.6 \& 0.91 U \& 7.4 \& 2.3 \& 6.5 \& 6.0 \& 10 \& 1.2 J \& 1.4 \& 1.2 \& 4.9 \& 3.0 \& 30 J \& 22 J \& 12 <br>
\hline SW7471 \& MERCURY \& mg/kg \& 0.027 \& 0.015 J \& 0.049 J \& 0.016 J \& ${ }^{0.018 \mathrm{~J}}$ \& 0.033 \& 0.0046 J \& 0.11 \& 0.042 \& 0.036 \& 0.038 \& 0.042 J \& 0.0099 J \& 0.024 J \& 0.020 J \& 0.041 \& 0.053 \& 0.062 J \& 0.060 J \& 0.073 J <br>
\hline SW8260 \& 1,1,1,-TRICHLOROETHANE \& ugkg \& ${ }^{0.13 U^{0}}$ \& ${ }^{0.134}$ \& $0.15 \mathrm{U}^{0}$ \& ${ }_{0}^{0.134}$ \& ${ }_{0}^{0.130}$ \& $0.15{ }^{0}$ \& $0.19{ }^{0}$ \& ${ }^{0.13 U}$ \& $0.13{ }^{0}$ \& ${ }^{0.134}$ \& ${ }^{0.13 U^{6}}$ \& ${ }^{0.14 U^{0}}$ \& ${ }^{0.13 U^{4}}$ \& ${ }^{0.13 U^{0}}$ \& ${ }^{0.133}$ \& ${ }_{0}^{0.134}$ \& 0.13 U \& $0.15{ }^{0}$ \& $0.14{ }^{0}$ \& $0.17{ }^{0.15}$ <br>
\hline SW8260 \& 1,1,2,2-TETRACHLOROETHANE \& ugkg \& 0.0714 \& 0.070 U \& 0.078 U \& 0.068 U \& 0.068 U \& $0.081{ }^{0}$ \& 0.11 U \& 0.0714 \& $0.071{ }^{0}$ \& 0.0714 \& 0.071 U \& 0.074 U \& \& 0.070 U \& \& 0.071 U \& \& \& \& <br>
\hline SW8260 \& $\frac{1,1,2 \text {-TRICHLOROETHANE }}{\text { 1,1-DCLLOROETHANE }}$ \& $\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} k g}$ \& 0.14 U
0.067 U \& 0.14 U
0.067 U \& 0.16 U
0.075 U \& $\frac{0.14 \mathrm{U}}{0.065 \mathrm{U}}$ \& 0.14 U
0.065 U \& $\frac{0.16 \mathrm{U}}{0.078 \mathrm{U}}$ \& $\frac{0.210}{0.098 U}$ \& 0.14 U
0.068 U \& $\frac{0.15 \mathrm{U}}{0.071 \mathrm{U}}$ \& 0.14 U
0.065 U \& $\frac{0.14 \mathrm{U}}{0.067 \mathrm{U}}$ \& 0.14 U
0.067 U \& $\frac{0.14 U}{0.068 \mathrm{U}}$ \& 0.15 U
0.069 U \& $\stackrel{0.16 \mathrm{U}}{0.075 \mathrm{U}}$ \& 0.15 U

0.073 U \& $$
0.15 \mathrm{U}
$$ <br>

\hline SW8260 \& 1,1-DICHLOROETHYLENE \& ug/kg \& 0.19 U \& 0.19 U \& 0.21 U \& 0.18 U \& 0.18 U \& 0.21 U \& 0.27 U \& 0.19 U \& 0.18 U \& 0.18 U \& 0.18 U \& 0.19 U \& 0.19 U \& 0.21 U \& 0.20 U \& 0.19 U <br>
\hline SW8260 \& 1,2,4-TRICHLOROBENZENE \& ugkg \& ${ }^{0.16 U}$ \& 0.16 U \& 0.18 U \& 0.16 U \& 0.16 U \& 0.19 U \& 0.24 U \& 0.17 U \& $0.17{ }^{\text {U }}$ \& 0.16 U \& 0.17 U \& 0.17 U \& $0.16 \mathrm{U}^{\text {U }}$ \& 0.16 U \& $0.16 \mathrm{U}^{\text {U }}$ \& 0.17 U \& $0.17 \mathrm{U}^{\text {U }}$ \& 0.18 U \& 0.18 U \& 0.17 U <br>
\hline SW8260 \& 1,2-DIBROMO-3-CHLOROPROPANE (DBCP) \& ug/kg \& 0.53 U \& 0.52 U \& 0.58 U \& 0.51 UJ \& 0.51 UJ \& 0.61 UJ \& 0.76 UJ \& 0.53 U \& 0.53 UJ \& 0.53 U \& 0.53 U \& 0.55 U \& 0.51 U \& 0.52 UJ \& 0.52 UJ \& 0.53 U \& 0.54 U \& 0.59 U \& 0.57 U \& 0.54 U <br>
\hline SW8260 \& 1,2-DIBROMOETHANE \& uggk \& 0.060 U \& 0.060 U \& 0.066 U \& 0.058 U \& 0.058 U \& 0.069 U \& 0.087 U \& 0.061 U \& 0.060 U \& 0.060 U \& 0.061 U \& 0.063 U \& 0.058 U \& 0.059 U \& 0.059 U \& 0.060 U \& 0.061 U \& 0.067 U \& 0.065 U \& 0.062 U <br>
\hline SW8260 \& 1,2-DICHLOROBENZENE \& ug/kg \& 0.083 U \& 0.083 U \& 0.092 U \& 0.081 U \& 0.080 U \& 0.096 U \& 0.13 U \& 0.084 U \& 0.084 U \& 0.084 U \& 0.084 U \& 0.087 U \& 0.081 U \& 0.083 U \& 0.083 U \& 0.084 U \& 0.085 U \& 0.093 U \& 0.090 U \& 0.086 U <br>
\hline SW8260 \& 1,2-DICHLOROETHANE \& ugkg \& 0.11 U \& 0.11 U \& 0.12 U \& 0.11 U \& 0.11 U \& 0.13 U \& 0.16 U \& 0.11 U \& 0.11 U \& 0.11 U \& 0.11 U \& 0.12 U \& 0.11 U \& 0.12 U \& 0.12 U \& 0.11 U <br>
\hline SW8260 \& 1,2-DICHLOROPROPANE \& ugkg \& 0.058 U \& 0.058 U \& 0.064 U \& 0.056 U \& 0.056 U \& 0.067 U \& 0.084 U \& 0.059 U \& 0.058 U \& 0.058 U \& 0.059 U \& 0.061 U \& 0.056 U \& 0.057 U \& 0.057 U \& 0.058 U \& 0.059 U \& 0.065 U \& 0.062 U \& 0.060 U <br>
\hline SW8260 \& 1,4-IICHLOROBENZENE \& ugkg \& 0.093 U \& 0.093 U \& 0.11 U \& 0.090 U \& 0.090 U \& 0.11 U \& 0.14 U \& 0.094 U \& 0.093 U \& 0.093 U \& 0.094 U \& 0.097 U \& 0.090 U \& 0.092 U \& 0.092 U \& 0.093 U \& 0.095 U \& 0.11 U \& 0.10 U \& 0.096 U <br>
\hline SW8260 \& ACETONE \& ugkg \& 2.70 \& 2.70 \& 3.00 \& 7.5 J \& 4.0 J \& 48 J \& 30 J \& 10 J \& 17 J \& 2.7 U \& 2.7 U \& 2.8 U \& 18 J \& 4.5 J \& 14J \& 2.7 U \& 2.8 U \& 3.0 U \& 2.9 U \& 10 J <br>
\hline SW8260 \& BENZENE \& ugkg \& 0.42U \& ${ }^{0.421}$ \& ${ }^{0.464}$ \& ${ }^{0.410}$ \& ${ }^{0.400}$ \& ${ }^{0.48 \mathrm{U}}$ \& ${ }^{0.610}$ \& ${ }^{0.42 U}$ \& ${ }^{0.42 U}$ \& ${ }^{0.42 \mathrm{U}}$ \& ${ }^{0.42 \mathrm{U}}$ \& ${ }^{0.44 U}$ \& ${ }^{0.410}$ \& ${ }^{0.42 U}$ \& ${ }^{0.42 U}$ \& ${ }^{0.42 U}$ \& 0.43U \& $0.47{ }^{\text {U }}$ \& ${ }^{0.454}$ \& 0.43 U <br>
\hline SW8260 \& BROMODICHLOROMETHANE \& ugkg \& ${ }_{0}^{0.31 \mathrm{U}}$ \& ${ }^{0.314}$ \& $\stackrel{0.35 \mathrm{U}}{\substack{\text { O }}}$ \& $\stackrel{0.30 \mathrm{U}}{\substack{\text { O }}}$ \& ${ }_{0}^{0.30 \mathrm{U}}$ \& $\stackrel{0.36 \mathrm{U}}{0.30 \mathrm{U}}$ \& ${ }_{0}^{0.455}$ \& $\stackrel{0.32 \mathrm{U}}{\substack{\text { O }}}$ \& ${ }_{0}^{0.31 \mathrm{U}}$ \& ${ }^{0.31 \mathrm{U}}$ \& ${ }_{0}^{0.32 \mathrm{U}}$ \& ${ }^{0.336}$ \& $\stackrel{0.30 \mathrm{U}}{ }$ \& $\stackrel{0.31 \mathrm{U}}{0.3141}$ \& ${ }_{0}^{0.31 \mathrm{U}}$ \& ${ }_{0}^{0.31 \mathrm{U}}$ \& $\stackrel{0.32 \mathrm{U}}{0}$ \& ${ }^{0.355}$ \& ${ }_{0}^{0.344}$ \& 0.32U <br>
\hline SW8260 \& BROMOMETHANE
CARBON DISULILIE \& $\mathrm{ug}_{\mathrm{ug} / \mathrm{kg}}$ \& $\frac{0.34 \mathrm{U}}{1.7 \mathrm{U}}$ \& $\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$ \& $\frac{0.38 \mathrm{UJ}}{1.9 \mathrm{U}}$ \& $\frac{0.33 \mathrm{UJ}}{1.7 \mathrm{U}}$ \& $\frac{0.33 \mathrm{UJ}}{1.7 \mathrm{U}}$ \& $\frac{0.40 \mathrm{UJ}}{2.0 \mathrm{U}}$ \& $\frac{0.50 \mathrm{UJ}}{2.5 \mathrm{u}}$ \& $\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{u}}$ \& $\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{U}}$ \& $\frac{0.35 \mathrm{U}}{1.8 \mathrm{U}}$ \& $\frac{0.35 \mathrm{U}}{1.8 \mathrm{U}}$ \& $\frac{0.36 \mathrm{U}}{1.8 \mathrm{U}}$ \& $\frac{0.33 \mathrm{UJ}}{1.7 \mathrm{U}}$ \& $\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$ \& $\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$ \& $\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{u}}$ \& $\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{U}}$ \& $\frac{0.39 \mathrm{U}}{2.0 \mathrm{U}}$ \& $\frac{0.37 \mathrm{U}}{1.9 \mathrm{U}}$ \& $\stackrel{0.35 \mathrm{U}}{1.8 \mathrm{U}}$ <br>
\hline SW8260 \& CARBON TETRACHLORIDE \& uglkg \& 0.38 U \& 0.38 U \& 0.42 U \& 0.36 U \& 0.36 U \& 0.43 U \& 0.55 U \& 0.38 U \& 0.38 U \& 0.38 U \& 0.38 U \& 0.40 U \& 0.37 U \& 0.37 U \& 0.37 U \& 0.38 U \& 0.38 U \& 0.42 U \& 0.41 U \& 0.39 U <br>
\hline SW8260 \& CFC-11 \& uglkg \& 0.28 U \& 0.28 U \& 0.31U \& 0.27U \& 0.27U \& 0.32 U \& 0.41 U \& 0.28 U \& 0.28 U \& 0.28 U \& 0.28 U \& 0.29 U \& 0.27 U \& 0.28 U \& 0.28 U \& 0.28 U \& 0.29 U \& 0.31 U \& 0.30 U \& 0.29 U <br>
\hline SW8260 \& CFC-12 \& ugkg \& 0.34 UJ \& 0.34 U \& 0.38 U \& 0.33 U \& 0.33 U \& 0.40 U \& 0.50 U \& 0.35 U \& 0.35 U \& 0.35 UJ \& 0.35 UJ \& 0.36 U \& 0.33 U \& 0.34 U \& 0.34 U \& 0.35 U \& 0.35 U \& 0.39 UJ \& 0.37 UJ \& 0.35 UJ <br>
\hline SW8260 \& CHLLRINATED FLUOROCARBON (FREON 113) \& ugkg \& ${ }^{0.393}$ \& ${ }^{0.394}$ \& ${ }^{0.430}$ \& 0.37 U \& $0.37{ }^{0}$ \& 0.45 U \& ${ }^{0.563}$ \& 0.39 U \& 0.39 U \& 0.39 U \& 0.39 U \& ${ }^{0.41 \mathrm{U}}$ \& 0.38 U \& ${ }^{0.38 \mathrm{U}}$ \& 0.38 U \& 0.39 U \& 0.39 U \& 0.43 U \& 0.42 U \& 0.40 U <br>
\hline SW8260 \& CHLOROBENZENE \& ugkg \& 0.43 U \& ${ }^{0.433}$ \& ${ }^{0.48 \mathrm{U}}$ \& ${ }^{0.42 \mathrm{U}}$ \& 0.42 U \& 0.50 U \& 0.63 U \& 0.44 U \& 0.43 U \& 0.43 U \& 0.44 U \& 0.45 U \& 0.42 U \& 0.43 U \& 0.43 U \& 0.43 U \& 0.44 U \& 0.48 U \& 0.46 U \& 0.44 U <br>
\hline SW8260 \& CHLORODIBROMOMETHANE \& ugkg \& 0.27 U \& 0.27 U \& 0.30 U \& $0.26 \mathrm{U}^{\text {a }}$ \& 0.26 U \& 0.31 U \& 0.39 U \& 0.27 U \& 0.27 U \& 0.27 U \& 0.27 U \& 0.28 U \& 0.26 U \& 0.27 U \& 0.27 U \& 0.27 U \& 0.28 U \& 0.30 U \& 0.29 U \& 0.28 U <br>
\hline SW8260 \& CHLOROETHANE \& ugikg \& ${ }^{0.394}$ \& ${ }_{0}^{0.394}$ \& 0.43 U \& ${ }_{0}^{0.37 \mathrm{UJ}}$ \& $\frac{0.37 \mathrm{UJ}}{0351}$ \& ${ }_{0}^{0.450 J}$ \& $\frac{0.560 \mathrm{U}}{}$ \& ${ }_{0}^{0.39 \mathrm{UJ}}$ \& ${ }_{0}^{0.3930}$ \& ${ }_{0}^{0.390}$ \& ${ }_{0}^{0.39 \mathrm{U}}$ \& 0.41 U \& $\frac{0.38 \mathrm{U}}{0.354}$ \& $\frac{0.38 \mathrm{UJ}}{}$ \& $\frac{0.38 \mathrm{UJ}}{0.364}$ \& ${ }_{0}^{0.394}$ \& ${ }^{0.39 \mathrm{U}}$ \& 0.43 ${ }^{\text {a }}$ \& 0.42 U \& 0.40 U <br>
\hline SW8260 \& CHLLROFORM \& $\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} k g}$ \& $\stackrel{0.37 \mathrm{U}}{0.48 \mathrm{U}}$ \& $\frac{0.37 \mathrm{U}}{0.48 \mathrm{U}}$ \& $\stackrel{0.41 \mathrm{U}}{0.54 \mathrm{U}}$ \& 0.35 U
0.47 U \& $\stackrel{0.35 \mathrm{U}}{0.47 \mathrm{U}}$ \& $\stackrel{0.42 \mathrm{U}}{0.56 \mathrm{U}}$ \& $\stackrel{0.53 \mathrm{U}}{0.70 \mathrm{U}}$ \& $\stackrel{0.37 \mathrm{U}}{0.49 \mathrm{U}}$ \& 0 \& $\stackrel{0.37 \mathrm{U}}{0.48 \mathrm{U}}$ \& 0 \& $\stackrel{0.38 \mathrm{U}}{0.51 \mathrm{U}}$ \& 0.35 U \& 0.36 U
0.48 U \& ${ }_{0}^{0.36 \mathrm{U}} 0$ \& $\frac{0.37 \mathrm{U}}{0.49 \mathrm{U}}$ \& $\frac{0.37 \mathrm{U}}{0.49 \mathrm{U}}$ \& 0.41 U
0.54 U \& $\stackrel{0.39 \mathrm{U}}{0.52 \mathrm{U}}$ \& 0.38 0 <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline
\end{tabular}

			$\begin{gathered} \text { SS001 } \\ \text { SSo01DA } \\ \text { 2-6 feet } \\ 12 / 1 / 2072006 \\ \hline \end{gathered}$	$\begin{gathered} \text { SS003 } \\ \text { SSo03DA } \\ \text { 2-6 feet } \\ 12 / 108 / 2000 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { Ssoo5 } \\ \text { Ssoo5DA } \\ \text { 2-6 feet } \\ 12 / 08 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Ssoon } \\ \text { Ssoo7DA } \\ 2-6 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { Ss007 } \\ \text { ssoo7DB } \\ \text { 2-6 feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO20 } \\ \text { SsơoDA } \\ \text { 2-6 feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { Sson2 } \\ \text { Ssoz20. } \\ 2-6 \text { feet } \\ 1212120006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO24 } \\ \text { SSơ2LDA } \\ \text { 2-6 feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS026 } \\ \text { SSo26DA } \\ 2-6 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { SS028 } \\ \text { ssone8DA } \\ \text { 2-6 feet } \\ 12 / 1 / 7 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO28 } \\ \text { Ssone } \\ 2-6 \text { feet } \\ 12107 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSO29 } \\ \text { SsongDA } \\ 2-6 \text { feet } \\ 12107 / 2006 \\ \hline \end{array}$	$\begin{array}{c\|} \text { sso30 } \\ \text { sso30DA } \\ 2-6 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Sso31 } \\ \text { Sso31DA } \\ 2-6 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Sso31 } \\ \text { Sso31DB } \\ 2-6 \text { feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSO35 } \\ \text { sso35DA } \\ \text { 2-6 feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSO36 } \\ \text { SSO36DA } \\ 2-6 \text { feet } \\ 12 / 06 / 2006 \end{array}$	$\begin{array}{c\|} \text { SSO38 } \\ \text { SSO38DA } \\ 2-6 \text { feet } \\ 12107 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSO38 } \\ \text { sso38DB } \\ \text { 2-6 feet } \\ 12 / 07 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO39 } \\ \text { Sso39DA } \\ \text { 2-6 feet } \\ 12107 / 2006 \\ \hline \end{array}$
SW8260	\|CIS-1,2-DICHLOROETHYLENE	ug/kg	0.28 U	0.28 U	0.31 U	0.27 U	0.27 U	0.32 U	0.41 U	0.28 U	0.28 U	0.28 U	0.28 U	0.29 U	0.27 U	0.28 U	0.28 U	0.28 U	0.29 U	0.31 U	0.30 U	0.29 U
SW8260	CIS-1,3-DICYLOROPROPENE	ugkg	${ }^{0.31 \mathrm{U}}$	0.31 U	${ }^{0.35 U^{4}}$	0.30 U	0.30 U	${ }^{0.36 \mathrm{U}}$	${ }^{0.45 \mathrm{U}}$	0.32 U	0.31 U	0.31 U	0.32 U	0.33 U	0.30 U	0.31 U	0.31 U	0.31 U	0.32 U	${ }^{0.35 \mathrm{U}}$	0.34 U	0.32 U
SW8260	CYCLOHEXANE	ugkg	0.41 U	0.41 U	0.45 U	0.40 U	0.39 U	0.47 U	0.59 U	0.41 U	0.41 U	0.41 U	0.41 U	0.43 U	0.40 U	0.40 U	0.40 U	0.41 U	0.42 U	0.46 U	0.44 U	0.42 U
SW8260	DICHLOROMETHANE	ugkg	0.42 U	0.42 U	0.46 U	0.41 U	0.40 U	0.48 U	0.61 U	0.42 U	0.42 U	0.42 U	0.42 U	0.44 U	0.41 U	6.9 J	0.42 U	0.42 U	0.43 U	0.47 U	0.45 U	0.43 U
SW8260	ETHYLBENZENE	ugkg	0.45 U	0.45 U	0.50 U	0.44 U	0.44 U	0.52 U	0.66 U	0.46 U	0.45 U	0.45 U	0.46 U	0.47 U	0.44 U	0.45 U	0.45 U	0.45 U	0.46 U	0.50 U	0.49 U	0.46 U
SW8260	ISOPROPYLBENZENE	ugkg	0.49 U	0.49 U	0.55 U	0.48 U	0.48 U	0.57 U	0.72 U	0.50 U	0.50 U	0.50 U	0.50 U	0.52 U	0.48 U	0.49 U	0.49 U	0.50 U	0.50 U	0.55 U	0.53 U	0.51 U
SW8260	m,p-x-ylenes	ugkg	0.93 U	0.93 U	1.10	0.90 U	0.90 U	1.14	1.40	0.94 U	0.93 U	0.93 U	0.94 U	0.97 U	0.90 U	0.92 U	0.92 U	0.93 U	0.95 U	1.10	1.0 U	0.96 U
SW8260	M-DICHLOROBENZENE	ugkg	0.054 U	0.053 U	0.059 U	0.052 U	0.052 U	0.062 U	0.078 U	0.054 U	0.054 U	0.054 U	0.054 U	0.056 U	0.052 U	0.053 U	0.053 U	0.054 U	0.055 U	0.060 U	0.058 U	0.055 U
SW8260	METHYL ACETATE	ugkg	0.21 U	0.21 U	0.23 U	0.20 U	0.20 U	0.24 U	0.30 U	0.21 U	0.21 U	0.21 U	0.21 U	0.22 U	0.20 U	0.20 U	0.20 U	0.21 U	0.21 U	0.23 U	0.22 U	0.21 U
SW8260	METHYL ETHYL KETONE	ugkg	1.2 U	1.2 U	1.3 U	1.2 U	1.2 U	1.4 U	1.8 U	1.27	1.2 U	1.2 U	1.27	1.3 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2U	1.4 U	1.3 U	1.30
SW8260	METHYL LSOBUTYL KETONE	ugkg	0.76 U	0.76 U	0.84 U	0.73 U	0.73 U	0.88 U	1.20	0.77 U	0.76 U	0.76 U	0.77 U	0.80 U	0.74 U	0.75 U	0.75 U	0.76 U	0.77 U	0.85 U	0.82 U	0.78 U
SW8260	METHYL N-BUTYL KETONE	ugkg	1.10	1.10 JJ	1.2 UJ	1.1 UJ	1.1 UJ	1.3 UJ	1.6 UJ	1.10	1.1 UJ	1.10	1.10	1.2 U	1.10	1.1 UJ	1.1 UJ	1.10	1.10	1.2 U	1.2 U	1.10
SW8260	METHYLBENZENE	ugkg	0.45 U	0.45 U	0.50 U	0.44 U	0.44 U	0.56 J	${ }^{0.66 U}$	0.97 J	0.45 U	0.45 U	0.46 U	0.47 U	0.44 U	0.48 J	0.95 J	0.45 U	${ }_{0}^{0.46 \mathrm{U}}$	0.50 U	0.49 U	0.46 U
SW8260	METHYLCYLOHEXANE	ugkg	0.47 U	0.47 U	0.52 U	0.46 U	0.46 U	0.54 U	0.69 U	0.48 U	0.48 U	0.47 U	0.48 U	0.50 U	0.46 U	0.47 U	0.47 U	0.48 U	0.48 U	0.53 U	0.51 U	0.49 U
SW8260	O-XYLENE	ugkg	0.43U	0.43 U	0.48 U	0.42 U	0.42 U	0.50 U	0.63 U	0.44 U	0.43 U	0.43 U	0.44 U	0.45 U	0.42 U	0.43 U	0.43 U	0.43 U	0.44 U	0.48 U	0.46 U	0.44 U
SW8260	STYRENE (MONOMER)	ugkg	0.46 U	0.46 U	0.51 U	0.45 U	0.45 U	0.53 U	0.67 U	0.47 U	0.46 U	0.46 U	0.47 U	0.48 U	0.45 U	0.46 U	0.46 U	0.46 U	0.47 U	0.52 U	0.50 U	0.47 U
SW8260	TERT-BUTYL METHYL ETHER	ugkg	0.34 U	0.34 U	0.38 U	0.33 U	0.33 U	0.40 U	0.50 U	0.35 U	0.35 U	0.35 U	0.35 U	0.36 U	0.33 U	0.34 U	0.34 U	0.35 U	0.35 U	0.39 U	0.37 U	0.35 U
SW8260	TETRACHLOROETHYLENE	ugkg	0.43 U	0.43 U	0.48 U	0.42 U	0.42 U	0.50 U	0.63 U	0.44 U	0.43 U	0.43 U	0.44 U	0.45 U	0.42 U	0.43 U	0.43 U	0.43 U	0.44 U	0.48 U	0.46 U	0.44 U
SW8260	TRANS-1,2-DICHLOROETHENE	uglkg	0.41 U	0.41 U	0.45 U	0.40 U	0.39 U	0.47U	0.59 U	0.41 U	0.41U	0.41 U	${ }^{0.41 \mathrm{U}}$	0.43 U	0.40 U	0.40 U	0.40 U	${ }^{0.414}$	0.42 U	${ }^{0.464}$	0.44 U	0.42 U
SW8260	TRANS-1,2-IICHLOROPROPENE	ugkg	0.32 U	0.32 U	0.36 U	0.31 U	0.31U	0.37 U	0.47 U	0.33 U	0.33 U	0.32 U	0.33	0.34 U	0.31 U	0.32U	0.32 U	0.33 U	0.33 U	${ }^{0.36 \mathrm{U}}$	0.35 U	0.33 U
SW8260		${ }_{\text {ug }}^{\text {ugkg }}$	$\stackrel{0.42 \mathrm{U}}{0.43 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{0.43 \mathrm{U}}$	${ }_{0}^{0.460}$	${ }_{0}^{0.410}$	$\stackrel{0.40 \mathrm{U}}{0.42 \mathrm{U}}$	${ }_{0}^{0.480}$	0.61 U 0.63 U	$\stackrel{0.42 \mathrm{U}}{0.44 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{0.43 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{0.43 \mathrm{U}}$	0.42 U 0.44 u	0.44 U 0.450	$\stackrel{0.41 \mathrm{U}}{0.42 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{0.43 \mathrm{U}}$	$\stackrel{0.42 \mathrm{U}}{0.43 \mathrm{U}}$	0.42 U 0.43 U	0.43 U 0.44 u	${ }_{0}^{0.47 \mathrm{U}}$	0.45 0	0.43U
SW8260	VINYL CHLORIDE	ugkg	0.26 U	0.26 U	0.29 U	0.25 U	0.25 U	0.30 U	0.38 U	0.26 U	0.26 U	0.26 U	0.26 U	0.27 U	0.25 U	0.26 U	0.26 U	0.26 U	0.26 U	0.29 U	0.28 U	0.27 U
SW8270	2.4,5-TRICHLOROPHENOL	ugkg	14 U	14 U	16 U	14 U	14 U	15 U	14 U	14 U	14 U	14 UJ	14 UJ	15 U	14 U	14 U	14 U	14 U	15 U	16 U	15 U	15 U
SW8270	2.4,6-TRICHLOROPHENOL	ugkg	39 U	39 U	43 U	38 U	37 U	41 U	38 U	39 U	39 U	39 UJ	39 UJ	40 U	38 U	38 U	38 U	39 U	40 U	43 U	42 U	40 U
SW8270	2,4-DICHLOROPHENOL	ugkg	19 U	19 U	20 U	18 U	18 U	20 U	18 U	19 U	18 U	18 U	18 U	19 U	19 U	210	20 U	19 U				
SW8270	2.4-DIMETHYLPHENOL	ugkg	21 U	21 U	23 V	20 U	20 U	22 U	20 U	21 U	21 U	21 U	21 U	22 U	20 U	20 U	20 U	21 U	21 U	23 U	22 U	210
SW8270	2.4-IIIITROPHENOL	ugkg	13 U	13 U	15 U	13 U	13 U	14 U	13 U	13 U	13 V	13 UJ	13 UJ	14 U	13 U	13 U	13 U	13 U	14 U	15 U	14 U	14 U
SW8270	2,4-DINITROTOLUENE	uglkg	11 U	11 U	12 U	11 U	10 U	12 U	11 U	11 U	11 U	11 UJ	11 UJ	11 U	12 U	12 U	110					
SW8270	2,6-DINITROTOLUENE	ugkg	39 U	39 U	43 U	38 U	37 U	41 U	38 U	39 U	39 U	39 UJ	39 UJ	40 U	38 U	38 U	38 U	39 U	40 U	43 U	42 U	40 U
SW8270	2-CHLORONAPHTHALENE	ugkg	18 U	18 U	19 U	17 U	17 U	19 U	17 U	18 U	18 U	18 UJ	18 UJ	18 U	17 U	17 U	17 U	18 U	18 U	20 U	19 U	18 U
SW8270	2-CHLOROPHENOL	ugkg	20 U	20 U	22 U	19 U	19 U	21 U	19 U	20 U	19 U	19 U	19 U	20 U	20 U	22 U	21 U	20 U				
SW8270	2-METHYLPHENOL (O-CRESOL)	ugkg	13 U	13 U	15 U	13 U	13 U	14 U	13 U	14 U	13 U	13 U	13 U	13 U	14 U	15 U	14 U	14 U				
SW8270	2-NITROANILINE	ugkg	24 U	24 U	26 U	23 U	23 U	25 U	24 U	24 U	24 U	24 UJ	24 UJ	25 U	23 U	24 U	24 U	24 U	24 U	27 U	26 U	24 U
SW8270	2-NITROPHENOL	ugkg	15 U	15 U	17 U	15 U	15 U	16 U	15 U	16 U	15 U	15 U	16 U	16 U	15 U	15 U	15 U	15 U	16 U	17 U	17 U	16 U
SW8270	3,3'-DICHLOROBENZIDINE	ugkg	37 U	37 U	40 U	36 U	35 U	39 U	36 U	37 U	37 U	37 U	37 U	38 U	36 U	36 U	36 U	37 U	37 U	41 U	40 U	37 U
SW8270	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE	ugkg	14 U	14 U	16 U	14 U	14 U	15 U	14 U	15 U	14 U	14 U	14 U	14 U	15 U	16 U	15 U	15 U				
SW8270	3-NITROANILINE	ugkg	19 U	19 U	20 U	18 U	18 U	20 U	18 U	19 U	19 U	19 UJ	19 UJ	19 U	18 U	18 U	18 U	19 U	19 U	${ }^{210}$	20 U	19 U
SW8270	4,6-DIINTRO-2-METHYLPHENOL	ugkg	10 U	10 U	12 U	9.7 U	9.6 U	11 U	9.9 U	11 U	10 U	10 UJ	11 UJ	11 U	9.7 U	9.9 U	9.90	10 U	11 U	12 U	11 U	11 U
SW8270	4-BROMOPHENYL PHENYL ETHER	ugkg	11 U	11 U	12 U	11 U	10 U	12 U	11 U	11 U	11 U	11 UJ	11 UJ	11 U	12 U	12 U	11 U					
SW8270	4-CHLORO-3-METHYLPHENOL	ugkg	18 U	18 U	19 U	${ }_{2} 17 \mathrm{U}$	17 U	19 U	$\stackrel{17}{24}$	$\frac{18}{24}$	$\frac{18}{24}$	$\stackrel{18 \mathrm{U}}{24 \mathrm{UJ}}$	$\stackrel{18 \mathrm{U}}{24 \mathrm{ul}}$	18 U 25	$\frac{17}{23}$	$\frac{17}{24}$	$\frac{174}{24}$	$\frac{18}{24}$	18 U 24	20 U	19 U	18 U
SW8270	4-CHLOROPHENYL PHENYL ETHER	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} k g}$	24 U	24 U	26 U 31 U	$\stackrel{230}{27}$	$\underline{23 U}$	250 30 U	24 U	24 U	24 U	$\frac{24 \mathrm{UJ}}{28 \mathrm{U}}$	$\frac{24 \mathrm{UJ}}{28 \mathrm{U}}$	250 290	27 U	24 U 28	24 U 28	$\frac{24 U}{28}$	24 U	27 U 31 U	$\frac{26 \mathrm{U}}{30 \mathrm{U}}$	24 U
SW8270	4-NITROPHENOL	ugkg	19 U	19 U	20 U	18 U	18 U	20 U	18 U	19 U	19 U	19 UJ	19 UJ	19 U	18 U	18 U	18 U	19 U	19 U	210	20 U	19 U
SW8270	BENZYL BUTYL PHTHALATE	ug/kg	20 U	20 U	22 U	19 U	19 U	21 U	19 U	20 U	19 U	19 U	19 U	20 U	20 U	22 U	21 U	20 U				
SW8270	BIPHENYL	ugkg	160 U	160 U	180 U	160 U	160 U	180 U	160 U	$170 \cup$	160 UJ	160 UJ	170 U	1700	160 U	160 U	160 U	160 U	1700	180 U	180 U	1700
SW8270	BIS(2-CHLORETHOXY)METHANE	ugkg	19 U	19 U	20 U	18 U	18 U	20 U	18 U	19 U	18 U	18 U	18 U	19 U	19 U	210	20 U	19 U				
SW8270	BIIS(2-CHLOROETHYL)ETHER	ugkg	16 U	16 U	18 U	16 U	16 U	18 U	16 U	17 U	16 U	16 U	17 U	17 U	16 UJ	16 U	16 U	16 U	17 U	18 U	18 U	${ }^{17 \mathrm{U}}$
SW8270 SW8270	- BIS(2-CHLOROISOPROPYL ETHER	ugkg	$\frac{23 \mathrm{UJ}}{18 \mathrm{U}}$	23 U   18 u	25U	$\begin{array}{r}22 \mathrm{U} \\ 17 \\ \hline\end{array}$	$\begin{array}{r}22 U \\ 17 \\ \hline\end{array}$	24 U	23 U 17 U	23 U 18 U	23 U 18	$\frac{23 \mathrm{UJ}}{18 \mathrm{U}}$	$\frac{23 \mathrm{UJ}}{18 \mathrm{U}}$	$\frac{24 \mathrm{UJ}}{18 \mathrm{U}}$	$\begin{array}{r}22 U \\ 17 \\ \hline\end{array}$	$23 U$ 170	$23 U$   170	$\frac{23 \mathrm{UJ}}{18 \mathrm{u}}$	23 U 18	$\frac{25 \mathrm{UJ}}{20 \mathrm{U}}$	$\frac{25 \mathrm{UJ}}{19 \mathrm{U}}$	$\frac{23 \mathrm{UJ}}{18 \mathrm{U}}$
SW8270	CARBAZOLE	ugkg	18 U	18 U	19 U	17 U	17 U	19 U	17 U	61 J	18 U	18 UJ	18 UJ	18 U	17 U	17 U	17 U	18 U	18 U	20 U	19 U	18 U
SW8270	DIBENZOFURAN	ugkg	14 U	14 U	16 U	14 U	14 U	15 U	14 U	${ }^{17}$ J	14 U	14 UJ	14 UJ	15 U	14 U	14 U	14 U	14 U	54 J	16 U	15 U	15 U
SW8270	DIETHYL PHTHALATE	ugkg	13 U	13 U	15 U	13 U	13 U	14 U	13 U	13 U	13 U	13 UJ	13 UJ	14 U	13 U	13 U	13 U	13 U	14 U	15 U	14 U	14 U
SW8270	DIMETHYL PHTHALATE	ugkg	11 U	110	12 U	11 U	10 U	12 U	11 U	110	11 U	11UJ	11 UJ	11 U	11 U	11 U	110	11 U	11 U	12 U	12 U	110
SW8270	DI-N-BUTYL-PHTHALATE	ugkg	65 U	65 U	72 U	63 U	63 U	70 U	65 U	66 U	65 U	65 UJ	66 UJ	68 U	63 U	65 U	65 U	65 U	67 U	730	710	67 U
SW8270	DI-N-OCTYL-PHTHALATE	ugkg	16 U	16 U	18 U	16 U	16 U	18 U	16 U	17 U	16 U	16 U	17 U	17 U	16 U	16 U	16 U	16 U	17 U	18 U	18 U	17 U
SW8270	HEXACHLORO-1,3-BUTADIENE	uglkg	19 U	19 U	20 U	18 U	18 U	20 U	18 U	19 U	18 U	18 U	18 U	19 U	19 U	21 U	20 U	19 U				
SW8270	HEXACHLOROBENZENE	ugkg	8.9 U	8.90	9.80	8.60	8.50	9.54	8.80	9.00	8.9 UJ	8.9 UJ	9.0 UJ	9.30	8.6 U	8.8 U	8.80	8.9 U	9.10	9.90	9.6 U	9.14
SW8270	HEXACHLOROCYCLOPENTADIENE	ugkg	12 U	12 U	13 U	12 U	12 U	13 U	12 U	12 U	12 U	12 UJ	12 UJ	13 U	12 U		12 U	12 U	12 U			
SW8270	HEXACHLOROETHANE NITROBENZENE	${ }_{\text {uglkg }}^{\text {ugkg }}$	$\underline{190}$	$\underline{19 U}$	20 U	$\stackrel{18}{210}$	$\frac{18}{210}$	20 U	$\frac{18}{22 U}$	19 U	19 U	$\frac{190}{22 U}$	$\frac{19 \mathrm{U}}{22 \mathrm{UJ}}$	$\stackrel{190}{230}$	$\frac{18}{210}$	$\underline{18 \mathrm{U}}$	$\frac{18}{22 U}$	$\underline{19 U}$	$\underline{190}$		20 U	19 U
SW8270	N-NITROSO-D-N-PROPYLAMINE	ugkg	20 U	20 U	22 U	19 U	19 U	210	19 U	20 U	19 U	19 U	19 U	20 U	20 U	22 U	21 u	20 U				
SW8270	N-NITROSODIPHENYLAMINE	ugkg	12 U	12 U	13 U	12 U	12 U	13 U	12 U	12 U	12 U	12 UJ	12 UJ	13 U	12 U	14 U	13 U	12 U				
SW8270	P.CHLOROANLINE	ugkg	28 U	28 UJ	31 UJ	27 UJ	27 UJ	30 U	28 U	29 U	27 U	28 UJ	28 UJ	28 U	29 U	310	30 U	294				
SW8270	PHENOL	ugkg	18 U	18 U	19 U	${ }^{17 \mathrm{U}}$	17 U	19 U	17 U	18 U	17 U	17 U	17 U	18 U	18 U	20 U	19 U	18 U				
SW8270	P-NITROANILINE	ugkg	13 U	13 U	15 U	13 UJ	13 UJ	14 U	13 UJ	13 U	13 UJ	13 UJ	13 UJ	14 U	13 U	13 UJ	13 UJ	13 U	14 U	15 U	14 U	14 U
Notes:																						
$\mathrm{mg} / \mathrm{kg}$ : miligrams per kilogram   ng/kg: nanograms per kilogram		$J=\text { estimated detect }$																				
ugikg: micrograms per kliogram																						


			$\begin{array}{\|c\|} \hline \text { SSo41 } \\ \text { Ssoun1DA } \\ 2-6 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSOO45 } \\ \text { SSơ5DA } \\ \text { 2-6 feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO46 } \\ \text { SSOP66D } \\ 2-6 \text { feet } \\ 12112120006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO47 } \\ \text { SSO47DA } \\ \text { 2-6 feet } \\ \text { 12/11/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSO48 } \\ \text { SSou88DA } \\ 2-6 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO49 } \\ \text { SSO49DA } \\ \text { 2-6 feet } \\ \text { 12/11/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO52 } \\ \text { SSo52DA } \\ \text { 2-6 feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{gathered} \text { SS057 } \\ \text { SSO57DA } \\ \text { 2-6 feet } \\ \text { 12/106/2006 } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \text { SS062 } \\ \text { SSo62DA } \\ \text { 2-6 feet } \\ 12208 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO64 } \\ \text { SSo64DA } \\ 2-6 \text { feet } \\ 12208 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c} \text { Sso66 } \\ \text { SS066DA } \\ \text { 2-6 feet } \\ 12 / 108 / 2000 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO66 } \\ \text { SSo660c } \\ 2-6 \text { feet } \\ 12 / 108 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SS068 } \\ \text { SS068DA } \\ 2-6 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO70 } \\ \text { SSo70DA } \\ \text { 2-6 feet } \\ 12 / 12 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSO72 } \\ \text { SSO72DA } \\ \text { 2-6 feet } \\ 12 / 1 / 7 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO75 } \\ \text { SSO75DA } \\ 2-6 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Sso77 } \\ \text { Sso77DA } \\ 2-6 \text { feet } \\ \text { 12/11/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO77 } \\ \text { SSO77DB } \\ 2-6 \text { feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO78 } \\ \text { SSO78DA } \\ \text { 2-6 feet } \\ \text { 12/11/2006 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Ssoso } \\ \text { SSo800DA } \\ 2-6 \text { feet } \\ 12 / 106 / 2006 \\ \hline \end{array}$
Lab Method	Analyte	Units																				
ENASIM	2-METHYLNAPHTHALENE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \text { ga }}$	${ }_{3.4 \mathrm{~J}}$	$\frac{1.6 \mathrm{UJ}}{2.8 \mathrm{JJ}}$	$\stackrel{1.6 \mathrm{UJ}}{2.9 \mathrm{JJ}}$	${ }_{2}^{17 \mathrm{UJ}}$	${ }_{3.1}^{3.9}$	$\frac{15 \mathrm{~J}}{26 \mathrm{~J}}$	${ }^{4.2 \mathrm{~J}} 6$	${ }^{1.8 \mathrm{~J}} \mathbf{}$	$\frac{1.6 \mathrm{U}}{2.9 \mathrm{u}}$	2.9 J 2.90	1.60 2.80	$\frac{1.6 U}{2.8 U}$	$\frac{1.6 \mathrm{U}}{2.9 \mathrm{u}}$	$\frac{3.5 \mathrm{~J}}{4 . \mathrm{J}}$	$\frac{1.6 \mathrm{U}}{8.8}$	$\frac{15 \mathrm{~J}}{721}$	${ }^{1850000}$	${ }_{200000 \mathrm{~J}}^{20000}$	${ }_{1.6 \mathrm{U}}^{1.6}$	${ }^{1.60}$
ENASIM	ACENAPHTHYLENE	ugkg	6.3 J	8.6	13	190	6.8 J	24	84	2.8 U	2.8 U	8.3	2.7 U	2.70	7.3	29	23	40	9900	10000	2.8 U	2.8 U
ENASIM	ANTHRACENE	ugkg	11	22	30	450	0.67 U	81	190	0.65 U	4.2	11	${ }^{3.15}$	6.7 J	16	75	66	39	140000	120000	0.65 U	36
ENASIM	BENZO(A)ANTHRACENE	ugkg	4.8	28	27	530	14	61	180	0.54 U	18	20	4.3 J	7.0 J	10	64	84	63	100000	87000	7.7	3.9
ENASIM	BENZO(A)PYRENE	ugkg	4.0	34	34	930	13	50	200	1.2 U	13	24	2.9 J	3.9	16	80	35	74	49000	42000	6.1	2.8 J
ENASIM	BENZO(B)FLUORANTHENE	ugkg	10 J	84	74	1500	28	98 J	530	${ }^{0.86 U}$	22	42	6.6	8.4	37 J	190	100	140 J	68000 J	55000 J	19 J	5.3
SNASIM	BENZO(G, H, IJPERYLENE	ug/kg	6.0	22	27	430	17	48	240	0.70 U	9.1	25	4.0	4.9	22	72	48	69	16000	13000	7.4	2.5 J
ENASIM	BENZO(k)FLLUORANTHENE	ugkg	5.5	38	40	690	23	53	270	0.70 U	20	35	6.2	8.0	16	90	91	68	29000	26000	10	4.4
ENASIM	CHRYSENE	ugkg	5.8	43	37	570	19	67	320	0.52 U	21	29	5.7 J	8.4 J	14	97	120	77	90000	75000	12	5.4
SNASIM	DIBENZOOA,H)ANTHRACENE	uglkg	1.55	${ }^{8.3}$	9.6	200	4.7	15	${ }^{63}$	${ }^{0.577^{\text {J }}}$	3.01	7.1	${ }^{0.96 \mathrm{~J}}$	1.25	6.2	${ }^{24}$	16	24	7600	${ }^{68000}$	2.35	$0.70{ }^{5}$
SNASIM	Fluoranthene	ugkg	14	22	40	340	23	160	360	${ }^{0.63 U}$	21	32	${ }^{135}$	25 J	15	86	450	75	${ }^{400000}$	${ }^{350000}$	14	45
SNASIM	FLUORENE	ugkg	2.3 J	1.6 UJ	1.6 UJ	17 UJ	1.70	${ }^{31 \mathrm{~J}}$	7.6 J	1.6 U	1.6 U	${ }^{2.87}$	2.5	4.4 J	1.6 U	${ }^{3.15}$	${ }^{3.3 \mathrm{~J}}$	4.7 J	300000	270000	2.3 J	48
ENASIM	INDENO(1,2,3-CD) PYRENE	ugkg	4.9	22	27	480	18	44	190	0.93 U	11	27	4.2	5.2	20	68	59	67	16000	14000	7.1	2.8 J
ENASIM	NAPHTHALENE	ugkg	15 J	1.15	15 J	${ }^{5.5 \mathrm{UJ}}$	${ }^{0.56 U}$	21 J	5.3 J	0.55 U	${ }^{0.54 U}$	0.54 U	0.53 U	${ }^{0.53 U}$	0.54 U	6.6 J	${ }^{0.54 U}$	46 J	290000 J	400000 J	0.55 U	0.54
ENASIM	PENTACHLOROPHENOL	ugkg	1.5 J	2.5 J	23 J	94 J	13 J	5.6 J	48 J	11 J	0.74 U	14 J	0.73 UJ	0.73 UJ	13 J	41	43	5.1 J	89 J	76 U	1.15	0.74 U
ENASIM	PHENANTHRENE	ugkg	5.73	4.0 J	5.8 J	36 UJ	${ }^{6.5}$	86 J	49 J	${ }^{3.64}$	3.54	12	15 J	${ }^{27 \mathrm{~J}}$	3.50	14	59	13 J	${ }^{850000}$	688000	3.6R	190 J
ENASIM	PYRENE	ug/kg	12	50	54	1300	23	130	390	0.56 U	24	36	11 J	21 J	17	150	220	88	290000	250000	15	32
E160.3	RESIDUE, TTTAL	percent	91	97	94	94	92	97	95	94	95	96	97	97	95	95	95	93	94	93	94	95
E1613/E1668	1,2,2,4,6, , , , 8-HEPTACHLORODIBENZOFURAN	ngkg	48.24		366.624					14.6	3.254 J				${ }^{46.447}$							2.304 J
E1613/E1668	1,2,3,4,6,7,8,-HEPTACHLORODIBENZO-P-DIOXIN	ngkg	435.492		4339.879					${ }_{122}^{122}$	${ }^{25.459}$				${ }^{359.43}$							${ }^{18.868}$
E1613/E1668	1, 1,2, $, 4,7,8,9$, HEPTACHLORODIBENZOFURAN	nglkg	3.182 J		21.18					1.09 J	0.274 J				2.583 J							0.179 J
E1613/E1668	1,2,3,4,7,8,-HEXACHLORODIBENZOFURAN	ngkg	1.531 J		7.909					. 452 J	0.361 U				1.381 J							0.09 U
E1613/E1668	1,2,3,4, ,8-HEXACHLORODIBENZO-P-DIOXIN	ngkg	${ }^{3.046 ~ J}$		11.75					. 699 J	${ }^{0.417 ~ J}$				${ }^{2.393 \mathrm{~J}}$							0.143 J
E161311668	1,2,3,6,7,8-HEXACHLLORODIBENZOFURAN	ngkg	${ }^{1.087 \mathrm{~J}^{\text {J }}}$		${ }^{3.287 \mathrm{~J}}$					. 326 J	0.279 J				${ }_{1}^{1.064}$							${ }_{0}^{0.063 \mathrm{U}}$
E1613/E1668	1,2,3,6,7, -HEXACHLORODIBENZO-P-DIOXIN $1,2,3,7,9, H$ HACHLORODIBENZOFURAN	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$			65.009 0.276 U					$\frac{2.67}{00}$	0.854 J				- 11.415							${ }^{0.385 \mathrm{~J}} 0$
E1613/E1668	1,2,3,7,8,9,-HEXACHLORODIBENZO-P-DIOXIN	ng/kg	${ }^{9.043}$		35.754					1.34	0.804 J				6.286							0.475 J
E1613/E1668	1,2,3,7,8.PENTACHLORODIBENZOFURAN	ngkg	0.155 U		0.969 J					$0 \cup$	0.171 J				0.218 J							0.016 U
E1613/E1668	1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	ngkg	0.864 J		2.237 J					. 305 J	0.313 J				0.973 J							0.019 U
E1613/E1668	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	ngkg	2.328 J		8.061 J					. 591 J	0.382 J				2.465 J							0.065 U
E1613/E1668	2,3,4,7,8.PENTACHLORODIBENZOFURAN	nglkg	0.22 J		0.39 J					ou	0.266 J				0.245 J							0.018 U
E1613/E1668	2,3,7,8-TETRACHLORODIBENZOFURAN	ngkg	0.055 U		0.051 U					OU	0.06 U				0.05 U							0.02 U
	2,3,7,8.TETRACHLLORODIBENZO-P-DIOXIN	${ }_{\text {ng }}^{\text {ngg }}$ g	${ }_{20.051 \mathrm{U}}^{231376}$		${ }^{0.1774} \mathbf{2 6 7 2 1 4 2}$					$0{ }^{623}$	${ }_{0}^{0.048 \mathrm{U}}$				${ }_{0}^{0.055 ~ U ~}$							${ }^{0.012 \mathrm{U}}$
E16131E1668	OCTACHLLRODIBENZOFURAN	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{ng} \mathrm{kg}}$	${ }_{4357.768}^{231.36}$		${ }_{\text {2672.142 }}{ }^{\text {36369.006 }}$					62.3   1250	$\frac{13.596}{}$				${ }_{\text {2230.05 }}{ }^{293}$							8.708   148.115
E1613/E1668	TOTAL HEPTACHLORINATED DIBENZOFURANS	ngkg	${ }_{1} 94.538$		1847.441					55.2	11.802				187.34							${ }_{7.853}$
E1613/E1668	TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	nglkg	2023.41		12849.526					429	86.38				888.706							90.966
E1613/E1668	TOTAL HEXACHLORINATED DIBENZOFURANS	ng/kg	47.841		296.223					12.8	4.224				54.735							1.992
E1613\|E1668	TOTAL HEXACHLORINATED DIBENZO-P.DIOXINS	nglkg	150.2		730.196					37	8.388				66.12							7.384
E1613\|E1668	TOTAL PENTACHLORINATED DIBENZOFURANS	ngkg	${ }_{6}^{6.313}$		17.151					1.39	1.07				6.381							0.349
E16131E1668	TOTAL PENTACHLLORINATTED DIBENZO-P-DIOXINS	nglkg	4.795		${ }^{30.586}$					. 782	${ }^{0.313}$				2.305							0.338
E1613/E1668	TOTAL TETRACHLLORINATED DIBENZOFURANS	ng g kg	${ }^{0.0555}$		${ }_{2}^{2.063}$					. 207	${ }^{0.064}$				0.129							0.02 U
E16131/1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	$\frac{\mathrm{ng} / \mathrm{kg}}{\mathrm{mg} k \mathrm{k}}$	0.267 0.36 UJ	0.34 UJ	0.886 0.35 UJ	${ }^{0.36 ~ U J}$	${ }^{0.36 \mathrm{U}}$	0.34 UJ	0.34 UJ	${ }_{0}^{0.350}$	0.048 U	0.34 UJ	0.35 U	0.34 U	0.055 U	0.35 UJ	0.35 U	${ }^{0.36 ~ U J}$	0.34 UJ	0.36 UJ	0.36 UJ	-
sw6020	ARSENIC	mgkg	${ }^{0.43 U}$	1.0	${ }^{0.43 U}$	1.4	0.44 U	1.75	11	0.56	0.77	0.75	0.68 J	${ }^{0.83 \mathrm{~J}}$	0.77 J	1.1	0.89	2.15	${ }^{0.94 \mathrm{~J}}$	${ }^{0.70 \mathrm{~J}}$	${ }^{0.97 \mathrm{~J}}$	0.39 U
sw6020	BARIUM	mg/kg	10 J	4.4	7.0	6.7	7.1	6.5 J	12	17	11	4.3	2.45	${ }_{3.3}{ }^{3}$	6.8 J	8.5	14	18 J	7.0 J	4.7 J	7.8 J	8.0
SW6020	CADMIUM	mg/kg	${ }^{0.31 \mathrm{U}}$	${ }^{0.29 U}$	0.30 U	${ }^{0.30 \mathrm{U}}$	${ }^{0.31 \mathrm{U}}$	0.29 U	0.29 U	${ }^{0.30 \mathrm{U}}$	0.29 U	0.29 U	0.30 U	0.29 U	0.28 U	0.30 U	0.30 U	0.31 U	0.29 U	0.31 U	0.30 U	0.28 U
SW6020	CHROMIUM	mg/kg	7.3	2.2	6.0	5.3	9.8	3.8	6.2	9.4	6.6	2.5	4.9 J	5.15	3.5	5.3	7.8	10	7.1	6.3	6.3	4.4
SW6020	COPPER	mgkg	0.44 J	0.67 J	0.68 J	0.77 J	0.42 J	0.74 J	3.1	0.86 J	0.69 J	0.85 J	0.66 J	0.55 J	0.66 J	1.8	0.70 J	1.8 J	1.3 J	0.73 J	0.70 J	0.34 J
SW6020	LEAD	mg/kg	3.9 J	1.4	6.4	5.9	5.5	2.15	7.1	10	3.6	1.1	0.88 J	1.15	6.15	4.2	4.7	6.4 J	5.5 J	5.5	3.5 J	4.4
SW6020	SELENIUM	mgkg	0.89 U	0.85 U	0.88 U	${ }^{0.88 \mathrm{U}}$	0.90 U	0.84 U	0.83 U	${ }^{0.86 U}$	0.85 U	0.84 U	0.86 U	0.84 U	0.81U	0.88 U	0.86 U	0.90 U	0.83 U	0.89 U	0.88 U	0.81 U
SW6020	SILVER	mg/kg	0.40 U	0.38 U	0.39 U	0.40 U	0.41 U	0.38 U	0.38 U	0.39 U	0.39 U	0.38 U	0.39 U	0.38 U	0.37 U	0.40 U	0.39 U	${ }^{0.410}$	0.38 U	0.40U	0.40 U	0.37 U
SW6020	VANADIUM (FUME OR DUST)	mglkg	${ }^{3.25}$	0.91 U	1.3	0.94 U	4.5	2.65	0.89 U	3.9	3.8	1.5	0.92 U	1.5	1.6 J	0.94 U	3.9	4.2 J	2.4 J	1.7 J	${ }^{3.3 \mathrm{~J}}$	2.5
SW7471	MERCURY	mgkg	0.025 J	0.0064 J	0.025	0.040 J	0.035	0.0071 J	0.044 J	0.040	0.012 J	0.0093 J	0.0045 U	0.0046 J	0.025	0.029	0.026	0.026	0.018 J	${ }^{0.111 \mathrm{~J}}$	${ }^{0.010 \mathrm{~J}}$	0.027
SW8260	1,1,1,-TRICHLOROETHANE	uglkg	$0.14{ }^{0}$	0.13 U	0.13 U	0.13 U	0.14 U	${ }_{0}^{0.13 \mathrm{U}}$	${ }_{0}^{0.13 U^{0}}$	0.14 U	${ }_{0}^{0.13 U^{0}}$	${ }_{0}^{0.13 U^{0}}$	${ }_{0}^{0.13 U^{0}}$	$0.13 \mathrm{U}^{0.090}$	${ }^{0.13 U^{\prime}}$	$\stackrel{0.13 U}{ }$	${ }_{0}^{0.13 U^{0}}$	${ }_{0}^{0.13 \mathrm{U}^{\text {a }} \text {-12 }}$	${ }_{0}^{0.13 \mathrm{U}^{\text {a }} \text {-11 }}$	$0.15{ }^{0}$	${ }_{0}^{0.1331}$	${ }^{0.133}$
SW8260	1,1,2,2-TETRACHLOROETHANE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} k g}$	$\frac{0.074 \mathrm{U}}{0.15 \mathrm{U}}$	$\frac{0.069 \mathrm{U}}{0.14 \mathrm{U}}$	$\frac{0.071 \mathrm{U}}{0.14 \mathrm{U}}$	0.071U	0.072U	$\frac{0.069 \mathrm{U}}{0.14 \mathrm{U}}$	$\frac{0.071 \mathrm{U}}{0.14 \mathrm{U}}$	$\frac{0.074 \mathrm{U}}{0.15 \mathrm{U}}$	0.070 0	$\frac{0.069 \mathrm{U}}{0.14 \mathrm{U}}$	$\frac{0.068 \mathrm{U}}{0.14 \mathrm{U}}$	$\frac{0.069 \mathrm{U}}{0.14 \mathrm{U}}$	$\frac{0.070 \cup}{0.14 U}$	$\frac{0.070 \mathrm{U}}{0.14 \mathrm{U}}$	0.070 0	$\frac{0.072 \mathrm{U}}{0.15 \mathrm{U}}$	$\frac{0.071 \mathrm{U}}{0.14 \mathrm{U}}$	$\frac{0.078 \mathrm{U}}{0.16 \mathrm{U}}$	$\frac{0.071 \mathrm{U}}{0.14 \mathrm{U}}$	$\frac{0.070 \mathrm{U}}{0.14 \mathrm{U}}$
sw8260	1,1-DICHLOROETHANE	ugkg	0.071 U	0.066 U	0.068 U	0.068 U	0.069 U	0.066 U	0.068 U	0.070 U	0.067 U	0.066 U	0.065 U	0.066 U	0.067 U	0.067 U	0.067 U	0.069 U	0.068 U	0.075 U	0.067 U	0.067 U
sw8260	1,1-DICHLOROETHYLENE	ugkg	0.20 U	0.18 U	0.19 U	0.19 U	0.19 U	0.18 U	0.19 U	0.19 U	0.18 U	0.19 U	0.19 U	0.21 U	0.19 U	0.18 U						
SW8260	1,2,4-TRICHLOROBENZENE	ugkg	$0.17{ }^{\text {U }}$	0.16 U	0.16 U	0.17 U	0.17 U	0.16 U	0.16 U	0.17 U	0.16 U	$0.17{ }^{\text {U }}$	$0.17{ }^{\text {U }}$	0.18 UJ	0.16 U	0.16 U						
SW8260	1,2--IIBROMO-3-CHLOROPROPANE (DBCP)	ugkg	0.55 U	0.51 U	0.53 U	0.53 U	0.54U	${ }^{0.51 U}$	0.53 U	0.55 U	0.52 U	0.52 U	0.51 U	0.51 U	0.52 U	0.52 U	0.52 U	0.54 U	0.53 U	0.58 uJ	0.53 U	0.52 U
SW8260	1,2-DIBROMOETHANE	ugkg	0.063 U	0.059 U	0.060 U	0.060 U	0.061 U	0.058 U	0.060 U	0.062 U	0.059 U	0.059 U	0.058 U	0.058 U	0.060 U	0.059 U	0.060 U	0.061 U	0.060 U	0.067 U	0.060 U	0.059 U
SW8260	1,2-DICHLOROBENZENE	ugkg	0.088 U	0.081 U	0.084 U	0.084 U	0.085 U	0.081 U	0.084 U	0.087 U	0.083 U	0.082 U	0.081 U	0.081 U	0.083 U	0.082 U	0.083 U	0.085 U	0.084 U	${ }^{0.0922 ~ J ~}$	0.083 U	0.082 U
SW8260	1,2-IICHLOROETHANE	$\stackrel{\mathrm{ug} \text { kg }}{\text { ugkg }}$	0.12U	0.11U	${ }^{0.11 \mathrm{U}}$	0.11U	${ }_{0}^{0.11 \mathrm{U}}$	0.11U	0.11U	${ }^{0.120}$	${ }_{0}^{0.11 U^{0}}$	${ }^{0.115}$			${ }^{0.11 U^{0}}$	0.11 U					${ }_{0}^{0.114}$	${ }_{0}^{0.11 U^{0}}$
SW8260	1, 1,-2-DICHLICHLOROPROPENZAENE	$\frac{\mathrm{ug} / \mathrm{kg}}{\mathrm{ug} \mathrm{kg}}$	${ }^{0.061 U} 0$	${ }^{0.0 .056 \mathrm{U}} 0$	${ }^{0.058}{ }^{0.093}$ U	${ }^{0.058}{ }^{0.093} \mathrm{U}$	${ }_{0}^{0.059 ~ U ~} 0$	0.056 U	${ }_{0}^{0.058 \mathrm{U}} 0$	${ }_{0}^{0.060 \mathrm{U}} 0$	${ }_{0}^{0.057 U} 0$	${ }^{0.057 \mathrm{U}} 0$	${ }^{0.056 \mathrm{U}} 0$	${ }^{0.056 \mathrm{U}} 0$	${ }^{0.058 \mathrm{U}} 0$	${ }_{0}^{0.057 \mathrm{U}} 0$	${ }_{0}^{0.057 U} 0$	${ }^{0.059 ~ U ~} 0.095 \mathrm{U}$	${ }_{0}^{0.058 \mathrm{U}} 0$	${ }_{0}^{0.064 \mathrm{U}} 0$	${ }_{0}^{0.058 \mathrm{U}} 0$	0.057U
SW8260	ACETONE	ugkg	12 J	16 J	7.5 J	8.2 J	2.8 U	5.8 J	18 J	2.8 U	2.7 U	2.7 U	2.6 U	2.6 U	5.2 J	10 J	2.7 U	22 J	42 J	39 J	13 J	2.7 U
SW8260	BENZENE	ugkg	0.44 U	0.41 U	0.42 U	0.42 U	0.43 U	0.41 U	0.42 U	0.44 U	0.42 U	0.41 U	0.41 U	${ }^{0.414}$	0.42 U	0.41 U	0.42 U	0.43 U	0.42 U	0.46 U	0.42 U	0.41 U
SW8260	BROMODICHLOROMETHANE	ugkg	${ }_{0}^{0.334}$	${ }^{0.31 \mathrm{U}}$	${ }^{0.314}$	${ }_{0}^{0.31 \mathrm{U}}$	$\stackrel{0.32 \mathrm{U}}{ }$	$\stackrel{0.30 \mathrm{U}}{ }$	${ }_{0}^{0.31 \mathrm{U}}$	$\stackrel{0.33 \mathrm{U}}{0}$	0.314	${ }^{0.314}$	$\stackrel{0.30 \mathrm{U}}{ }$	${ }^{0.300}$	0.314	${ }^{0.314}$	${ }_{0}^{0.314}$	${ }_{0}^{0.32 \mathrm{U}}$	${ }_{0}^{0.314}$	${ }^{0.35 \mathrm{U}}$	${ }_{0}^{0.31 \mathrm{U}}$	${ }_{0}^{0.31 \mathrm{U}}$
SW8260	BROMOMETHANE CARBON DISULIIE	$\mathrm{ug}_{\text {ugg }}^{\text {ugg }}$	$\frac{0.36 \mathrm{UJ}}{1.8 \mathrm{U}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{u}}$	0.35 UJ	$\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{u}}$	$\frac{0.34 \mathrm{UJ}}{17 \mathrm{U}}$	$\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{u}}$	$\frac{0.36 \mathrm{UJ}}{1.8 \mathrm{U}}$	$\frac{0.34 \mathrm{U}}{1.7 \mathrm{U}}$	$\frac{0.34 \mathrm{U}}{1.7 \mathrm{U}}$	$\frac{0.33 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.34 \mathrm{U}}{1.7 \mathrm{U}}$	$\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{u}}$	$\frac{0.35 \mathrm{UJ}}{1.8 \mathrm{U}}$	$\frac{0.38 \mathrm{UJ}}{1.9 \mathrm{u}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$	$\frac{0.34 \mathrm{UJ}}{1.7 \mathrm{U}}$
SW8260	CARBON TETRACHLORIDE	ugkg	0.40 U	0.37 U	0.38 U	0.38 U	0.39 U	0.37 U	0.38 U	0.39 U	0.37 U	0.37 U	0.37 U	0.37 U	0.38 U	0.37 U	0.37 U	0.38 U	0.38 U	0.42 U	0.38 U	0.37 U
SW8260	CFC-11	ugkg	0.30 U	0.27 U	0.28 U	0.28 U	0.29 U	0.27 U	0.28 U	0.29 U	0.28 U	0.28 U	0.27 U	0.27 U	0.28 U	0.28 U	0.28 U	0.29 U	0.28 U	0.31 U	0.28 U	0.28 U
SW8260	CFC-12	ugkg	0.36 U	0.34 U	0.35 U	0.35 U	0.35 U	0.34 U	0.35 U	$\stackrel{0.36 \mathrm{U}}{0}$	${ }_{0}^{0.340}$	${ }_{0}^{0.340}$	${ }_{0}^{0.330}$	${ }_{0}^{0.34 u^{030}}$	${ }_{0}^{0.340}$	${ }_{0}^{0.344}$	0.34 UJ	${ }_{0}^{0.35 \mathrm{U}}$	${ }_{0}^{0.35 \mathrm{U}}$	${ }^{0.38 \mathrm{U}}$	${ }_{0}^{0.340}$	${ }_{0}^{0.344}$
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	uglkg	0.41 U	0.38 U	0.39 U	0.39 U	0.40 U	0.38U	0.39 U	0.40 U	0.38 U	0.38U	0.38U	0.38 ${ }^{0}$	0.39 U	0.38 ${ }^{0.20}$	0.38 U	0.39 U	0.39 U	0.43 U	0.39 U	0.38 U
SW8260	CHLOROBENZENE	ugkg	0.45	0.42 U 0.26 U	0.43 U 0.27 U	0.43 U 0.27 U	0.44U	0.42 U 0.26 U	0.43 U 0.27 U	0.45 U	0.43 U 0.27 U	0.42 U 0.27 U	0.42 U 0.26 U	0.42 U 0.26 U	0.43 U 0.27 U	0.42 U 0.27 U	0.43 U 0.27 U	0.44U	0.43U	0.48 U 0.30 u	0.43 U 0.27 U	0.43 U   0.27 U
SW8260	CHLOROETHANE	ugkg	$\xrightarrow[0.410]{0.45}$	0.38 UJ	0.39 UJ	0.39 UJ	0	0.38 U	0.39 UJ	0.40 U	0.38 U	0.38 U	0.38 U	0.38 U	0.39 U	0.38 UJ	0.38 U	0.39 U	0.39 U	0	0.39 U	0.38 U
W8260	CHLOROFORM	ug/kg	0.39 U	0.36 U	0.37 U	0.37 U	0.37 U	0.36 U	0.37 U	0.38 U	0.36 U	0.37 U	0.37 U	0.41 U	0.37 U	0.36 U						
W8260	CHLOROMETHANE	ugkg	0.51 U	0.47 U	0.48 U	0.49 U	0.49 U	0.47 U	0.48 U	0.50 U	0.48 U	0.48 U	0.47 U	0.47 U	0.48 U	0.48 U	0.48 U	0.49 U	0.49 U	0.54 U	0.48 U	0.48 U



## Appendix A. Revised Soil Results 2-6 Feet

Koppers Inc. Site, Gainesville, FL

		Location   Depth Sample Date	$\begin{gathered} \text { SS082 } \\ \text { SSo82DA } \\ 2-6 \text { feet } \\ 12 / 107 / 2006 \end{gathered}$	$\begin{array}{c\|} \text { SSO84 } \\ \text { SSO84DA } \\ 2.6 \text { feet } \\ 12 / 08 / 2006 \end{array}$	$\begin{array}{\|c\|} \hline \text { SS086 } \\ \text { SSO86DA } \\ \text { 2-6 feet } \\ 12 / 11 / 2006 \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO88 } \\ \text { SSo88DA } \\ \text { 2-6feet } \\ 12 / 11 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SS091 } \\ \text { SSo91DA } \\ \text { 2-6 feet } \\ 12 / 11 / 2006 \end{array}$	$\begin{array}{\|c} \text { SSO94 } \\ \text { SSO94DA } \\ \text { 2-6 feet } \\ 12 / 11 / 2000 \end{array}$	$\begin{array}{\|c\|} \hline \text { SSO95 } \\ \text { SSO95DA } \\ \text { 2-6 feet } \\ 12 / 06 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { SSo96 } \\ \text { SSO96DA } \\ 2-6 \text { feet } \\ 12107 / 2006 \end{array}$	$\begin{array}{\|c\|} \text { SS097 } \\ \text { SSo97DA } \\ \text { 26 feet } \\ 12 / 1 / 207206 \\ \hline \end{array}$	$\begin{array}{c\|} \text { SSO98 } \\ \text { SSogDA } \\ 2-68 \text { feet } \\ 12108 / 2006 \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { SSo99 } \\ \text { SSO99DA } \\ 2-6 \text { feet } \\ 12 / 08 / 2006 \end{array}$	$\begin{gathered} \text { SS100 } \\ \text { SS100DA } \\ 2-6 \text { feet } \\ 12 / 108 / 2006 \end{gathered}$	$\begin{array}{\|c\|} \text { SS100 } \\ \text { SS1000B } \\ \text { 2-6 feet } \\ 12 / 08 / 2006 \end{array}$	SS101 SS101DA $2-6$ feet $12 \cdot 112006$ $\qquad$
Lab Method	Analyte	Units														
BNASIM	2-METHYLNAPHTHALENE	ug/kg	54	1.80	1.7 U	18 J	2.0 J	610000 J	4.8	16 U	1.6 U	17 U	4.8	250000	230000	700000 J
BNASIM	ACENAPHTHENE	ugkg	200	14	1600	33 J	2.9 R	610000 J	20	29 U	2.9 U	65 J	42	310000	280000	910000 J
BNASIM	ACENAPHTHYLENE	ugkg	8.5	3.10	63	15	5.8 J	5900	10	220	2.8 U	1100	35	17000	16000	6800
BNASIM	ANTHRACENE	ugkg	140	4.8	1800	26	${ }^{0.65 U}$	1300000	40	330	1.2 J	2500	76	190000	170000	1100000
BNASIM	BENZO(A)ANTHRACENE	ugkg	73	0.90 J	780	32	9.6	610000	9.6	700	0.54 U	240	71	120000	110000	930000
BNASIM	BENZO(A)PYRENE	ugkg	33	1.30	260	36	11	210000	30	650	1.2 U	310	60	54000	46000	400000
BNASIM	BENZO(B)FLUORANTHENE	ugkg	44	2.0 J	480 J	79 J	28 J	350000	37	910	0.86 U	380	110	68000	62000	650000
BNASIM	BENZO(G, ,H,I)PERYLENE	ugkg	9.9	0.77 U	100	37	13	9000	26	470	0.70 U	410	45	16000	14000	17000
BNASIM	BENZO(K) FLUORANTHENE	ugkg	44	1.7 J	220	45	15	13000	23	780	0.70 U	230	95	47000	40000	17000
BNASIM	CHRYSENE	ugkg	73	1.2 J	730	39	16	520000	15	660	0.52 U	73	94	100000	93000	790000
BNASIM	DIBENZO(A,H)ANTHRACENE	ugkg	3.9	0.60 U	47	12	3.5 J	3700	8.1	150	0.55 U	81	14	6800	5600	8300
BNASIM	FLUORANTHENE	ugkg	420	0.70 U	3500	40	19	790000	32	510	0.63 U	110	180	700000 J	400000 J	1200000
BNASIM	FLUORENE	ugkg	110	11	1800	24 J	1.6 R	520000	48	16 U	1.6 U	41	57	340000	300000	900000
BNASIM	INDENO(1,2,3,-CD)PYRENE	ugkg	14	1.10	110	35	12	10000	30	520	0.93 U	420	53	17000	15000	220000
BNASIM	NAPHTHALENE	ugkg	97	0.60 U	0.55 U	14 J	3.8 J	1100000 J	10	5.5 U	0.55 U	5.6 U	0.63 U	770000	570000	1200000 J
BNASIM	PENTACHLOROPHENOL	ugkg	0.76 U	0.83 U	120	15 J	9.15	120000 J	42	7.5 U	0.75 U	7.70	68	890 U	860 U	150000 J
BNASIM	PHENANTHRENE	ugkg	220	8.6	6700	23 J	3.5R	1800000	45	36 U	4.3 J	80	25	1300000	960000	2500000
BNASIM	PYRENE	ugkg	240	0.62 U	2700	49	22	550000	26	850	1.5 J	97	140	350000	310000	810000
E160.3	RESIDUE, TOTAL	percent	93	85	93	92	95	96	90	94	94	91	82	79	82	93
E1613/1668	1,2,3,4,6,7,8,-HEPTACHLORODIBENZOFURAN	ngkg	7.678		158.57	82.194		2980	62.115	508.949	0.898 J	19.052	79.443	98.1	216	1937.824 J
E1613\|E1668	1,2,3,4,4,7,8,-HEPTACHLORODIBENZO-P-DIOXIN	ngkg	77.732		1633.515	659.179		32800	438.305	3203.149 J	4.732 U	268.877	1124.784	1150	2140	17358.29 J
E1613/E1668	1,2,3,4,7,8,9,-HEPTACHLORODIBENZOFURAN	ngkg	0.858 J		10.003	5.139		185	3.314 J	31.747	0.174 U	1.234 J	5.852	6.49	14.9	220.449 J
E1613/E1668	1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	ngkg	0.249 U		4.517 J	1.89 J		87.6	1.983 J	${ }^{13.035}$	0.693 J	0.955 J	2.226 J	2.77 J	5.94	85.513
E1613/E1668	1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	ng/kg	0.258 U		${ }^{13.557}$	6.14		56.8	3.95 J	${ }^{33.118}$	0.064 U	1.307 J	5.655	10.3	20.8	${ }^{65.106}$
E1613/E1668	1,2,3,6,7,8,-HEXACHLORODIBENZOFURAN	nglkg	0.058 U		3.186 U	1.529 J		18.6	1.237 J	9.73	0.259 J	0.457 J	0.467 U	2.22 J	5.42	19.481
E1613/E1668	1,2,3,6,7,8,-HEXACHLORODIBENZO-P-DIOXIN	ng/kg	1.125 J		36.613	15.387		455	12.593	128.609	0.209 U	4.554	22.797	24.3	53.2	594.585
E1613/E1668	1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	ngkg	0.056 U		0.681 U	0.093 U		17.7	0.131 U	0.492 J	0.061 U	0.087 U	0.395 U	1.11 J	2.16 J	1.16 U
E1613/E1668	1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	nglkg	1.02 J		37.482	14.855		65.7	${ }^{10.145}$	64.199	0.07 U	5.588	16.407	14.9	28.5	367.25
E1613/E1668	1,2,3,7,8-PENTACHLORODIBENZOFURAN	ngkg	0.14 J		0.411 J	0.197 J		3.13	0.142 J	1.289 J	0.325 J	0.178 J	${ }_{0}^{1.421 ~ J}$	${ }^{4} 477 \mathrm{~J}$	ou	4.687 J
E1613/E1668	1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	nglkg	0.183 J		5.723	1.85 J		4.79	1.744 J	11.231	0.041 U	0.454 J	1.609 J	2.58 J	5.9	9.287
E1613/E1668	2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	nglkg	0.058 U		6.925	3.556 J		37.8	0.928 J	8.632	0.049 U	0.677 J	2.149 J	4.89	10.8	10.764
E1613/E1668	2,3,4,7,8-PENTACHLORODIBENZOFURAN	ng/kg	0.118 U		0.805 J	0.297 J		11.3	0.262 J	1.688 J	0.145 J	0.238 J	0.373 J	1.04 J	2.24J	7.814
E1613/E1668	2,3,7,-TETRACHLORODIBENZOFURAN	ngkg	0.023 U		0.33 U	0.048 U		.537J	0.206 U	0.556 J	0.579 U	0.243 U	0.521 U	0 O	$0 \cup$	0.106 R
E1613/E1668	2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	ngkg	0.062 U		0.654 J	0.156 U		1.18	0.094 U	0.703 J	0.025 U	0.146 U	0.291 J	ou	546 J	1.817 R
E1613\|E1668	OCTACHLORODIBENZOFURAN	nglkg	50.971		923.579 J	387.65		18500	261.115	3138.652 J	2.716 J	105.786	645.561	447	963	137714.563
E1613/E1668	OCTACHLORODIBENZO-P-DIOXIN	ngkg	913.279		17748.2 J	7624.98 J		398000 J	3851.933	33059.935 J	43.117 J	2295.588	15412.68 J	12000	21400	169191.01 J
E1613\|E1668	TOTAL HEPTACHLORINATED DIBENZOFURANS	nglkg	39.367		674.261	311.669		16100	234.229	2249.64	0.898	76.104	394.451	380	812	21263.732
E1613/E1668	TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	nglkg	548.367		7833.519	2432.136		304000	1070.561	9949.335	16.054	2011.998	4246.728	5100	8750	245943.186
E1613/E1668	TOTAL HEXACHLORINATED DIBENZOFURANS	ng/kg	6.098		165.147	83.164		2430 J	60.111	592.818	1.226	16.999	73.184	97.4	229	4025.607
E1613/E1668	TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	ngkg	26.413		578.215	196.064		13100	96.128	775.283	0.741	104.99	281.255	416	943	13857.306
E1613/E1668	TOTAL PENTACHLORINATED DIBENZOFURANS	nglkg	0.593		23.207	11.029		118 J	8.179	61.256	0.604	2.616	8.215	18	43.3	140.893
E1613/E1668	TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	ngkg	0.354		36.772	11.196		178	8.804	49.056	0.041 U	2.864	21.11	28.4	63.9	229.614
E1613/1668	TOTAL TETRACHLORINATED DIBENZOFURANS	ngkg	0.117		2.421	0.31		10.8 J	0.753	6.386	0.041 U	0.252	0.213	3.32	4.71	11.017
E1613/E1668	TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	ng/kg	0.078		2.647	0.379		7.4	0.347	3.288	0.025 U	0.162	2.107	3.63	5.11	2.6
SW6020	ANTIMONY	mgkg	0.35 U	0.40 UJ	0.36 UJ	0.35 UJ	3.5 UJ	0.32 UJ	4.3	${ }^{0.36 \mathrm{U}}$	0.33 U	0.34 U	0.41 UJ	0.40 U	0.41 U	0.34 UJ
SW6020	ARSENIC	mgkg	7.9	0.62	57	0.79	5.2 J	1.3	280	16	0.40 U	0.66	0.50 U	0.83 J	3.2 J	1.1
SW6020	BARIUM	mglkg	13	12	11	14	47 J	8.8	15	17	9.0	4.9	8.0	4.9	5.2	7.8
SW6020	CADMIUM	mgkg	${ }^{0.30 \mathrm{U}}$	0.34 U	${ }^{0.31 \mathrm{U}}$	0.30 U	3.00	0.28 U	0.32 U	${ }^{0.30 \mathrm{U}}$	0.29 U	0.29 U	0.35 U	0.34 U	0.35 U	0.29 U
SW6020	CHROMIUM	mg/kg	7.7	8.8	8.9	7.3	27	7.4	190	33 J	6.2	5.2	2.2	2.2 J	5.9 J	6.4
SW6020	COPPER	mgkg	0.31 U	0.35 U	1.4	1.6	5.2 J	1.2	2.2	5.5 J	${ }^{0.62 J}$	1.0 J	0.98 J	1.0 J	3.0 J	1.2
SW6020	LEAD	mgkg	3.8	3.7	6.2	13	22 J	4.9	13	6.5	7.33	3.3	1.5	2.15	2.23	8.9
SW6020	SELENIUM	mg/kg	${ }^{0.86 U}$	0.98 U	0.90 UJ	0.88 UJ	8.70	0.80 U	0.92 U	0.88 U	0.83 U	0.85 U	1.0U	0.98 U	1.0U	0.85 U
SW6020	SILVER	mg/kg	0.39 U	0.45 U	${ }^{0.41 \mathrm{U}}$	0.40 U	3.9 U	0.36 U	0.42 U	0.40 U	0.37 U	0.38 U	0.46 U	0.44 U	0.46 U	0.38 U
SW6020	VANADIUM (FUME OR DUST)	mgkg	5.8	9.0	6.3 J	2.7 J	11 J	0.86 U	8.6	7.0	2.7	2.7	1.3	1.14	1.10	0.91 U
SW7471	MERCURY	mg/kg	0.021 J	0.011 J	0.044	0.069	0.015 J	0.068 J	0.12	0.045 J	0.042	0.034	0.029 J	0.022 J	0.018 J	0.068 J
SW8260	1,1,1-TRICHLOROETHANE	ugkg	0.13 U	0.15 U	0.13 U	0.14 U	0.13 U	0.13 U	0.14 U	0.13 U	0.13 U	0.14 U	0.15 U	0.16 U	0.15 U	0.17 U
SW8260	1,1,2,2,2-TETRACHLOROETHANE	ug/kg	0.072 U	0.078 U	0.071 U	0.072 U	0.070 U	0.070 U	0.074 U	0.071 U	0.071 U	0.073 U	0.081 U	0.084 UJ	0.081 UJ	0.092 UJ
SW8260	1,1,2-TTICHLOROETHANE	ugkg	0.15 U	0.16 U	0.14 U	0.15 U	0.14 U	0.14 U	0.15 U	0.14 U	0.14 U	0.15 U	0.16 U	0.17 UJ	0.16 UJ	0.19 UJ
SW8260	1,1-DICHLOROETHANE	ugkg	0.068 U	0.074 U	0.068 U	0.069 U	0.067 U	0.066 U	0.071 U	0.068 U	0.068 U	0.070 U	0.077 U	0.080 U	0.078 U	0.088 U
SW8260	1,1-DICHLOROETHYLENE	ugkg	0.19 U	0.20 U	0.19 U	0.19 U	0.18 U	0.18 U	0.19 U	0.19 U	0.19 U	0.19 U	0.21 U	0.22 U	0.21 U	0.24 U
SW8260	1,2,4-TRICHLOROBENZENE	ugkg	0.17 U	0.18 U	0.17 U	0.17 U	0.16 U	0.16 UJ	0.17 U	0.16 U	0.16 U	0.17 U	0.19 U	0.19 R	0.19 R	0.21 UJ
SW8260	1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	ugkg	0.53 U	0.58 U	0.53 U	0.54 U	0.52 U	0.52 UJ	0.55 U	0.53 U	0.53 U	$0.54{ }^{0}$	0.60 U	0.62 R	${ }^{0.61 \mathrm{R}}$	0.69 UJ
SW8260	1,2-DIBROMOETHANE	ugkg	0.061 U	0.066 U	0.061 U	0.062 U	0.059 U	0.059 U	0.063 U	0.060 U	0.060 U	0.062 U	0.069 U	0.071 UJ	0.069 UJ	0.078 UJ
SW8260	1,2-DICHLOROBENZENE	ugkg	0.085 U	0.092 U	0.084 U	0.086 U	0.083 U	0.082 UJ	0.087 U	0.084 U	0.084 U	0.086 U	0.096 U	0.099 R	0.096 R	0.11 UJ
SW8260	1,2-DICHLOROETHANE	ugkg	0.11 U	0.12 U	0.11 U	$0.11{ }^{0}$	0.11 U	0.11 U	0.12 U	0.11 U	$0.11{ }^{0}$	$0.11 \mathrm{U}^{0}$	$0.13{ }^{0}$	0.13 U	$0.13 \mathrm{U}^{0}$	$0.14 \mathrm{U}^{0}$
SW8260	1,2-ICHLOROPROPANE	ugkg	0.059 U	0.064 U	0.058 U	0.059 U	0.057 U	0.057 U	0.061 U	0.058 U	0.058 U	0.060 U	0.066 U	0.069 U	0.067 U	0.076 U
SW8260	ACETONE	ugkg	${ }_{34} 0.04 \mathrm{~J}$	3.00	120 J	41 J	${ }_{3.05}$	${ }_{55}$	${ }^{130} \mathrm{~J}$	${ }^{2.70}$	$\underline{2.7 \mathrm{U}}$	$\underline{2.8 \mathrm{u}}$	${ }_{3.1}$	${ }_{10.10 \mathrm{~J}}$	${ }_{8} 8.19$	${ }_{1}^{130 \mathrm{~J}}$
SW8260	BENZENE	ugkg	${ }^{0.43 U}$	0.46 U	${ }^{0.42 \mathrm{U}}$	0.43 U	${ }^{0.42 \mathrm{U}}$	19	${ }^{0.44 U}$	0.42 U	0.42 U	0.43 U	0.48 U	1.9 J	1.75	130
SW8260	BROMODICHLOROMETHANE	ugkg	0.32 U	0.35 U	0.32 U	0.32 U	0.31 U	${ }^{0.31 \mathrm{U}}$	0.33 U	0.31 U	0.31 U	0.32 U	0.36 U	0.37 U	0.36 U	0.41 U
SW8260	BROMOMETHANE	ugkg	0.35 U	0.38 U	0.35 UJ	0.35 UJ	0.34 UJ	0.34 UJ	0.36 UJ	0.35 U	0.35 U	${ }^{0.36 \mathrm{U}}$	0.40 U	0.41 UJ	0.40 UJ	0.45 UJ
SW8260	CARBON DISULFIDE	ugkg	1.8 U	1.9 U	1.8 U	1.8 U	1.7 U	1.7 UJ	1.8 U	1.8 U	${ }^{1.8 U}$	1.8 U	2.0 U	2.14	2.0 U	2.3 UJ
SW8260	CARBON TETRACHLORIDE	ug/kg	${ }^{0.38 \mathrm{U}}$	0.42 U 0.31 u	0.38 U 0.28 u	0.39 u 0.29 u	0.37 U	0.37 U	0.39 U	0.38 U	0.38 U	0.39 u 0.29 u	0.43 U 0.32 u	0.45 U	0.43 U 0.32 u	0.49 U 0 037 U
SW8260	CFC-12	ugkg	0.35 UJ	0.38 UJ	${ }_{0}^{0.35 \mathrm{U}}$	${ }_{0}^{0.35 \mathrm{U}}$	$\stackrel{0.34 \mathrm{U}}{0}$	0.34 UJ	${ }_{0}^{0.366}$	0.35 uJ	$\stackrel{0}{0.35 \mathrm{UJ}}$	0.36 uJ	$\stackrel{0}{0.40 \mathrm{UJ}}$	${ }_{0}^{0.411}$	${ }_{0}^{0.40 \mathrm{U}}$	0.45 uJ
SW8260	CHLORINATED FLUOROCARBON (FREON 113)	ugkg	0.39 U	0.43 U	0.39 U	0.40 U	0.38 U	0.38 U	0.41 U	0.39 U	0.39 U	0.40 U	0.44 U	0.46 U	0.45 U	0.51 U
SW8260	CHLOROBENZENE	ugkg	0.44 U	0.47 U	0.43 U	0.44 U	0.43 U	0.42 U	0.45 U	0.43 U	0.43 U	0.44 U	0.49 U	0.51 UJ	0.50 UJ	0.56 UJ
SW8260	CHLORODIBROMOMETHANE	uglkg	0.27 U	0.30 U	0.27 U	0.28 U	0.27 U	0.27 U	0.28 U	0.27 U	0.27 U	0.28 U	0.31 U	0.32 UJ	0.31 UJ	0.35 UJ
SW8260	CHLOROETHANE	ugkg	0.39 U	0.43 U	0.39 U	0.40 U	$\frac{0.38 \mathrm{U}}{036}$	$\frac{0.38 \mathrm{UJ}}{036}$	0.41 U	0.39 U	${ }_{0}^{0.39 \mathrm{U}}$	0.40 U	0.44 U	0.46 U	0.45 U	0.510 J
SW8260	CHLOROFORM	${ }_{\text {ug }} \mathrm{ug} \mathrm{kg}$	${ }_{0}^{0.37 \mathrm{U}} 0$	${ }_{0}^{0.40 \mathrm{U}}$	$\stackrel{0.37 \mathrm{U}}{0.49 \mathrm{u}}$	${ }_{0}^{0.38 \mathrm{U}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{u}}$	$\frac{0.36 \mathrm{U}}{0.48 \mathrm{U}}$	${ }_{0}^{0.38 \mathrm{U}}$	$\frac{0.37 \mathrm{U}}{0.48 \mathrm{u}}$	$\frac{0.37 \mathrm{u}}{0.48 \mathrm{u}}$	$\frac{0.38 \mathrm{U}}{0.50 \mathrm{u}}$	${ }_{0}^{0.42 \mathrm{U}}$	$\stackrel{0.43 \mathrm{U}}{0.57 \mathrm{U}}$	$\frac{0.42 \mathrm{U}}{0.56 \mathrm{u}}$	$\stackrel{0.48 \mathrm{U}}{0.63 \mathrm{U}}$



## Appendix B

## Data Validation Report for Organic and Inorganic Analysis Samples

# DATA REVIEW and VALIDATION REPORT FOR 

Beazer East, Inc. Koppers Inc. Site

Organic and Inorganic Analysis Data
Soil and Sediment Samples
Collected from November 29, 2006 through December 12, 2006
Sample Delivery Group Numbers: J0605714, J0605735, J0605780, J0605810, J0605839, J0605876, J0605879, J0605890, J0605919, J0605944

Submitted to:
U.S. Environmental Protection Agency, Region 4

Atlanta, Georgia

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

472008401

March 2007

## Table of Contents

Page
ACRONYMS ..... iv
DATA QUALIFIER DEFINITIONS ..... vi
1.0 INTRODUCTION ..... 1
2.0 EXECUTIVE SUMMARY ..... 1
3.0 DATA VALIDATION AND REVIEW METHODOLOGY ..... 2
4.0 EXPLANATION OF DATA QUALITY INDICATORS ..... 2
5.0 CHAIN OF CUSTODY AND SAMPLE RECEIPT CONDITION DOCUMENTATION ..... 6
6.0 SPECIFIC DATA VALIDATION FINDINGS FOR EACH ANALYTICAL METHOD ..... 8
6.1 Volatile Organic Compounds by USEPA Method 8260B ..... 8
6.1.1 Sample Delivery Group (SDG) J0605714 ..... 8
6.1.2 SDG J0605735 ..... 12
6.1.3 SDG J0605780 ..... 14
6.1.4 SDG J0605810 ..... 18
6.1.5 SDG J0605839 ..... 21
6.1.6 SDG J0605876 ..... 24
6.1.7 SDG J0605879 ..... 29
6.1.8 SDG J0605890 ..... 33
6.1.9 SDG J0605919 ..... 36
6.1.10 SDG J0605944 ..... 40
6.2 Semivolatile Organic Compounds by USEPA Method 8270C ..... 42
6.2.1 SDG J0605714 ..... 42
6.2.2 SDG J0605735 ..... 44
6.2.3 SDG J0605780 ..... 47
6.2.4 SDG J0605810 ..... 49
6.2.5 SDG J0605839 ..... 52
6.2.6 SDG J0605876 ..... 53
6.2.7 SDG J0605879 ..... 56
6.2.8 SDG J0605890 ..... 59
6.2.9 SDG J0605919 ..... 62
6.2.10 SDG J0605944 ..... 65
6.3 Semivolatile Organic Compounds (PAHs and Pentachlorophenol) by USEPA Method 8270C SIM ..... 66
6.3.1 SDG J0605714 ..... 66
6.3.2 SDG J0605735 ..... 68
6.3.3 SDG J0605780 ..... 71
6.3.4 SDG J0605810 ..... 73
6.3.5 SDG J0605839 ..... 76
6.3.6 SDG J0605876 ..... 79
6.3.7 SDG J0605879 ..... 83
6.3.8 SDG J0605890 ..... 87
6.3.9 SDG J0605919 ..... 91
6.3.10 SDG J0605944 ..... 96
6.4 Metals by USEPA 6020 and USEPA 7471A ..... 98
6.4.1 SDG J0605714 ..... 98
6.4.2 SDG J0605735 ..... 100
6.4.3 SDG J0605780 ..... 104
6.4.4 SDG J0605810 ..... 107
6.4.5 SDG J0605839 ..... 110
6.4.6 SDG J0605876 ..... 113
6.4.7 SDG J0605879 ..... 118
6.4.8 SDG J0605890 ..... 121
6.4.9 SDG J0605919 ..... 125
6.4.10 SDG J0605944 ..... 131
6.5 Total Organic Carbon (TOC) ..... 134
6.5.1 SDG J0605944 ..... 134
7.0 Summary and Conclusions ..... 135
REFERENCES. ..... 136
LIMITATIONS. ..... 137

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

## List of Tables

Table 1 Field Samples Submitted to Columbia Analytical Services, Inc.
Table 2 Field Duplicate Detected Results and RPDs

## ACRONYMS

\%D	percent deviation or percent drift in relative response
BS	blank spike
BSD	blank spike duplicate
CAR	certified analytical report
CCAL	continuing calibration
CCB	continuing calibration blank
CCC	calibration check compound
CCV	continuing calibration verification
CLP	USEPA Contract Laboratory Program
COC	chain of custody
ICAL	initial calibration
ICP	inductively coupled plasma
ICS	interference check sample
ICV	initial calibration verification
ID	site identification
IDL	instrument detection limit
IS	internal standard
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
MRL	method reporting limit
MS	matrix spike
MSD	matrix spike duplicate
OSWER	USEPA Office of Solid Waste and Emergency Response
PAH	polycyclic aromatic hydrocarbons
PQL	practical quantitation limit
QAPP	quality assurance project plan
QC	quality control

Beazer East, Inc Koppers Inc. Site Data Review / Validation Report

RF	response factor
RPD	relative percent difference
SDG	sample delivery group
SOP	standard operating procedure
SPCC	system performance check compound
SVOC	semivolatile organic compound
TOC	total organic carbon
VOC	volatile organic compound

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be non-detected at the concentration listed. $U$ qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.
UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.
$\mathrm{R} \quad$ The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

This data validation report covers 334 soil and sediment samples from the Beazer East, Inc. Koppers Inc. Site collected from November 29, 2006 through December 12, 2006. The sampling was conducted following the Supplemental Soil and Sediment Sampling Plan. These samples were collected to provide additional data to support the risk assessment that will be conducted for the site. The samples were submitted to Columbia Analytical Services, Inc. in Jacksonville, Florida (CAS).

Analyses performed on these samples are listed below. A list of these samples by field sample identifications (ID) and (CAS) sample IDs are presented in Table 1.

- Volatile organic compounds (VOCs) by USEPA Method 8260B
- Semivolatile organic compounds (SVOCs) by USEPA Method 8270C
- Polycyclic aromatic hydrocarbons (PAHs)and pentachlorophenol by USEPA method 8270C SIM
- Total metals by United States Environmental Protection Agency (USEPA) Method 6020
- Total mercury by USEPA Method 7471A
- Total organic carbon by USEPA Method 9060
- Grain size analysis by ASTM D422-63


### 2.0 EXECUTIVE SUMMARY

The data for the analyses of VOCs, SVOCs, PAHs, Metals and TOC are generally usable and of good quality, with the exceptions and limitations listed below.

The majority of data qualifications for samples covered in this report were made for trace level blank contamination, minor calibration deviations, matrix interferences and duplicate imprecision.

There were a small number of samples that showed severe matrix interference for the analysis of VOCs. There was laboratory blank and LCS contamination for a number of the PAH compounds causing the laboratory to re-extract past the technical holding times.

### 3.0 DATA VALIDATION AND REVIEW METHODOLOGY

This data validation has been performed with reference to the USEPA Office of Solid Waste and Emergency Response (OSWER) National Functional Guidelines for Organic Data Review (USEPA, 1999a), National Functional Guidelines for Inorganic Data Review (USEPA, 2004) and US EPA, Region IV, Data Validation Standard Operating Procedures for Contract Laboratory Program Routine Analytical Services (USEPA, 1999b).

These USEPA guidelines were written specifically for the Contract Laboratory Program (CLP), and have been modified for the purposes of this data validation where they differ from USEPA Method SW-846 quality control requirements.

AMEC's data validation and review methodology complied with the validation procedures specified in the Quality Assurance Project Plan (QAPP), dated September 2006 (AMEC, 2006). The laboratory's raw analytical data packages were reviewed to assess the criteria outlined in Section 9.2.2 of the QAPP, summarized as follows: chain of custody (COC) compliance; holding time compliance; sensitivity; presence or absence of laboratory contamination as demonstrated by method and field blanks; accuracy and bias as demonstrated by recovery of surrogate spikes, internal standards, blank spikes (BS), matrix spikes (MS); analytical precision as relative percent difference (RPD) of analyte concentration between replicate samples (i.e., laboratory duplicates) or MS and matrix spike duplicates (MSD); sampling precision as RPD of analyte concentration between field duplicates; calibration and instrument performance; and insofar as possible, the degree of conformance to method requirements and good laboratory practices.

In general, it is important to recognize that no analytical data are guaranteed to be correct, even if all quality control (QC) audits are passed. Strict QC serves to increase confidence in data, but any reported value may potentially contain error.

In accordance with the specifications of Section 9.2.2 of the QAPP, the data review and validation process comprised $10 \%$ full validation of the raw analytical data and $90 \%$ data review based on information provided by the laboratory as summary reporting forms.

### 4.0 EXPLANATION OF DATA QUALITY INDICATORS

Data quality indicators of the review and validation process are defined below. Quality control objectives for these indictors are given in Tables 3-2 through 3-5 and Tables 7-2 through 7-7 of the QAPP.

## Initial and Continuing Calibration

Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing acceptable quantitative data. Continuing calibration ensures accuracy during the course of each analytical run. Compliance requirements have been established for each analytical method and are described below.

## Volatile Organic Compounds

The QAPP-specified average $\mathrm{RF} \geq 0.30$ for SPCCs (chloromethane, 1,1-dichloroethane, 1,1,1,2-tetrachloroethane, chlorobenzene, and bromoform), $\%$ RSD $\leq 30 \%$ for CCCs (vinyl chloride, 1,1-dichloroethene, chloroform, 1,2 dichloropropane, toluene and ethylbenzene). The second source calibration verification should be within the QAPP requirement of $\pm 25 \%$ of the expected value of the associated calibration.

The continuing calibration SPCCs average RF should be $\geq 0.30$ and CCCs $\leq 20 \%$ difference of the expected value.

## Semivolatile Organic Compounds

The QAPP-specified criteria of SPCCs average $\mathrm{RF} \geq 0.050$ and $\% \mathrm{RSD} \leq 30 \%$ for CCCs. The second-source calibration verification should be within the QAPP requirement of $\pm$ $25 \%$ of expected value of the associated calibration.

The continuing calibration SPCCs average RF should be $\geq 0.050$ and CCCs $\leq 20 \%$ difference of the expected value.

## Metals

The correlation coefficient must be $\geq 0.995$. All analytes in the initial calibration verification must be within $10 \%$ of expected value. All analytes in the calibration verification (instrument check standard) should be within $\pm 10 \%$ of expected value.

## TOC

The linear mean RSD must be $\leq 20 \%$ for each analyte. The continuing calibration verification must be within $\pm 10$ of the expected value.

## Blank Samples

Blank samples are aliquots of Ottawa sand that are used as negative controls to verify that the sample collection, storage, preparation, and analysis system does not produce false positive
results. One of three types of blanks is employed for this project. Target analytes should not be found in blank samples.

When the concentration detected in the blank is between the method detection limit (MDL) and the method reporting limit (MRL), concentrations in associated samples less than 5 times the concentration detected in the blank and less than the MRL are U qualified at the MRL concentration by AMEC. Sample concentrations above MRL and less than 5 times the concentration detected in the blank are U qualified. Common contaminants such as acetone, methylene chloride and phthalates are $U$ qualified if the concentrations in the associated samples are less than 10 times the concentration detected in the blank. Because negative results for a blank may indicate instrument suppression, if the absolute concentration detected in the blank is greater than the MRL, concentrations in associated samples greater than the MRL but less than 10 times the absolute concentration detected in the blank are J qualified by AMEC.

- Laboratory blanks are aliquots of Ottawa sand that are processed by the laboratory using exactly the same procedures as the field samples. Laboratory blanks are used to monitor for contamination introduced by the laboratory during sample preparation and analysis.
- Rinsate blanks are prepared by passing analyte-free water through or over sample collection equipment and collecting the water in sample containers. Rinsate blanks are analyzed for the analytical suite required for the project. Rinsate blanks are used to monitor for possible sample contamination during the sample collection process and serve as a check on the effectiveness of field decontamination procedures.
- Trip blanks are aliquots of analyte free water that are placed in sample containers at the analytical laboratory and are then sent into the field with the sample containers that are used to collect field samples. Trip blanks are not opened in the field, but accompany the field samples back to the laboratory where they are analyzed as samples. Trip blanks are used to monitor for contamination that result from sample shipping and storage. For the purpose of this project, trip blanks are prepared and analyzed for VOCs only.


## LCS Recoveries

Laboratory control samples (LCS) and laboratory control sample duplicates (LCSD), also known as blank spike (BS) and blank spike duplicates (BSD), are aliquots of Ottawa sand that are spiked with the analytes of interest for an analytical method or a representative subset of those analytes. The spiked sand is then processed through the same extraction, concentration, cleanup, and analytical procedures as the samples they accompany. LCS recovery and precision are an indication of the ability of a laboratory to successfully perform an analytical method in an interference-free matrix. The laboratory's LCS control criteria were utilized to assess data quality for this data set.

## MS Recoveries

Matrix spikes (MS) and matrix spike duplicates (MSD) are prepared by adding known amounts of the analytes of interest for an analytical method, or a representative subset of those analytes, to an aliquot of sample. The spiked sample is then processed through the same extraction, concentration, cleanup, and analytical procedures as the unspiked samples in an analytical batch.

MS recovery and precision are an indication of the ability of a laboratory to successfully recover an analyte in the matrix of a specific sample or closely related sample matrices. It is important not to apply MS results for any specific sample to other samples without understanding how the sample matrices are related. The laboratory's MS/MSD control criteria were utilized to assess data quality for this data set.

The chain of custodies followed the QAPP-specified sample id nomenclature; however there was no other indication on the chain as to which sample to use, so the laboratory was unaware. The laboratory picked random samples and performed the MS/MSD analysis, with the exception of 8260. Due to insufficient sample volume an LCS/LCSD was performed in lieu of an MS/MSD for 8260 in order to show laboratory precision.

## Duplicates (Laboratory or Field)

Laboratory duplicates are replicate portions of a single field sample prepared and analyzed by the laboratory. This is used to demonstrate acceptable method precision by the Laboratory at the time or analysis. Field duplicates provide an indication of the reproducibility of the sampling and analysis procedures for a given sample matrix. Field duplicate samples were labeled blindly, so that the laboratory was not aware which sample was submitted in duplicate. Precision of less than $30 \%$ RPD were utilized to assess data quality.

Table 2 is provided with a list of all RPDs.

## Internal Standard Recoveries

Internal standards (IS) are compounds that are added to a sample extract after all preparatory steps are completed and before instrumental analysis. These compounds serve as standards for qualitative analysis using relative retention time and quantitative analysis using relative response factors (RFs). Methods that use IS calibration include requirements for changes in response to the IS relative to the initial calibration.

For USEPA Methods 8260B and 8270C, the IS compounds serve as standards for qualitative analysis using relative retention time and quantitative analysis using relative response factors
(RFs). Methods that use IS calibration include requirements for changes in response to the IS relative to the initial calibration.

IS response must fall between $50 \%$ and $200 \%$ of the response in the initial calibration. Because the area of the IS is used in the denominator of the equation for calculation of results using internal standardization, a response below $50 \%$ may indicate a possible positive bias, and a response above $200 \%$ may indicate a possible negative bias.

For USEPA Method 6020, the IS determines the existence and magnitude of instrument drift and physical interferences. The intensity of the internal standard response is monitored and compared to the intensity of the response for that internal standard in the calibration blank. The percent relative intensity ( $\% \mathrm{RI}$ ) in the sample shall fall within $60-125 \%$ of the response in the calibration blank.

## Surrogate Spike Recoveries

Surrogate spikes are used to evaluate accuracy, method performance, and extraction efficiency in each individual sample. Surrogate compounds are compounds not normally found in environmental samples, but which are similar to target analytes in chemical composition and behavior in the analytical process. The laboratory's surrogate control criteria were utilized to assess data quality for this data set.

## Data Reporting

The laboratory I qualified detected results with concentrations between MRL and MDL. AMEC agrees with the laboratory that these results are quantitative estimates and have therefore qualified these results as J on the data tables.

### 5.0 CHAIN OF CUSTODY AND SAMPLE RECEIPT CONDITION DOCUMENTATION

## SDG J0605714

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition or chain of custody (COC) documentation.

## SDG J0605735

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition or chain of custody (COC) documentation.

## SDG J0605780

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition or chain of custody (COC) documentation with the following exception.

- Samples SS007BC, SS074AA, SS074BA, SS015AA and SS015BA were not included on the COC by the field staff but added by the laboratory and appropriately analyzed.


## SDG J0605810

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition but a few COC documentation issues.

- The COC indicated that some of the samples were collected on $11 / 05 / 06$ however that was incorrect because samples were collected 12/05/06. The laboratory reported the appropriate sampling dates.


## SDG J0605839

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition but a number of COC documentation issues.

- The COC indicated that some of the samples were collected on $11 / 06 / 06$; however that is incorrect because samples were collected 12/06/06. The laboratory reported the appropriate sampling dates.
- Sample SS033AA was listed on the COC twice but Sample SS033BA was not listed on the COC. The laboratory updated the COC such that sample SS033BA was sampled at 16:25.


## SDG J0605876

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition or COC documentation except that the sample containers for sample SS0039BB were incorrectly labeled SS0039BD. Seven Trip Blanks were sent to the laboratory but not included on the COC; the lab appropriately analyzed for 8260 analysis.

## SDG J0605879

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition or COC documentation with the following exception.

- Five Trip Blanks were received by the laboratory but were not listed on the COC. The laboratory added them to the COC and analyzed them appropriately.


## SDG J0605890

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition or COC documentation with the following exception.

- Sample SS077DB was received by the laboratory but not on the COC. The laboratory added the sample to the COC and appropriately analyzed the sample.


## SDG J0605919

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition or COC documentation.

## SDG J0605944

The samples were received at the laboratory in good condition and within $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ temperature range. There were no anomalies associated with sample receipt condition or COC documentation.

### 6.0 SPECIFIC DATA VALIDATION FINDINGS FOR EACH ANALYTICAL METHOD

Sections 6.1 through 6.5 of this Data Validation Report contain narrative descriptions of data validation findings and data quality limitations.

### 6.1 Volatile Organic Compounds by USEPA Method 8260B

### 6.1.1 Sample Delivery Group (SDG) J0605714

### 6.1.1.1 Holding Times

The samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis for preserved soil samples.

### 6.1.1.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method- and QAPP-specified criteria for ion percent relative abundance.

### 6.1.1.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.1.4 Continuing Calibration

CCV recoveries were within acceptance limits except for acetone (37\%), 1,2,4trichlorobenzene (36\%), 1,2-dibromo-3-chloropropane ( $21 \%$ ) and methyl acetate ( $-22 \%$ ), which all had a $\%$ D greater than the QAPP requirement of $20 \%$.

- AMEC J qualified the acetone results for samples SS087AA and UJ qualified SS059AA, SS059BA, SS060AA, SS060BA, SS073AA, SS073BA, SS085BA, SS085AA, SS089AA, SS089BA, SS090AA, SS090BA and SS090BC.
- AMEC UJ qualified samples SS059AA, SS059BA, SS060AA, SS060BA, SS073AA, SS073BA, SS085BA, SS085AA, SS087AA, SS089AA, SS089BA, SS090AA, SS090BA and SS090BC for 1,2,4-trichlorobenzene and 1,2-dibromo-3-chloropropane.
- AMEC UJ qualified sample SS087BA for methyl acetate.


### 6.1.1.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples covered within this SDG except as described below:

Methylene chloride and toluene were detected below the MRL at a concentration of $1.2 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.97 \mu \mathrm{~g} / \mathrm{Kg}$, respectively; in the method blank JWG0603830-3.

- AMEC U qualified the detected methylene chloride in samples SS059AA, SS059BA, SS060BA and SS085BA.
- AMEC U qualified the detected toluene in samples SS059BA, SS060AA, SS073BA and SS085BA.

Methylene chloride was detected below the MRL at a concentration of $0.80 \mu \mathrm{~g} / \mathrm{L}$ in method blank JWG0603839-3.

- AMEC U qualified the detected result of $1.5 \mu \mathrm{~g} / \mathrm{L}$ in this sample.


## Trip Blank

A Trip Blank was not supplied to the laboratory with this sample delivery group.

### 6.1.1.6 LCS Recovery

Recoveries were within the laboratory-specified acceptance limits for the LCS with the following exceptions.

The LCS (JWG0603830-1) \% recovery for 1,3-dicholorobenzene was high at $114 \%$, no qualifications were necessary, as all associated samples were non-detect.

The LCSD (JWG0603830-2) \% recovery for acetone was high at 172\%, sample SS087AA has been J qualified due to the potential high bias.

### 6.1.1.7 Field Duplicates

Sample SS090BC was a field duplicate for SS090BA. All analytes were non-detect so data quality could not be assessed.

### 6.1.1.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

Affected Samples	IS	Analytes Affected	Notes
SS059BA,SS073AA,	1,4-Dichlorobenzene-d4	Isopropylbenzene, 1,3-   Dichlorobenzene, 1,4-	AMEC UJ qualified the   non-detected results for   SS073BA,SS085BA,
	Dichlorobenzene, 1,2-   Dichlorobenzene, 1,2-   possible low bias.		
SS085AA,SS089AAS		Dibromo-3-chloropropane,   1,2,4-Trichlorobenzene	
S089BA,SS090AASS			
090BA, SS090BC			

Beazer East, Inc Koppers Inc. Site Data Review / Validation Report

SS073BA SS090BA SS090BC	1,4-Dichlorobenzene-d4   Chlorobenzene-d5   Fluorobenzene	All in this fraction   All in this fraction   All in this fraction	AMEC R qualified the nondetected results for SS073BA due to extreme low bias.   AMEC UJ qualified the non-detected results
$\begin{aligned} & \text { SS089AA } \\ & \text { SS089BA } \\ & \text { SS090AA } \end{aligned}$	1,4-Dichlorobenzene-d4   Chlorobenzene-d5	Isopropylbenzene, 1,3-   Dichlorobenzene, 1,4-   Dichlorobenzene, 1,2-   Dichlorobenzene, 1,2-   Dibromo-3-chloropropane,   1,2,4-Trichlorobenzene,   Methylcyclohexane, cis-1,3-   Dichloropropene, MIBK, trans-1,3-Dichloropropene,   1,1,2-Trichloroethane,   Toluene,   Dibromochloromethane, 2-   Hexanone, EDB, PCE,   Chlorobenzene,   Ethylbenzene, m,p-Xylenes,   Bromoform, Styrene,   1,1,2,2-Tetrachloroethane, oXylene	AMEC UJ qualified the non-detected results for these analytes due to possible low bias.

### 6.1.1.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-specified limits for VOC analysis with the following exceptions.

4-Bromofluorobenzene was high in the following samples: SS059AA (132\%), SS059BA (144\%), SS060AA (130\%), SS073AA (143\%), SS085BA (150\%), SS085AA (144\%), SS087BA (133\%), SS089AA (142\%), SS089BA (130\%) and SS090AA (135\%).

- AMEC J qualified the $0.71 \mu \mathrm{~g} / \mathrm{L}$ result of tetrachloroethene in sample SS073AA. AMEC J qualified the $0.58 \mu \mathrm{~g} / \mathrm{L}$ result of toluene and the $0.51 \mu \mathrm{~g} / \mathrm{L}$ result of $1,4-$ dichlorobenzene in SS087BA due to the high surrogate recovery.

Toluene-d ${ }_{8}$ was also high in the following samples: SS059BA (140\%), SS073AA (147\%), SS085BA (147\%), SS085AA (139\%), SS087BA (140\%) and SS089AA (140\%). All the associated compounds for these samples were non-detect, so no qualifications were made.

### 6.1.2 SDG J0605735

### 6.1.2.1 Holding Times

The samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis for preserved soil samples.

### 6.1.2.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.1.2.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.2.4 Continuing Calibration

CCV recoveries were within acceptance limits except for methyl acetate ( $-22 \%$ ), which all had a $\%$ D greater than the QAPP requirement of $20 \%$.

- AMEC UJ qualified samples SS0079AA, SS079BA, SS067AA, SS067BA, SS067BB, SS069AA and SS069BA for methyl acetate.


### 6.1.2.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples covered in this report except as described below:

Methylene chloride was detected below the MRL at a concentration of $0.80 \mu \mathrm{~g} / \mathrm{Kg}$; in the method blank JWG0603839-3.

- AMEC U qualified the detected methylene chloride in samples SS079AA, SS079BA, SS067AA, SS067BA and SS067BB.

Acetone and methylene chloride were detected below the MRL at a concentration of $3.0 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.99 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in the method blank JWG0603887-3.

- AMEC U qualified the detected acetone and methylene chloride results of samples SS092AA, SS093AA, SS083BA, SS019AA, SS019BA, SS019BB, SS071AA, SS071BA, SS042BA, SS042BB and SS023AA.
- AMEC U qualified the detected methylene chloride results of samples SS083AA, SS081AA, SS081BA, SS054AA, SS054AB, SS054BA and SS042AA.

Acetone and methylene chloride were detected below the MRL at a concentration of $2.8 \mu \mathrm{~g} / \mathrm{Kg}$ and $1.0 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0603889-3.

- AMEC U qualified the detected acetone and methylene chloride results in sample SS040BA.
- AMEC U qualified the detected methylene chloride results of samples SS023BA, SS023BB and SS040AA.


## Trip Blank

A Trip Blank was not supplied to the laboratory with this sample delivery group.

### 6.1.2.6 LCS Recovery

Recoveries were within the laboratory-specified acceptance limits for the LCS.

### 6.1.2.7 Field Duplicates

Sample SS067BB was submitted as a field duplicate for SS067BA. All analytes were nondetect so data quality could not be assessed.

Sample SS019BB was submitted as a field duplicate for SS019BA. All analytes were nondetect so data quality could not be assessed.

Sample SS054AB was submitted as a field duplicate for SS054AA. Acetone was detected at low levels and had an elevated RDP at $80 \%$; AMEC J qualified the acetone result in both samples.

Sample SS042BB was submitted as a field duplicate for SS042BA. All analytes were nondetect so data quality could not be assessed.

Sample SS023BB was submitted as a field duplicate for SS023BA. All analytes were nondetect so data quality could not be assessed.

### 6.1.2.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

Affected Samples	IS	Analytes Affected	Notes
SS040AA,SS040BA,	1,4-Dichlorobenzene-d4	Isopropylbenzene, 1,3-	AMEC UJ qualified the
SS092AA,SS092BA,		Dichlorobenzene, 1,4-	non-detected results for   these analytes due to   SS054AA,SS054AB
Dichlorobenzene, 1,2-			
SS054BA,SS071AA		Dichlorobenzene, 1,2-Dibromo-	possible low bias.
SS071BA,SS042AA		Trichlorobene, 1,2,4-	
SS067AA,SS067BA			
SS067BB			

### 6.1.2.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-specified limits for VOC analysis with the following exceptions.

4-Bromofluorobenzene was high in the following samples: SS079AA (130\%), SS092AA (131\%), SS092BA (133\%), SS054AA (137\%), SS071AA (130\%), SS042AA (136\%), SS040AA (147\%), SS040BA (133\%), SS067AA (154\%), SS067BA (151\%), SS067BB (142\%) and $\operatorname{SS} 054 \mathrm{AB}(144 \%)$. All compounds associated with this surrogate were non-detect so no qualifications were made.

Toluene-d ${ }_{8}$ was also high in the following samples: SS067AA (147\%), SS067BA (151\%), SS067BB (141\%) and SS054A8 (139\%). Toluene was J qualified due to the high surrogate in sample SS067AA. All the other associated compounds for these samples were non-detect, so no qualifications were necessary.

### 6.1.3 SDG J0605780

### 6.1.3.1 Holding Times

The samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis for preserved soil samples.

### 6.1.3.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.1.3.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.3.4 Continuing Calibration

CCV recoveries were within acceptance limits except for bromomethane (30\%) which had a $\% \mathrm{D}$ greater than the QAPP requirement of $20 \%$.

- AMEC UJ qualified the non-detected results for samples SS014BA, SS018AA, SS018BA, SS017AA, SS017BA, SS016AA, SS016BA, SS007AA, SS007BA, SS007BC, SS074AA, SS074BA, SS015AA and SS015BA.


### 6.1.3.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples covered in this report except as described below:

Acetone and methylene chloride were detected below the MRL at a concentration of $2.8 \mu \mathrm{~g} / \mathrm{Kg}$ and $1.0 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in the method blank JWG0603889-3.

- AMEC U qualified the detected acetone results of samples SS050AA, SS050BA, SS025AA, SS034AA, SS034BA, SS013BA and SS012AC.
- AMEC U qualified the detected methylene chloride results of samples SS050AA, SS050BA, SS051AA, SS051BA, SS025AA, SS025BA, SS027AA, SS027BA, SS034AA, SS034BA, SS013AA, SS012AC and SS014AA.

Methylene chloride was detected below the MRL at a concentration of $2.0 \mu \mathrm{~g} / \mathrm{Kg}$ in the method blank JWG0603891-3.

- AMEC U qualified the detected methylene chloride results of samples SS014BC, SS018AA, SS018BA, SS017AA, SS017BA, SS016AA, SS016BA, SS007AA, SS007BA, SS007BC, SS074AA, SS074BA, SS015AA and SS015BA.

Methylene chloride and 1,2,4-trichlorobenzene were detected below the MRL at a concentration of $0.098 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.14 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0603968-2.

- AMEC U qualified the detected methylene chloride result of sample SS012BA.


## Trip Blank

A Trip Blank was not supplied to the laboratory with this sample delivery group.

### 6.1.3.6 LCS Recovery

Recoveries were within the laboratory-specified acceptance limits for the LCS with the following exceptions.

The LCS (JWG0603830-1) \% recovery for 1,3-dicholorobenzene was high at $114 \%$, no qualifications were necessary, as all associated samples were non-detect.

The LCSD (JWG0603830-2) \% recovery for acetone was high at $172 \%$, sample SS087AA has been J qualified due to the potential high bias.

### 6.1.3.7 Field Duplicates

Sample SS090BC was a field duplicate for SS090BA. All analytes were non-detect so data quality could not be assessed.

### 6.1.3.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

Affected Samples	IS	Analytes Affected	Notes

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

$\begin{aligned} & \text { SS059BA,SS073AA,SS073BA, } \\ & \text { SS085BA,SS085AA,SS089AA } \\ & \text { SS089BA,SS090AA, SS090BA, } \\ & \text { SS090BC } \end{aligned}$	1,4-Dichlorobenzened4	Isopropylbenzene, 1,3Dichlorobenzene, 1,4Dichlorobenzene, 1,2-   Dichlorobenzene, 1,2-Dibromo-3chloropropane, 1,2,4Trichlorobenzene	AMEC UJ qualified the nondetected results for these analytes due to possible low bias.
SS073BA   SS090BA   SS090BC	1,4-Dichlorobenzened4   Chlorobenzene-d5   Fluorobenzene	All in this fraction   All in this fraction   All in this fraction	AMEC R qualified the nondetected results for SS073BA due to extreme low bias.   AMEC UJ qualified the nondetected results
$\begin{aligned} & \text { SS089AA } \\ & \text { SS089BA } \\ & \text { SS090AA } \end{aligned}$	1,4-Dichlorobenzene-   d4   Chlorobenzene-d5	Isopropylbenzene, 1,3-   Dichlorobenzene, 1,4-   Dichlorobenzene, 1,2-   Dichlorobenzene, 1,2-Dibromo-3-   chloropropane, 1,2,4-   Trichlorobenzene,   Methylcyclohexane, cis-1,3-   Dichloropropene, MIBK, trans-   1,3-Dichloropropene, 1,1,2-   Trichloroethane, Toluene,   Dibromochloromethane, 2-   Hexanone, EDB, PCE,   Chlorobenzene, Ethylbenzene, m,p-Xylenes, Bromoform, Styrene, 1,1,2,2-   Tetrachloroethane, o-Xylene	AMEC UJ qualified the nondetected results for these analytes due to possible low bias.

### 6.1.3.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-specified limits for VOC analysis with the following exceptions.

4-Bromofluorobenzene was high in the following samples: SS059AA (132\%), SS059BA (144\%), SS060AA (130\%), SS073AA (143\%), SS085BA (150\%), SS085AA (144\%), SS087BA ( $133 \%$ ), SS089AA (142\%), SS089BA (130\%) and SS090AA (135\%).

- AMEC J qualified the $0.71 \mu \mathrm{~g} / \mathrm{L}$ result of tetrachloroethene in sample SS073AA. AMEC J qualified the $0.58 \mu \mathrm{~g} / \mathrm{L}$ result of toluene and the $0.51 \mu \mathrm{~g} / \mathrm{L}$ result of $1,4-$ dichlorobenzene in SS087BA due to the high surrogate recovery.

Toluene-d ${ }_{8}$ was also high in the following samples: SS059BA (140\%), SS073AA (147\%), SS085BA (147\%), SS085AA (139\%), SS087BA (140\%) and SS089AA (140\%). All the associated compounds for these samples were non-detect, so no qualifications were necessary.

### 6.1.4 SDG J0605810

### 6.1.4.1 Holding Times

The samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis for preserved soil samples.

### 6.1.4.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.1.4.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.4.4 Continuing Calibration

CCV recoveries were within acceptance limits except for bromomethane ( $29 \%, 28 \%, 30 \%$, and $31 \%$ ), dichlorodifluoromethane ( $21 \%$ ) and methylcyclohexane ( $22 \%$ ) which all had a \%D greater than the QAPP requirement of $20 \%$.

- AMEC UJ qualified the non-detected bromomethane results for SS008AA, SS008BA, SS009AA, SS009BA, SS006AA, SS006BA, SS004AA, SS004BA, SS004BB, SS002AA, SS002AC, SS002BA, SS011AA, SS011BA, SS058AA, SS058BA, SS037AA, SS037BA, SS043AA, SS043BB, SS044AA, SS044BA, SS076AA, SS076BA, SS010AA, SS010AB, SS010BA, SS021AA and SS021BA.
- AMEC UJ qualified the non-detected results for dichlorodifluoromethane and methylcyclohexane in samples SS004BB, SS002BA, SS011AA and SS011BA.


### 6.1.4.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples covered in this report except as described below:

Methylene chloride and acetone were detected below the MRL at a concentration of $1.3 \mu \mathrm{~g} / \mathrm{Kg}$, and $2.6 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0603901-3.

- AMEC U qualified the detected methylene chloride concentration in samples SS008AA, SS008BA, SS009BA, SS006AA, SS006BA, SS004AA, SS002AA, SS002AC, SS058AA, SS058BA, SS037AA, SS037BA, SS043AA and SS043BA.
- AMEC U qualified the detected acetone concentration in samples SS008BA, SS009AA, SS009BA, SS006AA, SS004AA, SS002AA, SS002AC and SS058BA.

Acetone and methylene chloride were detected below the MRL at a concentration of $4.6 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.81 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0603903-3.

- AMEC U qualified the detected acetone result of sample SS076BA.
- AMEC U qualified the detected methylene chloride result of samples SS043BB, SS044AA, SS044BA and SS076BA.

Acetone, methylene chloride and 1,2,4-trichlorobenzene were detected below the MRL at a concentration of $4.7 \mu \mathrm{~g} / \mathrm{Kg}, 0.86 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.46 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0603926-8.

- AMEC U qualified the detected acetone result of samples SS010AB and SS021AA.
- AMEC U qualified the detected methylene chloride result of samples SS021AA and SS021BA.

Acetone and methylene chloride were detected below the MRL at a concentration of $3.2 \mu \mathrm{~g} / \mathrm{Kg}$ and $37 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in the method blank JWG0603952-3.

- AMEC U qualified the detected acetone result of samples SS004BB and SS011AA.
- AMEC U qualified the detected methylene chloride result of samples SS004BB, SS002BA, SS011AA and SS011BA.


## Trip Blank

A Trip Blank was not supplied to the laboratory with this sample delivery group.

### 6.1.4.6 LCS Recovery

Recoveries were within the laboratory-specified acceptance limits for the LCS with the following exceptions.

The LCSD (JWG0603926-7) \% recovery for methylcyclohexane was high at $133 \%$, no qualifications were necessary, as all associated samples were non-detect.

The LCS (JWG0603952-1) and LCSD (JWG0603952-2) \% recovery for methylene chloride was high at $171 \%$ and $447 \%$ respectively, no additional qualifications were necessary, as all associated samples were already $U$ qualified due to blank contamination.

The LCS (JWG0603952-1) \% recovery for methylcyclohexane was high at $133 \%$, no qualifications were necessary, as all associated samples were non-detect.

### 6.1.4.7 Field Duplicates

Sample SS004BB was submitted as a field duplicate for SS004BA. All analytes were nondetect so data quality could not be assessed.

Sample SS002AC was submitted as a field duplicate for SS002AA. All analytes were nondetect so data quality could not be assessed.

Sample SS010AB was submitted as a field duplicate for SS010AA. All analytes were nondetect so data quality could not be assessed.

### 6.1.4.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

Affected Samples	IS	Analytes Affected	Notes

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

SS043BB,SS044AA,SS044BA, SS076BA, SS010AA,SS010AB, SS010BA,SS021AA,SS021BA, SS002AA, SS067AC,SS058AA SS058BA,SS037AA, SS043BA	1,4-Dichlorobenzene-d4	Isopropylbenzene, 1,3Dichlorobenzene, 1,4Dichlorobenzene, 1,2Dichlorobenzene, 1,2-Dibromo-3-chloropropane, 1,2,4-Trichlorobenzene	AMEC UJ qualified the non-detected results for these analytes due to possible low bias.
SS010AA	1,4-Dichlorobenzene-d4 Chlorobenzene-d5	Isopropylbenzene, 1,3Dichlorobenzene, 1,4Dichlorobenzene, 1,2Dichlorobenzene, 1,2-Dibromo-3-chloropropane, 1,2,4-Trichlorobenzene, Methylcyclohexane, cis-1,3-Dichloropropene, MIBK, trans-1,3-   Dichloropropene, 1,1,2Trichloroethane, Toluene, Dibromochloromethane, 2Hexanone, EDB, PCE, Chlorobenzene, Ethylbenzene, m,pXylenes, Bromoform, Styrene, 1,1,2,2-   Tetrachloroethane, oXylene	AMEC UJ qualified the non-detected results for these analytes due to possible low bias.

### 6.1.4.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-specified limits for VOC analysis with the following exceptions.

4-Bromofluorobenzene was high in the following samples: SS002AA (130\%), SS002AC (134\%), SS058AA (138\%), SS058BA (132\%), SS043BA (131\%), SS043BB (148\%), SS044AA (143\%), SS044BA (135\%), SS010AB (131\%), SS021AA (140\%) and SS010AA ( $137 \%$ ). All compounds associated with this surrogate were non-detect so no qualifications were necessary.

Toluene- $\mathrm{d}_{8}$ was high in SS010AA (137\%). All the associated compounds for this sample were non-detect, so no qualifications were necessary.

### 6.1.5 SDG J0605839

### 6.1.5.1 Holding Times

The samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis for preserved soil samples.

### 6.1.5.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.1.5.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.5.4 Continuing Calibration

CCV recoveries were within acceptance limits except for Bromomethane, which was high in all three CCVs and methylcyclohexane. Both analytes had a \%D greater than the QAPP requirement of $20 \%$.

- AMEC UJ qualified the non-detected results for bromomethane in samples SS036AA, SS036AC, SS036BA, SS036CA, SS036DA, SS048AA, SS048BA, SS048BB, SS048CA, SS048DA, SS095AA, SS095BA, SS095CA, SS095DA, SS057AA, SS057BA, SS057CA, SS057CB, SS057DA, SS080AA, SS080BA, SS080BB, SS080CA, SS080DA, SS035AA, SS035BA, SS035CA, SS035DA, SS033AA, SS033BA, SS032AA and SS032BA.
- AMEC UJ qualified methylcyclohexane results for SS036BA and SS080CA.


### 6.1.5.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples covered in this SDG except as described below:

Acetone, methylene chloride and 1,2,4-trichlorobenzene were detected below the MRL at a concentration of $4.7 \mu \mathrm{~g} / \mathrm{Kg}, 0.86 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.46 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0603926-8.

- AMEC U qualified the detected acetone in samples SS036AA, SS036AC, SS036CA, SS036DA, SS048AA, SS048DA, SS095AA and SS095CA.
- AMEC U qualified the detected methylene chloride in samples SS036AA, SS036CA, SS036DA, SS048BA, SS048BB and SS095BA.

Acetone and methylene chloride were detected below the MRL at a concentration of $5.4 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.80 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0603928-3.

- AMEC U qualified the detected acetone in samples SS057AA, SS057BA, SS057CA, SS057CB, SS057DA, SS080AA, SS080BB, SS080DA, SS035AA, SS035BA, SS035CA, SS035DA, SS033AA, SS033BA and SS032AA.
- AMEC U qualified the detected methylene chloride in samples SS057CB, SS080BA, SS080BB, SS080DA, SS035BA, SS035CA and SS032BA.

Acetone, methylene chloride and toluene were detected below the MRL at a concentration of $3.6 \mu \mathrm{~g} / \mathrm{Kg}, 0.77 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.52 \mu \mathrm{~g} / \mathrm{Kg}$, respectively in method blank JWG0603960-3.

- AMEC U qualified the detected methylene chloride in samples SS036BA and SS080CA
- AMEC U qualified the detected acetone in sample SS080CA.


## Trip Blank

A Trip Blank was not supplied to the laboratory with this sample delivery group.

### 6.1.5.6 LCS Recovery

Recoveries were within the laboratory-specified acceptance limits for the LCS with the following exceptions.

The LCSD (JWG0603926-7) \% recovery for methylcyclohexane was high at $133 \%$, no qualifications were necessary, as all associated samples were non-detect.

The LCS (JWG0603960-1) \% recovery for bromomethane and methylcyclohexane were high at $142 \%$ and $132 \%$ respectively, all associated samples were non-detect so no qualifications were made.

### 6.1.5.7 Field Duplicates

Sample SS036AC was submitted as a field duplicate for SS036AA. All analytes were nondetect so data quality could not be assessed.

Sample SS048BB was submitted as a field duplicate for SS048BA. All analytes were nondetect except for acetone which had an elevated RPD or $53 \%$. AMEC J qualified the acetone result in both samples.

Sample SS0057CB was submitted as a field duplicate for SS057CA. All analytes were nondetect so data quality could not be assessed.

Sample SS080BB was submitted as a field duplicate for SS080BA. All analytes were nondetect so data quality could not be assessed.

### 6.1.5.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

Affected   Samples	IS	Analytes Affected	Notes
SS095AA,	1,4-Dichlorobenzene-d4	Isopropylbenzene, 1,3-   Dichlorobenzene, 1,4-   Dichlorobenzene, 1,2-   SS057AA,	AMEC UJ qualified the non-   detected results for all these   analytes due to possible low bias.   SS080AA,
SS035AA,		Dichlorobenzene, 1,2-Dibromo-3-   chloropropane, 1,2,4-   Trichlorobenzene	
SS032AA			

### 6.1.5.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-specified limits for VOC analysis with the following exceptions.

4-Bromofluorobenzene was high in samples SS057AA (133\%) and SS032AA (130\%). All associated compounds were non-detect so no qualifications were necessary.

### 6.1.6 SDG J0605876

### 6.1.6.1 Holding Times

All samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis of preserved soil samples.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.1.6.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.1.6.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.6.4 Continuing Calibration

CCV recoveries for VOC analysis of the samples covered in this report were within acceptance limits, except as tabulated below:

CCAL ID	Analytes with Recoveries Outside Acceptance Limits	Effects on Data Usability
JWG0063931-2   analyzed on   December 12, 2006	Dichlorodifluoromethane (74\%) Bromomethane (128\%)	AMEC UJ qualified the non-detected dichlorodifluoromethane results from samples SS097AA, SS097BA, SS097CA, SS097DA, SS001BA, SS001CA, SS001DA, SS038AA, SS038AC, SS038BA, SS038CA, SS038DA, SS038DB, SS039AA, SS039BA, SS039BB, SS039CA, SS039DA, and SS029AA because of possible low bias in the analytical results.
		The bromomethane recovery was high but not detected in the associated samples. Data usability is not adversely affected by the high bias.
JWG0603933-2   analyzed on   December 12, 2006	Dichlorodifluoromethane (70\%) Bromomethane (124\%) Acetone (121\%)	AMEC UJ qualified the non-detected dichlorodifluoromethane results from samples SS029BA, SS029CA, SS029DA, SS096AA, SS096BA, SS096CA, SS096DA, SS028AA, SS028AB, SS028BA, SS028CA, SS028DA, SS028DC, SS072AA, SS072BA, SS072CA, SS072CC, SS072DA, SS082AA, and SS082BA because of possible low bias in the analytical results.
		The bromomethane recovery was high but not detected in the associated samples. Data usability is not adversely affected by the high bias.
		AMEC previously U qualified the detected acetone results from samples SS029BA, SS029CA, SS029DA, SS096AA, SS096BA, SS096CA, SS096DA, SS028AA, SS028AB, SS028BA, SS028CA, SS028DA, SS028DC, SS072BA, SS072CA, SS072CC, SS072DA, SS082AA, and SS082BA. Further qualification is not required.
JWG06063951-2   analyzed on   December 11, 2006	Dichlorodifluoromethane (72\%)	AMEC UJ qualified the non-detected dichlorodifluoromethane results from samples SS028BA, SS082CA, SS082DA, SS098AA, SS098BA, SS098CA, SS098DA, SS099AA, SS099BA, SS099CA, SS099DA, SS084AA, SS084CA, SS084DA and SS062AA because of possible low bias in the analytical results.
Project No.: 472008401   Q:IProjects\Beazer Gainesville\2007\Data Summary   ReportIDVR_1_BeazerGainesville-REV.doc		03/29/2007 Page 25

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

CCAL ID	Analytes with Recoveries   Outside Acceptance Limits	Effects on Data Usability
JWG06063953-2   analyzed on   December 11, 2006	Dichlorodifluoromethane (122\%)   Bromomethane (132\%)   Methylcyclohexane (122\%)	The recoveries were high but these analytes were not   detected in the associated samples. Data usability is not   adversely affected by the high bias.
JWG06063961-2   analyzed on   December 12, 2006	Dichlorodifluoromethane (122\%)   Bromomethane (136\%)   Methylcyclohexane (126\%)	The recoveries were high but these analytes were not   detected in the associated samples. Data usability is not   adversely affected by the high bias.

### 6.1.6.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples in this SDG except as described below.

Blank ID	Analyte Concentrations ( $\mu \mathrm{g} / \mathrm{Kg}$ )	Effects on Data Usability
JWG0603930-3	Acetone (44)Methylene Chloride (1.5)1,2,4-Trichlorobenzene (0.38)	AMEC U qualified the detected acetone results from samples SS097AA, SS097BA, SS097CA, SS097DA, SS001BA, SS001CA, SS001DA, SS038AA, SS038AC, SS038BA, SS038CA, SS038DA, SS038DB, SS039AA, SS039BA, SS039BB, SS039CA, SS039DA and SS029AA.
		AMEC U qualified the detected methylene chloride results from samples SS097AA, SS097BA, SS097DA, SS001BA, SS001CA, SS001DA, SS038AA, SS038AC, SS038CA, and SS038DB.
JWG0603932-3	Acetone (33)   Methylene Chloride (1.1)	AMEC U qualified the detected acetone results from samples SS029BA, SS029CA, SS029DA, SS096BA, SS096CA, SS096DA, SS028AA, SS028AB, SS028CA, SS028DA, SS028DC, SS072BA, SS072CA, SS072CC, SS082AA, and SS082BA.
		AMEC U qualified the detected methylene chloride results from samples SS096AA and SS072BA.
JWG0603950-3	Acetone (4.5)Methylene Chloride (2.2)Toluene (0.66)	AMEC U qualified the detected acetone results from samples SS028BA, SS098AA, SS098BA, SS098CA, SS098DA, SS099AA, SS099BA, SS099DA, SS084CA and SS084DA.
		AMEC U qualified the detected methylene chloride results from samples SS028BA, SS082DA, SS098BA, SS098CA, SS099AA, SS099BA, SS099CA, SS099DA, SS084AA, SS084CA, SS084DA and SS062AA.
JWG0603952-3	Acetone (3.2)   Methylene Chloride (37)	AMEC U qualified the detected acetone results from samples SS062CA, SS062CC, SS062DA, and SS064CA.
		AMEC U qualified the detected methylene chloride results from samples SS064AA and SS064CA.
JWG0603960-3	Acetone (3.6) Methylene Chloride (0.77)	AMEC U qualified the detected acetone from samples SS001AA, SS072DA and SS064DA.


Blank ID	Analyte Concentrations ( $\boldsymbol{\mu g} / \mathbf{K g})$	Effects on Data Usability
	Toluene (0.52)	AMEC U qualified the detected methylene chloride results   from samples SS001AA, SS072DA, SS084BA, SS062BA   and SS064DA.

## Trip Blanks

VOCs were not detected in the trip blanks associated with the samples covered in this SDG expect as tabulated below.

Sample ID	Analyte Concentrations ( $\mu \mathbf{g} / \mathbf{L}$ )	Effects on Data Usability
Trip Blank 1	Acetone (4.2)   Methylene Chloride (0.65)	Similar or higher concentrations for acetone and   methylene chloride were observed in associated method   blanks. AMEC previously U qualified associated   samples based on method blank contamination. Further   qualification is not warranted.
Trip Blank 2	Acetone (5.5)   Methylene Chloride (0.77)	
Trip Blank 3	Methylene Chloride (0.51)	

### 6.1.6.6 LCS/LCSD Recovery

Recoveries were within the laboratory-established acceptance limits for all LCSs associated with samples in this SGD, except as tabulated below.

LCS ID	Analytes with recoveries outside acceptance limits (\%)	Effects on Data Usability
JWG0604079-1/2	$\begin{aligned} & \text { 1,1,2-Trichloroethane }(116 \%) \\ & \text { 1,2-Dibromoethane }(119 \% / 118 \%) \end{aligned}$	The recoveries were high and these analytes were not detected in the associated samples. Data usability is not adversely affected by the high biases.
JWG0603930-1/2	Acetone (156\%)	AMEC previously U qualified the detected acetone results from samples SS097AA, SS097BA, SS097CA, SS097DA, SS001BA, SS001CA, SS001DA, SS038AA, SS038AC, SS038BA, SS038CA, SS038DA, SS038DB, SS039AA, SS039BA, SS039BB, SS039CA, SS039DA and SS029AA because of blank contamination. Further qualification is not required.
JWG0603932-1/2	Acetone (149\%/154\%)	AMEC previously U qualified the detected acetone results from samples SS029BA, SS029CA, SS029DA, SS096BA, SS096CA, SS096DA,

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

LCS ID	Analytes with recoveries outside   acceptance limits (\%)	Effects on Data Usability		
		SS028AA, SS028AB, SS028CA, SS028DA,   SS028DC, SS072BA, SS072CA, SS072CC,   SS072DA, SS082AA and SS082BA because of   blank contamination. Further qualification is not   required.		
JWG0603950-1/2	Methylene Chloride (135\%)	AMEC previously U qualified the detected   methylene chloride results from samples SS028BA,   SS082DA, SS098BA, SS098CA, SS099AA,   SS099BA, SS099CA, SS099DA, SS084AA,   SS084CA, SS084DA and SS062AA because of   blank contamination. Further qualification is not   required.		
JWG0603951-1/2	Methylene Chloride (171\%/447\%)	AMEC previously U qualified the detected   methylene chloride results from samples SS064AA   and SS064CA because of blank contamination.		
Further qualification is not required.			,	The recovery was high but not detected in the
:---				
associated samples. Data usability is not adversely				
affected by the high bias.				

### 6.1.6.7 Field Duplicates

Sample SS038DB was submitted as a field duplicate for SS038DA. Acetone was the only analyte detected in both samples and had an RPD $\leq 30 \%$.

Sample SS039BB was submitted as a field duplicate for SS039BA. AMEC has already U qualified the acetone result in both samples so no further qualifications are necessary.

Sample SS028AB was submitted as a field duplicate for SS028AA. AMEC has already U qualified the acetone result in both samples so no further qualifications are necessary.

### 6.1.6.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

Sample ID	Internal Standard with recoveries   outside acceptance limits	Effects on Data Usability
SS097AA	1,4-Dichlorobenzene-d ${ }_{4}$	The recoveries were low and associated analytes were not   SS096AA   SS0cted in the sample. Because low internal standard
SS028DA		recoveries indicated a possible high bias on the analytical


Sample ID	Internal Standard with recoveries   outside acceptance limits	Effects on Data Usability
SS028DC		results, data usability is not adversely affected by the low
SS072AA		internal standard recoveries.
SS082AA		
SS082BA		
SS062AA		

### 6.1.6.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-established limits for VOC analysis of the samples covered in this SDG, except as tabulated below.

Sample ID	Surrogates with recoveries outside acceptance limits	Effects on Data Usability
Trip Blank 1 Trip Blank 2	Tolune-d ${ }_{8}$ (124\%)	The recoveries were high and associated analytes were not detected in the sample. Data usability is not adversely affected by the high biases.
Trip Blank 3 Trip Blank 5 Trip Blank 7	Tolune-d ${ }_{8}(122 \%)$	
Trip Blank 4	Tolune- $\mathrm{d}_{8}(121 \%)$	
Trip Blank 6	Tolune-d ${ }_{8}$ (123\%)	
SS097AA	4-Bromofluorobenzene (135\%)	
SS096AA	4-Bromofluorobenzene (136\%)	
SS028DA	4-Bromofluorobenzene (157\%)	
SS028DC	4-Bromofluorobenzene (138\%)	
SS072AA	4-Bromofluorobenzene (135\%)	
SS082BA	4-Bromofluorobenzene (132\%)	AMEC J qualified the detected ethylbenzene, styrene, o-xylene, and m\&p-xylenes results from this sample because of possible high bias in the analytical results.

### 6.1.7 SDG J0605879

### 6.1.7.1 Holding Times

The samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis for preserved soil samples.

### 6.1.7.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.1.7.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.7.4 Continuing Calibration

CCV recoveries were within acceptance limits except for bromomethane (49\%), dibromochloromethane ( $24 \%$ ) and bromoform ( $31 \%$ ) which all had a \%D greater than the QAPP requirement of $20 \%$.

- AMEC UJ qualified the bromomethane results for samples SS100AA, SS100BA, SS100CA, SS100DA, SS100DB, SS066AA, SS066AB, SS066BA, SS066CA, SS066DC, SS005AA, SS005BA, SS005CA, SS005DA, SS003AA, SS003BA, SS003CA, SS003CB, SS003DA and SS066DA.
- AMEC UJ qualified the dibromochloromethane and bromoform in samples SS100DA and SS100DB.


### 6.1.7.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples covered in this report except as described below:
$1,2,4-$ Trichlorobenzene was detected below the MRL at a concentration of $0.88 \mu \mathrm{~g} / \mathrm{Kg}$ in method blank JWG0604019-4; all samples were non-detect so data usability was not affected.

Acetone, methylene chloride and $\mathrm{m}, \mathrm{p}$-xylenes were detected below the MRL at a concentration of $2.5 \mu \mathrm{~g} / \mathrm{Kg}, 1.8 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.87 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0604044-3.

- AMEC U qualified the detected methylene chloride for samples SS100AA, SS100BA, SS100CA, SS100DA, SS100DB, SS066AA, SS066AB, SS066BA, SS066CA, SS066DA, SS066DC, SS005AA, SS005BA, SS005CA, SS005DA, SS003AA, SS003BA, SS003CA, SS003CB and SS003DA.
- AMEC U qualified the detected acetone for samples SS066CA, SS066DA, SS066DC, SS005BA, SS005CA, SS005DA, SS003AA, SS003CA, SS003CB and SS003DA.

Acetone and methylene chloride were detected below the MRL at a concentration of $2.7 \mu \mathrm{~g} / \mathrm{Kg}$ and $2.4 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0604046-3.

- AMEC U qualified the detected methylene chloride for samples SS086BA, SS086BB, SS088AA, SS088BA, SS091AA, SS091BA, SS075AA, SS075BA, SS077AA, SS077BA, SS049AA, SS049BA, SS052AA, SS052BA, SS068AA and SS068BA.
- AMEC U qualified the detected acetone for samples SS091AA, SS075BA, SS077AA, SS049AA, SS049BA, SS052AA and SS068BA.

Methylene Chloride, ethylbenzene, m,p-xylenes and 1,2,4-trichlorobenzene were detected below the MRL at a concentration of $1.4 \mu \mathrm{~g} / \mathrm{Kg}, 0.48 \mu \mathrm{~g} / \mathrm{Kg}, 1.5 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.45 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0604058-3.

- AMEC U qualified the detected methylene chloride for sample SS086AA.


## Trip Blank

VOCs were not detected in the trip blanks associated with this SDG except as described below.

Sample ID	Analyte Concentrations   $(\boldsymbol{\mu g} / \mathbf{L})$	Effects on Data Usability
Trip Blank 1	Acetone (3.3)	AMEC U qualified detected Acetone results in SS100AA,   SS100BA, SS066AA, SS066AB, SS066BA, SS066CA,
Trip Blank 2	Acetone (4.3)	S066DA, SS066DC, SS005BA, SS003AA, SS003BA,
SS003CA, SS003DA, SS086AA, SS075BA, SS077AA,		
Srip Blank 3	SS049BA and SS068BA.	

### 6.1.7.6 LCS Recovery

Recoveries were within the laboratory-specified acceptance limits for the LCSs with the following exceptions.

The LCS (JWG0604019-3) \% recovery was low for dichlorodifluoromethane (59\%) and bromomethane (73\%). AMEC UJ qualified the non-detected results in Trip Blank 1, Trip Blank 2, Trip Blank 3, Trip Blank 4 and Trip Blank 5.

The LCS and LCSD (JWG0604044-1, -2) \% recoveries for bromomethane were high at $162 \%$ and $161 \%$ respectively. All the associated samples were non-detect so no qualifications were necessary.

The LCS (JWG0604044-1) \% recovery was low for 2-hexanone (77\%). AMEC UJ qualified the non-detected results in samples SS100AA, SS100BA, SS100CA, SS100DA, SS100DB, SS066AA, SS066AB, SS066BA, SS066CA, SS066DA, SS066DC, SS005AA, SS005BA, SS005CA, SS005DA, SS003AA, SS003BA, SS003CA, SS003CB and SS003DA.

The LCS and LCSD (JWG0604100-1, -2) \% recoveries were low for dichlorodifluoromethane ( $54 / 49 \%$ ). Carbon disulfide was low in the LCSD at $70 \%$. Cyclohexane was low in the LCSD at $65 \%$. No qualifications were necessary as these compounds were not reported from this analytical run.

### 6.1.7. $\quad$ Field Duplicates

Sample SS100DB was submitted as a field duplicate for SS100DA. The RPDs for acetone ( $45 \%$ ) and methyl ethyl ketone ( $70 \%$ ) were $\geq 30 \%$ and were J qualified by AMEC.

Sample SS066AB was submitted as a field duplicate for SS066AA. All analytes were nondetect so data quality could not be assessed.

Sample SS066DC was submitted as a field duplicate for SS066DA. All analytes were nondetect so data quality could not be assessed.

Sample SS003CB was submitted as a field duplicate for SS003CA. All analytes were nondetect so data quality could not be assessed.

Sample SS086BB was submitted as a field duplicate for SS086BA. Acetone was the only compound detected and the RPD was $87 \%$. AMEC J qualified the acetone result in both samples.

### 6.1.7.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

| Affected Samples | IS | Analytes Affected | Notes |
| :--- | :---: | :---: | :---: | | Project No.: 472008401 |
| :--- |
| Q:IProjects\Beazer Gainesvillel2007\Data Summary <br> ReportlDVR_1_BeazerGainesville-REV.doc |

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report
$\left.\begin{array}{|l|c|c|l|}\hline \begin{array}{l}\text { SS100BA, SS088AA } \\ \text { SS088BA,SS091AA, } \\ \text { SS075AA, SS075BA, } \\ \text { SS077AA, SS068BA }\end{array} & \begin{array}{c}\text { 1,4-Dichlorobenzene- } \\ \text { d4 }\end{array} & \begin{array}{c}\text { Isopropylbenzene, 1,3- } \\ \text { Dichlorobenzene, 1,4- } \\ \text { Dichlorobenzene, 1,2- } \\ \text { Dichlorobenzene, 1,2-Dibromo-3- } \\ \text { chloropropane, 1,2,4- } \\ \text { Trichlorobenzene }\end{array} & \begin{array}{l}\text { AMEC UJ qualified the } \\ \text { non-detected results for } \\ \text { these analytes due to } \\ \text { possible low bias. }\end{array} \\ \hline \begin{array}{ll}\text { SS100CA, } \\ \text { SS100DA,SS100DB }\end{array} & \begin{array}{c}\text { 1,4-Dichlorobenzene- } \\ \text { d4 }\end{array} & \begin{array}{c}\text { Isopropylbenzene, 1,3- } \\ \text { Dichlorobenzene, 1,4- } \\ \text { Dichlorobenzene, 1,2- }\end{array} & \begin{array}{l}\text { AMEC R qualified the non- } \\ \text { detected results for these } \\ \text { analytes due to extreme low } \\ \text { bias. }\end{array} \\ \hline \text { SS100CA,SS100DA } & \text { Chlorobenzene-d5 } & \begin{array}{c}\text { Dichlorobenzene, 1,2-Dibromo-3- } \\ \text { chloropropane, 1,2,4- } \\ \text { Trichlorobenzene }\end{array} & \begin{array}{l}\text { Methylcyclohexane, cis-1,3- } \\ \text { Dichloropropene, MIBK, trans- } \\ \text { 1,3-Dichloropropene, 1,1,2- } \\ \text { Trichloroethane, Toluene, }\end{array}\end{array} \begin{array}{l}\text { AMEC UJ qualified the } \\ \text { non-detected results for } \\ \text { these analytes due to } \\ \text { possible low bias. }\end{array}\right\}$

### 6.1.7.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-specified limits for VOC analysis with the following exceptions.

4-Bromofluorobenzene was high in the following samples: SS100BC (131\%), SS100CA (171\%), SS 100DA (217\%), SS100DB (191\%) and SS091AA (130\%). All associated compounds were non-detect, so no qualifications were necessary.

Toluene- $\mathrm{d}_{8}$ was also high in the following samples: SS100DA (137\%) and SS091AA (141\%). AMEC J qualified the toluene result in SS100DA. All other associated compounds were nondetect, so no additional qualifications were necessary.

### 6.1.8 SDG J0605890

### 6.1.8.1 Holding Times

The samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis for preserved soil samples.

### 6.1.8.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.1.8.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.8.4 Continuing Calibration

CCV recoveries were within acceptance limits except for bromomethane ( $24 \%$ and $36 \%$ ), which both had a $\%$ D greater than the QAPP requirement of $20 \%$.

- AMEC UJ qualified the bromomethane results for samples SS041AA, SS041BA, SS030AA, SS030BA, SS094AA, SS094AB, SS094BA, SS101AA, SS101BA, SS045AA, SS045BA, SS047AA, SS047AC, SS047BA, SS024AA, SS024BA, SS086CA, SS86DA, SS088CA, SS088DA, SS091CA, SS091DA, SS068CA, SS068DA, SS078AA, SS078BA, SS078CA, SS078DA, SS075CA, SS075DA, SS077CA, SS077DA, SS049CA, SS049DA, SS041CA, SS041DA, SS030CA, SS030DA and SS077DB.


### 6.1.8.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples covered in this report except as described below:

Methylene chloride, ethylbenzene, $m, p$-xylenes and 1,2,4-trichlorobenzene were detected below the MRL at a concentration of $1.4 \mu \mathrm{~g} / \mathrm{Kg}, 0.48 \mu \mathrm{~g} / \mathrm{Kg}, 1.5 \mu \mathrm{~g} / \mathrm{Kg}$, and $0.45 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0604058-3.

- AMEC U qualified the detected methylene chloride for samples SS041AA, SS041BA, SS030AA, SS030BA, SS094AA, SS094AB, SS094BA, SS101AA, SS101BA, SS045AA, SS045BA, SS047AA, SS047AC, SS047BA, SS024AA, SS024BA, SS086CA, SS086DA and SS088CA.

Methylene chloride, ethylbenzene and m,p-xylenes were detected below the MRL at a concentration of $1.7 \mu \mathrm{~g} / \mathrm{Kg}, 0.73 \mu \mathrm{~g} / \mathrm{Kg}$ and $2.3 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0604060-3.

- AMEC U qualified the detected methylene chloride for samples SS088DA, SS091CA, SS091DA, SS068CA, SS068DA, SS078AA, SS078BA, SS078DA, SS075CA, SS075DA, SS077CA, SS077DA, SS049CA, SS049DA, SS041CA, SS041DA, SS030CA, SS030DA and SS077DA.
- AMEC U qualified the detected m,p-xylenes for samples SS077CA and SS077DA.
- AMEC U qualified the detected ethylbenzene for samples SS077CA and SS077DA.


## Trip Blank

A Trip Blank was not supplied to the laboratory with this sample delivery group.

### 6.1.8.6 LCS Recovery

Recoveries were within the laboratory-specified acceptance limits for the LCS.

### 6.1.8.7 Field Duplicates

Sample SS094AB was submitted as a field duplicate for SS094AA. Acetone was the only analyte detected and the RPD was $\leq 30 \%$, so no qualifications were necessary.

Sample SS047AC was submitted as a field duplicate for SS047AA. Acetone was the only analyte detected and the RPD was $\leq 30 \%$, so no qualifications were necessary.

Sample SS077DB was submitted as a field duplicate for SS077DA. AMEC J qualified the results for 2-butanone (171\%), o-xylene ( $130 \%$ ) and styrene ( $120 \%$ ) due to elevated RPDs.

### 6.1.8.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists
the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

Affected Samples	IS	Analytes Affected	Notes		
SS041AA, SS101AA   SS101BA,SS077DB	1,4-Dichlorobenzene-   d4	Isopropylbenzene, 1,3-   Dichlorobenzene, 1,4-   Dichlorobenzene, 1,2-   Dichlorobenzene, 1,2-Dibromo-3-   chloropropane, 1,2,4-   Trichlorobenzene	AMEC UJ qualified the   non-detected results for   these analytes due to   possible low bias.		
SS077CA	1,4-Dichlorobenzene-   d4	Isopropylbenzene, 1,3-   Dichlorobenzene, 1,4-   Dichlorobenzene, 1,2-	AMEC R qualified the   non-detected results for   these analytes due to   extremely low bias.		
Dichlorobenzene, 1,2-Dibromo-3-					
chloropropane, 1,2,4-					
Trichlorobenzene				$\quad$	
:---					

### 6.1.8.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-specified limits for VOC analysis with the following exceptions.

4-Bromofluorobenzene was high in the following samples: SS101BA (140\%), SS077CA ( $146 \%$ ) and SS077DB ( $156 \%$ ). All associated compounds for these samples were non-detect, so no qualifications were necessary.

### 6.1.9 SDG J0605919

### 6.1.9.1 Holding Times

All samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis of preserved aqueous samples and soil samples.

### 6.1.9.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.1.9.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG, except as described below.

ICAL and instrument ID	Analytes with \%RSD>15\%	Effects on Data Usability
CAL1031 analyzed 12/12/2006 on instrument MS52.i	$\begin{gathered} \text { 1,1-Dichloroethene (16.4\%) } \\ \text { Bromoform }(19.1 \%) \end{gathered}$	AMEC UJ qualified the non-detected 1,1-dichloroethene and bromoform results from samples EB-01 and EB-02 because of possible bias in the analytical results.
$\begin{aligned} & \text { CAL1037 analyzed } \\ & \text { 12/20/2006 on } \\ & \text { instrument MS52.i } \end{aligned}$	Dichlorodifluoromethane (16\%)   Bromomethane (17.5\%)   Chloroethane (17.1\%)   Tetrachloroethene (28.1)   Bromoform (21.9\%)	AMEC UJ qualified the non-detected dichlorodifluoromethane, bromomethane, chloroethane, tetrachloroethene, and bromoform results from samples SS094DA, SS101CA and SS101DA because of possible bias in the analytical results.
$\begin{aligned} & \text { CAL1026 analyzed } \\ & \text { 12/06/2006 on } \\ & \text { instrument MS53.i } \end{aligned}$	Bromomethane (24.2\%)   Chloroethane (19.3\%)	AMEC UJ qualified the non-detected bromomethane and chloroethane results from samples SS094CA, SS52CA, SS52DA, SS047CA, SS047DA, SS045CA, SS045DA, SS024CA, SS024DA, SS070AA, SS070AB, SS070BA, SS070CA, SS070DA, SS031AA, SS031BA, SS031CA, SS031DA, SS031DB, SS026AA, SS026BA, SS026CA, SS026CC, SS026DA, SS007CA, SS007DA, SS007DB, SS0022AA, SS0022AB, SS0022BA, SS0022CA, SS0022DA, SS020AA, SS020BA, SS020CA, SS020CC, SS020DA, SS046AA, SS046BA, SS046CA, SS046DA, SD001AA, SD001AB, SD002AA, SD003AA, SD004AA and SD004BA because of possible bias in the analytical results.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.9.4 Continuing Calibration

CCV recoveries for VOC analysis of the samples covered in this report were within acceptance limits, except as tabulated below:

CCAL ID	Analytes with Recoveries   Outside Acceptance Limits	Effects on Data Usability
JWG0604088-2   analyzed on   December 20, 2006	Bromomethane (139\%)	The bromomethane recovery was high but this analyte was   not detected in the associated samples. Data usability is not   adversely affected by the high bias.
JWG0604090-2   analyzed on   December 20, 2006	Bromomethane (127\%)	The bromomethane recovery was high but this analyte was   not detected in the associated samples. Data usability is not   adversely affected by the high bias.
JWG060604101-2   analyzed on   December 21, 2006	Dibromochloromethane (124\%)   Bromoform (131\%)	The recoveries were high but these analytes were not   detected in the associated samples. Data usability is not   adversely affected by the high bias.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

CCAL ID	Analytes with Recoveries   Outside Acceptance Limits	Effects on Data Usability
JWG0604103-2   analyzed on   December 21, 2006	Bromomethane (134\%)	The bromomethane recovery was high but this analyte was   not detected in the associated samples. Data usability is not   adversely affected by the high bias.

### 6.1.9.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples covered in this SDG, except as tabulated below.

Blank ID	Analyte Concentrations ( $\mu \mathrm{g} / \mathrm{Kg}$ )	Effects on Data Usability
JWG0604019-4	1,2,4-Trichlorobenzene (0.88)	AMEC U qualified the detected 1,2,4-trichlorobenzene result from sample EB-01.
JWG0604087-3	Methylene Chloride (1.4)1,2,4-Trichlorobenzene (0.38)	AMEC U qualified the detected methylene chloride results from samples SS094CA, SS094DA, SS101CA, SS101DA, SS52CA, SS52DA, SS047CA, SS047DA, SS045CA, SS045DA, SS024DA, SS070AA, SS070AB, SS070BA, SS070CA, SS070DA, SS031AA, SS031BA and SS031CA.
		1,2,4-trichlorobenzene was not detected in the associated samples; therefore, data usability is not adversely affected.
JWG0604089-3	Methylene Chloride (0.71)	AMEC U qualified the detected methylene chloride results from samples SS031DB, SS026BA, SS026CA, SS026CC, SS026DA, SS007CA, SS007DA, SS007DB, SS022AA, SS0022AB, SS0022BA, SS0022CA, SS0022DA, SS020AA and SS020DA.
JWG0604102-3	Methylene Chloride (1.3)	AMEC U qualified the detected methylene chloride results from samples SS046AA, SS046BA, SS046CA, SS046DA, SD001AA, SD001AB, SD002AA, SD003AA, SD004AA and SD004BA.

## Equipment Blanks

VOCs were not detected in the equipment blanks associated with the samples covered in this report, except as tabulated below.

Sample ID	Analyte Concentrations ( $\boldsymbol{\mu} / \mathbf{L}$ )	Effects on Data Usability
EB-01	1,2,4-Trichlorobenzene (0.53)	A similar concentration for 1,2,4-trichlorobenzene was   observed in associated method blank. This analyte was   not detected in the associated samples; therefore, data   usability is not adversely affected.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.1.9.6 LCS/LCSD Recovery

Recoveries were within the laboratory-established acceptance limits for all LCSs associated the samples covered in this SDG, except as tabulated below.

LCS ID	$\begin{array}{c}\text { Analytes with recoveries outside } \\ \text { acceptance limits (\%) }\end{array}$	Effects on Data Usability
JWG0604019-3	$\begin{array}{c}\text { Dichlorodifluoromethane (59\%) } \\ \text { Bromomethane (73\%) }\end{array}$	$\begin{array}{l}\text { AMEC UJ qualified the non-detected } \\ \text { dichlorodifluoromethane and bromomethane results } \\ \text { from samples EB-01 and EB-02 because of possible } \\ \text { low bias in the results. }\end{array}$
JWG0604089-2	2-Hexanone (77\%)	$\begin{array}{l}\text { AMEC UJ qualified the non-detected 2-hexanone } \\ \text { and 1,2-dibromo-3-chloropropane results from } \\ \text { samples SS031DA, SS031DB, SS026AA, }\end{array}$
	1,2-Dibromo-3-chloropropane (72\%)	
		$\begin{array}{l}\text { SS026BA, SS026CA, SS026CC, SS026DA, } \\ \text { SS007CA, SS007DA, SS007DB, SS0022AA, }\end{array}$
		$\begin{array}{l}\text { SS0022AB, SS0022BA, SS0022CA, SS0022DA, } \\ \text { SS020AA, SS020BA, SS020CA, SS020CC and }\end{array}$
SWO20DA because of possible low bias in the		

### 6.1.9.7 Field Duplicates

Sample SS070AB was submitted as a field duplicate for SS070AA. AMEC J qualified the detected acetone results from both samples due to the elevated RPD of $48 \%$.

Sample SS031DB was submitted as a field duplicate for SS031DA. AMEC J qualified the detected acetone results from both samples due to the elevated RPD of $103 \%$.

Sample SS007DB was submitted as a field duplicate for SS007DA. AMEC J qualified the detected acetone results from both samples due to the elevated RPD of $61 \%$.

Sample SS0022AB was submitted as a field duplicate for SS0022AA. AMEC J qualified the detected methylene chloride ( $60 \%$ ) and 2-butanone ( $37 \%$ ) results due to the elevated RPD.

Sample SD001AB was submitted as a field duplicate for SD001AA. AMEC J qualified the detected methylene chloride result due the elevated RPD of 123\%

### 6.1.9.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists
the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

Sample ID	Internal Standard with recoveries   outside acceptance limits	Effects on Data Usability
SS094DA, SS070AA,   SS070AB, SS022AB,   SS046AA, SD001AB,   SD002AA, SD003AA,   SD004BA	1,4-Dichlorobenzene-d ${ }_{4}$	The recoveries were low and associated analytes   were not detected in the samples. Because low   internal standard recoveries indicate a possible   high bias in the analytical results, data usability is   not adversely affected by the low internal standard   recoveries.
SS101CA   SS101DA	The recoveries were low and AMEC J qualified   the detected 4-methyl-2-pentanone and styrene   results from the associated samples because of a	
possible high bias in the analytical results. All		
other associated analytes were not detected in the		
Samples and data usability is not adversely		
affected by the low internal standard recoveries.		

### 6.1.9.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-established limits for VOC analysis of the samples covered in this SDG, except as tabulated below.

Sample ID	Surrogates with recoveries outside   acceptance limits	Effects on Data Usability
SS094DA	4-Bromofluorobenzene (152\%)	
SS101CA	4-Bromofluorobenzene $(138 \%)$	
SS101DA	4-Bromofluorobenzene $(187 \%)$	
SD002AA	4-Bromofluorobenzene $(132 \%)$	
SD003AA	4-Bromofluorobenzene $(134 \%)$	

### 6.1.10 SDG J0605944

### 6.1.10.1 Holding Times

The samples were analyzed within the QAPP-recommended maximum holding time of 14 days for analysis for preserved soil samples.

### 6.1.10.2 Instrument Performance

Instrument performance checks using bromofluorobenzene performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.1.10.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.1.10.4 Continuing Calibration

CCV recoveries were within acceptance limits except for dichlorodifluoromethane ( $25 \%$ ), bromomethane ( $58 \%$ ), cyclohexane ( $26 \%$ ), carbon tetrachloride ( $22 \%$ ), methylcyclohexane ( $23 \%$ ) and toluene ( $57 \%$ ) which all had a $\%$ D greater than the QAPP requirement of $20 \%$.

- AMEC UJ qualified the dichlorodifluoromethane, bromomethane, cyclohexane, carbon tetrachloride and methylcyclohexane results for samples SD005AA, SD006AA, SD006BA, SD007AA, SD008AA, SD009AA and SD006AC.


### 6.1.10.5 Blanks

## Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the samples covered in this SDG except as described below:

Methylene chloride, toluene, ethylbenzene and m,p-xylenes were detected below the MRL at a concentration of $1.9 \mu \mathrm{~g} / \mathrm{Kg}, 19 \mu \mathrm{~g} / \mathrm{Kg}, 0.54 \mu \mathrm{~g} / \mathrm{Kg}$, and $1.8 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in method blank JWG0604156-2.

- AMEC U qualified the detected methylene chloride and toluene for samples SD005AA, SD006AA, SD006BA, SD007AA, SD008AA, SD009AA and SD006AC.


## Trip Blank

A Trip Blank was not supplied to the laboratory with this sample delivery group.

### 6.1.10.6 LCS Recovery

Recoveries were within the laboratory-specified acceptance limits for the LCSs with the following exceptions.

The LCS (JWG0604156-1) \% recovery was high for bromomethane (168\%), 1,1dichloroethane ( $128 \%$ ), methylene chloride ( $141 \%$ ) and toluene ( $235 \%$ ), no qualifications were necessary as all compounds were non-detect in the associated samples.

### 6.1.10.7 Field Duplicates

Sample SD006AC was submitted as a field duplicate for SD006AA. AMEC J qualified the results for Acetone (126\%) due to the elevated RPD.

### 6.1.10.8 Internal Standard Recoveries

A number of IS area counts were outside the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for VOC analysis of the samples covered in this SDG. The table below lists the qualifications that were required. All samples were reanalyzed by the laboratory and similar results were found, so only the initial set of data was reported.

Affected Samples	IS	Analytes Affected	Notes		
SD005AA, SD006AA,   SD007AA, SD008AA	1,4-Dichlorobenzene-d4	Isopropylbenzene, 1,3-   Dichlorobenzene, 1,4-   Dichlorobenzene, 1,2-   Dichlorobenzene, 1,2-Dibromo-3-   chloropropane, 1,2,4-   Trichlorobenzene	AMEC UJ qualified the   non-detected results for   these analytes due to   possible low bias.		
SD006AC	1,4-Dichlorobenzene-d4	Isopropylbenzene, 1,3-   Dichlorobenzene, 1,4-   Dichlorobenzene, 1,2-	AMEC R qualified the   non-detected results for   these analytes due to   extremely low bias.		
Dichlorobenzene, 1,2-Dibromo-3-					
chloropropane, 1,2,4-					
Trichlorobenzene				$\quad$	
:---					

### 6.1.10.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-specified limits for VOC analysis with the following exceptions.

4-Bromofluorobenzene was high in the following samples: SD005AA (161\%), SD006AA (154\%), SD007AA (139\%), SD008AA (137\%), SD009AA (141\%) and SD006AC (171\%). All associated compounds for these samples were non-detect, so no qualifications were necessary.

Toluene- $\mathrm{d}_{8}$ was high SD005AA (151\%) and SD006AC (148\%). All associated compounds were non-detect so no qualifications were necessary.

### 6.2 Semivolatile Organic Compounds by USEPA Method 8270C

SVOC results may be considered usable with the limitations described below. Samples were extracted by method 3550 and not the QAPP specified 3541 , however there is no impact to the data quality.

There were four compounds (acetophenone, atrazine, benzaldehyde and caprolactam) reported by the laboratory that were not included in the QAPP. Data quality has not been assessed for these compounds.

### 6.2.1 SDG J0605714

### 6.2.1.1 Holding Times

The sample was extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.2.1.2 Instrument Performance

Instrument performance checks using decafluorotriphenylphosphine performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.2.1.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG except for the following. 2-Nitroaniline had a high \%D at $26 \%$. AMEC UJ qualified the $2-$ nitroaniline result for sample SS060BA.

### 6.2.1.4 Continuing Calibration

CCAL recoveries for SVOC analysis of the samples covered in this SDG were acceptable, except as described below.

The $\% \mathrm{D}$ was high for the following compounds; hexachlorocyclopentadiene (30\%), 2,4dinitrophenol (36\%) and 2-methyl-4,6-dinitrophenol (29\%). AMEC has UJ qualified the nondetected and J qualified the detected results for these compounds in SS059AA, SS060AA, SS073AA, SS085BA, SS085AA, SS087AA, SS087BA, SS089AA, SS089BA, SS090AA, SS090BA, SS090BC and SS059BA.

The $\% \mathrm{D}$ was high for 2-nitroaniline ( $36 \%$ ) and 4-nitrophenol ( $32 \%$ ). Both compounds were non-detect in sample SS060BA and were UJ qualified.

### 6.2.1.5 Laboratory Blanks

No SVOCs were detected in the laboratory blanks associated with the samples covered in this SDG.

### 6.2.1.6 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS associated with the samples covered in this SDG except isophorone and hexachlorocyclopentadiene, which were high at $125 \%$ and $115 \%$, respectively. Both compounds were non-detect in the associated samples, so no qualifications were necessary.

### 6.2.1.7 MS/MSD Recovery

An MS/MSD for SVOCs was picked by the laboratory and performed on sample SS059AA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD, except for isophorone and 3,3'-dichlorobenzidine in the MSD. Isophorone recovered high at $120 \%$, but it was not detected in the parent sample, so no qualifications were made.

AMEC UJ qualified 3,3'-dichlorobenzidine, in SS059AA, which recovered low in the MSD at 11\%.

### 6.2.1.8 Field Duplicates

Sample SS090BC was submitted as a field duplicate for sample SS090BA. All RPDs were $\leq$ $30 \%$.

### 6.2.1.9 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for SVOC analysis of the samples covered in this SDG, with the following exception.

Perylene- $\mathrm{d}_{12}$ was low in a number of samples; however no analytes were quantitated off this internal standard, so no qualifications are necessary.

### 6.2.1.10 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG.

### 6.2.2 SDG J0605735

### 6.2.2.1 Holding Times

The sample was extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.2.2.2 Instrument Performance

Instrument performance checks using decafluorotriphenylphosphine performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.2.2.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG except as described below.

ICAL	Analytes with Second Source $\% \mathrm{D}>25 \%$	Effects on Data Usability
CAL1032 analyzed 12/08/2006	2-Nitroaniline (26\%)	AMEC UJ qualified the non-detected result from samples SS079AA, SS079BBA, SS067AA, SS067BB, SS069AA, SS069BA, SS092AA, SS092BA, SS093AA, SS093BA, SS083AA, SS083BA, SS081AA, SS054BA, SS071AA, SS071BA, SS042AA, SS042BA, SS042BB, SS023AA, SS023BA, SS023BB, SS040AA and SS040BA. AMEC J qualified the detected result from sample SS067BA because of possible bias in the analytical results.

### 6.2.2.4 Continuing Calibration

CCAL recoveries for SVOC analysis of the samples covered in this SDG were acceptable, except as described below.

The $\% \mathrm{D}$ was high for the following compounds; hexachlorocyclopentadiene ( $30 \%$ ), 2,4dinitrophenol ( $36 \%$ ) and 2-methyl-4,6-dinitrophenol (29\%). AMEC has UJ qualified the nondetected and J qualified the detected results for these compounds in SS059AA, SS060AA, SS073AA, SS085BA, SS085AA, SS087AA, SS087BA, SS089AA, SS089BA, SS090AA, SS090BA, SS090BC and SS059BA.

The $\% \mathrm{D}$ was high for the following compounds; hexachlorocyclopentadiene (38\%), 2,4dinitrophenol (33\%), 2-methyl-4,6-dinitrophenol (27\%) and bis(2-chloroethyl)ether ( $26 \%$ ). AMEC has UJ qualified the non-detected results for these compounds in SS079AA, SS079BA, SS067AA, SS067BA, SS067BB, SS069AA, SS069BA, SS092AA, SS092BA, SS093AA, SS093BA, SS083AA, SS083BA and SS081AA. AMEC J qualified the detected 2-methyl-4,6dinitrophenol in sample SS067BA.

The \% D was high for the following compounds; bis(2-chloroisopropyl) ether ( $25 \%$ ), N-nitrosodi-n-propylamine ( $24 \%$ ), isophorone ( $23 \%$ ), 2-nitroaniline ( $36 \%$ ), and 4-nitrophenol ( $32 \%$ ). AMEC UJ qualified the non-detected results for these compounds in samples SS081BA, SS019AA, SS019BA, SS019BB, SS054AA and SS059AB.

### 6.2.2.5 Laboratory Blanks

No SVOCs were detected in the laboratory blanks associated with the samples covered in this SDG.

### 6.2.2.6 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS associated with the samples covered in this SDG except hexachlorocyclopentadiene, which recovered high at $142 \%$ and $138 \%$. All the associated samples were non-detect, so no qualifications were necessary.

### 6.2.2.7 MS/MSD Recovery

An MS/MSD for SVOCs was picked by the laboratory and performed on sample SS069BA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD, except for hexachlorocyclopentadiene in the MS (131\%) and MSD (134\%). This analyte was not detected in the parent sample, so no qualifications were necessary.

### 6.2.2.8 Field Duplicates

Sample SS067BB was submitted as a field duplicate for SS067BA. All RPDs were $\geq 30 \%$; dibenzofuran (76\%), carbazole (96\%), butyl benzyl phthalate (151\%), bis(2-ethylhexyl) phthalate ( $147 \%$ ) and di-n-octyl phthalate ( $158 \%$ ). All of these analytes were J qualified in both samples.

Sample SS019BB was submitted as a field duplicate for SS019BA. All RPDs were $\leq 30 \%$.
Sample SS054BB was submitted as a field duplicate for SS054AA. All RPDs were $\leq 30 \%$.

Sample SS042BB was submitted as a field duplicate for SS042BA. All RPDs were $\leq 30 \%$.
Sample SS023BB was submitted as a field duplicate for SS023BA. Carbazole had an elevated RPD of $49 \%$ and was $J$ qualified in both samples.

### 6.2.2.9 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for SVOC analysis of the samples covered in this SDG, with the following exception.

Perylene- $\mathrm{d}_{12}$ was low in SS040AA, SS040BA, SS067AA, SS067BA, SS092AA, SS092BA, SS054AA and SS054AB; however no analytes were quantitated off this internal standard, so no qualifications are necessary.

### 6.2.2.10 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG.

### 6.2.3 SDG J0605780

### 6.2.3.1 Holding Times

The sample was extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.2.3.2 Instrument Performance

Instrument performance checks using decafluorotriphenylphosphine performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.2.3.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.2.3.4 Continuing Calibration

CCAL recoveries for SVOC analysis of the samples covered in this SDG were acceptable, except as described below.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

CCAL	Analytes with \%D > 20\%	Effects on Data Usability
JWG0604006	Bis(2-chloroisopropyl) Ether (25\%)   N-Nitrosodi-n-propylamine (24\%)   Isophorone (23\%)   2-Nitroaniline (36\%)   4-Nitrophenol (32\%)	AMEC UJ qualified the non-detected result from samples   SS050AA, SS079BA, SS051AA, SS051BA, SS025AA,   SS025BA and SS027AA,
JWG0604017	2-Nitroaniline (25\%)	
	4-Nitrophenol (26\%)	AMEC UJ qualified the non-detected result from samples   SS034AA, SS034BA, SS013AA, SS027BA, SS013BA,   SS012AA, SS012AC, SS012BA, SS014AA, SS014BA,   SS018AA, SS018BA, SS017AA, SS016AA and SS16BA.
JWG0604024	Bis(2-chloroethyl) Ether (29\%)	
	2-Nitroaniline (24\%)	AMEC US qualified the non-detected result from samples   SS017BA, SS007AA, SS007BA, SS007BC, SS074AA,
	4-Nitrophenol (27\%)	SS074BA, SS015AA and SS015BA.

### 6.2.3.5 Laboratory Blanks

No SVOCs were detected in the laboratory blanks associated with the samples covered in this SDG.

### 6.2.3.6 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS associated with the samples covered in this SDG except the following. Isophorone (134\%) and 2-Nitroaniline (106\%) recovered high. All the associated samples were non-detect, so no qualifications were necessary.

### 6.2.3.7 MS/MSD Recovery

An MS/MSD for SVOCs was picked by the laboratory and performed on samples SS050AA and SS017BA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD, except as bolded below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
	Bis(2-chloroisopropyl) Ether	$\mathbf{1 0 2 \% / 9 3 \%}$	$10 \%$	These analytes were not detected in the parent
	Isophorone	$\mathbf{1 4 8 \% / \mathbf { 1 3 4 \% }}$	$10 \%$	sample. Data usability is not adversely affected
	2-Nitroaniline	$\mathbf{1 1 5 \% / \mathbf { 1 0 6 \% }}$	$8 \%$	by the analytical imprecision.
SS017BA	Bis(2-chloroisopropyl) Ether	$\mathbf{1 0 0 \% / 8 0 \%}$	$22 \%$	These analytes were not detected in the parent
	Isophorone	$\mathbf{1 3 9 \% / \mathbf { 1 2 4 \% }}$	$11 \%$	sample. Data usability is not adversely affected
	2-Nitroaniline	$\mathbf{1 2 1 \% / \mathbf { 1 0 5 \% }}$	$14 \%$	by the analytical imprecision.

### 6.2.3.8 Field Duplicates

Sample SS012AC was submitted as a field duplicate for SS012AA. All RPDs were $\leq 30 \%$. Sample SS007BC was submitted as a field duplicate for SS007BA. All RPDs were $\leq 30 \%$.

Sample SS004BB was submitted as a field duplicate for SS004BA. The RPD for Dibenzofuran was high at $51 \%$. AMEC J qualified this analyte in both samples.

Sample SS002AC was submitted as a field duplicate for SS002AA. All RPDs were $\leq 30 \%$.
Sample SS043BB was submitted as a field duplicate for SS043BA. All RPDs were $\leq 30 \%$.
Sample SS010AB was submitted as a field duplicate for SS010AA. All RPDs were $\leq 30 \%$.

### 6.2.3.9 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for SVOC analysis of the samples covered in this SDG, with the following exception.

Perylene- $\mathrm{d}_{12}$ was low in SS051BA, SS025AA, SS025BA, SS027AA, SS074AA and SS074BA; however no analytes were quantitated off this internal standard, so no qualifications were necessary.

### 6.2.3.10 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG, except terphenyl- $\mathrm{d}_{14}$ (166\%) was high in SS025AA. No qualifications were necessary since single surrogate high.

### 6.2.4 SDG J0605810

### 6.2.4.1 Holding Times

The sample was extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.2.4.2 Instrument Performance

Instrument performance checks using decafluorotriphenylphosphine performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance with the following exception.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample SS043AA was run past the 12 hour window but the laboratory reanalyzed the sample within criteria on $1 / 08 / 07$, so no qualifications were necessary.

### 6.2.4.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG with the following exception. The $\% \mathrm{D}$ for the second source verification was high for 2-nitroaniline at $26 \%$. AMEC UJ qualified the non-detected result for sample SS043BB due to analytical imprecision.

### 6.2.4.4 Continuing Calibration

CCAL recoveries for SVOC analysis of the samples covered in this SDG were acceptable, except as described below.

CCAL	Analytes with \%D > 20\%	Effects on Data Usability
JWG0604024	Bis(2-chloroethyl) Ether (29\%)   2-Nitroaniline (24\%)   4-Nitrophenol (27\%)	AMEC UJ qualified the non-detected results from sample   SS043BB.
JWG0604106	Bis(2-chloroisopropyl)ether (-40\%)   N-nitrosodi-n-propylamine (-27\%)   Isophorone (-21\%)   2-Nitroaniline (-21\%)   4-Nitrophenol (-22\%)	AMEC UJ qualified the non-detected results for these   analytes from samples SS008AA, SS008BA, SS009AA,   SS009BA, SS006AA, SS006BA, SS004AA, SS004BA,   SS004BB, SS002AA, SS002AC, SS044AA, SS044BA,   SS076AA and SS076BA.
3,3'-Dichlorobenzidine (21\%)		

### 6.2.4.5 Laboratory Blanks

No SVOCs were detected in the laboratory blanks associated with the samples covered in this SDG.

### 6.2.4.6 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS associated with the samples covered in this SDG.

### 6.2.4.7 MS/MSD Recovery

An MS/MSD for SVOCs was picked by the laboratory and performed on sample SS008AA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD, except as bolded below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS008AA	Hexachlorocyclopentadiene   3,3'-Dichlorobenzidine	$\mathbf{1 2 2 \%} / 101 \%$   $\mathbf{9 \% / 1 2 \%}$	19	AMEC UJ qualified the non-detected 3,3'-   dichlorobenzidine due to potential matrix   interference.

### 6.2.4.8 Field Duplicates

Sample SS004BB was submitted as a field duplicate for SS004BA. All RPDs were $\leq 30 \%$ except dibenzofuran. AMEC J qualified the Dibenzofuran result in both samples due to the elevated RPD of 51\%.

Sample SS002AC was submitted as a field duplicate for SS002AA. All RPDs were $\leq 30 \%$.
Sample SS043BB was submitted as a field duplicate for SS043BA. All RPDs were $\leq 30 \%$.
Sample SS010AB was submitted as a field duplicate for SS010AA. All RPDs were $\leq 30 \%$.

### 6.2.4.9 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $-50 \%$ to $+100 \%$ of area from IS to ICAL standard for SVOC analysis of the samples covered in this SDG, with the following exception.

Chrysene- $\mathrm{d}_{12}$ was low in samples SS043BB, SS043BA and SS037AA. AMEC J qualified the bis(2-ethylhexyl)phthalate and UJ qualified butyl benzyl phthalate, 3,3'-dichlorobenzidine and di-n-octyl phthalate for these samples.

Perylene- $\mathrm{d}_{12}$ was low in SS008BA, SS006AA, SS006BA, SS004BA, SS004BB, SS002AA, SS002AC, SS043BB, SS044AA, SS044BA, SS076AA, SS076BA, SS010AB, SS021AA, SS021BA, SS002BA, SS011AA, SS011BA, SS058AA, SS058BA, SS037AA, SS037BA and

SS043BA; however no analytes were quantitated off this internal standard, so no qualifications were necessary.

### 6.2.4.10 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG, except terphenyl-d ${ }_{14}$ was high in samples SS058BA (193\%), SS037AA (154\%), SS043BA (139\%), SS043BB (157\%) and SS044BA (158\%). No qualifications were necessary since only a single surrogate was out of control.

### 6.2.5 SDG J0605839

### 6.2.5.1 Holding Times

The samples were extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.2.5.2 Instrument Performance

Instrument performance checks using decafluorotriphenylphosphine performed prior to calibration and sample analysis met method and QAPP-specified criteria for ion percent relative abundance.

### 6.2.5.3 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.2.5.4 Continuing Calibration

CCAL recoveries for SVOC analysis of the samples covered in this SDG were acceptable, except as described below.

The \% D in CCAL JWG0700163 was elevated for bis(chloroisopropyl)ether at (-34\%). AMEC has UJ qualified the non-detected result in samples SS057CA, SS057CB, SS036AA, SS080BA, SS080BB, SS08CA, SS080DA, SS035DA, SS033AA and SS033BA.

The \% D was elevated for bis(chloroisopropyl)ether (-37\%) and 4-nitrophenol (-27\%). Both compounds were non-detect in samples SS035CA, SS032BA, SS035AA, SS035BA and SS032AA and were UJ qualified.

### 6.2.5.5 Laboratory Blanks

No SVOCs were detected in the laboratory blank associated with this SDG.

### 6.2.5.6 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS associated with this SDG.

### 6.2.5.7 MS/MSD Recovery

The laboratory selected and performed an MS/MSD on samples SS080CA and SS036AA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD.

### 6.2.5.8 Field Duplicates

Sample SS036AC was submitted as a field duplicate for SS036AA. Only dibenzofuran, carbazole and bis(2-ethylhexyl)phthalate were detected and the RPDs were $\leq 30 \%$.

Sample SS048BB was submitted as a field duplicate for SS048BA. All analytes were nondetect so data quality could not be assessed.

Sample SS057CB was submitted as a field duplicate for SS057CA. All analytes were nondetect so data quality could not be assessed.

Sample SS080BB was submitted as a field duplicate for SS080BA. All analytes were nondetect so data quality could not be assessed.

### 6.2.5.9 Internal Standard Recoveries

IS recoveries were within the QAPP-specified acceptance limits for samples in this SDG, with the following exception. Perylene- $\mathrm{d}_{12}$ was low in a number of samples but no target analytes were quantitated off this internal standard, so no qualifications are necessary.

### 6.2.5.10 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.2.6 SDG J0605876

### 6.2.6.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.2.6.2 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.2.6.3 Continuing Calibration

CCAL recoveries for SVOC analysis of the samples covered in this SDG were acceptable, except as described below.

Affected Samples	Analyte	CCAL   Recovery	Notes
CCAL JWG0700169, analyzed January 8, 2007			
$\begin{aligned} & \hline \text { SS097CA } \\ & \text { SS097DA } \end{aligned}$	Bis(2-chloroisopropyl)ether 4-Nitrophenol	$\begin{aligned} & 72 \% \\ & 76 \% \end{aligned}$	AMEC UJ qualified the non-detected results for these analytes because of possible low bias in the analytical results.
$\begin{aligned} & \hline \text { SS097AA } \\ & \text { SS097BA } \\ & \text { SS001AA } \\ & \text { SS001BA } \\ & \text { SS038AA } \\ & \text { SS038AC } \\ & \text { SS038BA } \\ & \text { SS039AA } \\ & \text { SS029AA } \\ & \text { SS028DC } \end{aligned}$	Bis(2-chloroisopropyl)ether Nitrobenzene 2-Nitroaniline 4-Nitrophenol	$\begin{aligned} & \hline 62 \% \\ & 79 \% \\ & 79 \% \\ & 74 \% \end{aligned}$	AMEC UJ qualified the non-detected results for these analytes because of possible low bias in the analytical results.
CCAL JWG0700175, analyzed January 5, 2007			
SS001CA,SS001DA   SS038DA,SS038DB   SS039BA,SS039CA   SS039DA,SS029CA   SS029DA	Bis(2-chloroisopropyl)ether	68\%	AMEC UJ qualified the non-detected results for these analytes because of possible low bias in the analytical results.
CCAL JWG0700184, analyzed January 9, 2007			
$\begin{aligned} & \hline \text { SS096AA,SS096BA } \\ & \text { SS096CA,SS096DA } \\ & \text { SS028AA,SS028AB } \\ & \text { SS028BA,SS028CA } \\ & \text { SS028DA,SS028DC } \end{aligned}$	Bis(2-chloroisopropyl)ether 4-Nitrophenol	$\begin{aligned} & 70 \% \\ & 78 \% \end{aligned}$	AMEC UJ qualified the non-detected results for these analytes because of possible low bias in the analytical results.
Project No.: 472008401   Q:IProjectslBeazer Gainesvillel2007\Data Summary   ReportIDVR_1_BeazerGainesville-REV.doc		03/29/2007	Page 54

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Affected Samples	Analyte	CCAL   Recovery	Notes
$\begin{aligned} & \hline \text { SS072AA,SS072BA } \\ & \text { SS072CA,SS072CC } \\ & \text { SS082AA,SS082BA } \\ & \text { SS064BA } \\ & \hline \end{aligned}$			
CCAL JWG0700194, analyzed January 10, 2007			
$\begin{aligned} & \hline \text { SS038CA,SS039BB } \\ & \text { SS029BA,SS072DA } \\ & \text { SS082DA,SS084DA } \\ & \text { SS064CA,SS064DA } \end{aligned}$	Bis(2-chloroethyl)ether	122\%	The recovery was high but this analyte was not detected in the associated samples. Data usability is not adversely affected by the high bias.
CCAL JWG0700207, analyzed January 10, 2007			
SS028DA, SS082CA SS098AA, SS098BA SS098CA, SS098DA SS099AA, SS099BA SS099CA, SS099DA SS084AA, SS084BA SS084CA, SS062AA SS062BA, SS062CA SS062CC, SS062DA SS064AA	Bis(2-chloroisopropyl)ether 4-Nitrophenol	$\begin{aligned} & \hline 78 \% \\ & 76 \% \end{aligned}$	AMEC UJ qualified the non-detected results for these analytes because of possible low bias in the analytical results.

### 6.2.6.4 Laboratory Blanks

No SVOCs were detected in the laboratory blank associated with this SDG.

### 6.2.6.5 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS associated with this SDG.

### 6.2.6.6 MS/MSD Recovery

The laboratory selected and performed an MS/MSD on samples SS97BA, SS029DA, SS082DA and SS064BA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD, except as bolded in the table below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS064BA	3,3 '-Dichlorobenzidine	$39 \% / 27 \%$	$\mathbf{3 4 \%}$	This analyte was not detected in the associate   sample. Data usability is not adversely affected   by the analytical imprecision.

### 6.2.6.7 Field Duplicates

Sample SS038DB was submitted as a field duplicate for SS038DA. All analytes were nondetect so data quality could not be assessed.

Sample SS039BB was submitted as a field duplicate for SS039BA. All analytes were nondetect so data quality could not be assessed.

Sample SS057CB was submitted as a field duplicate for SS057CA. Only Carbazole was detected and RPD was $\leq 30 \%$.

### 6.2.6.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified acceptance limits for samples in this SDG, with the following exceptions.

Sample ID	Internal Standard with recoveries outside   acceptance limits	Effects on Data Usability
SS028DC	Acenaphthene- $\mathrm{d}_{10}$   Phenanthrene- $\mathrm{d}_{10}$	The recoveries were low and associated analytes   were not detected in the sample. Because low   internal standard recoveries indicated a possible high   bS028DA
SS028CA on the analytical results, data usability is not		
adversely affected by the low internal standard		
recoveries.		

### 6.2.6.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG except as described below.

Sample ID	Surrogates with recoveries outside   acceptance limits	Effects on Data Usability
SS028DA	2-fluorobiphenyl (135\%)   2-fluorobiphenyl (146\%)	The recoveries were high but target analytes were   not detected in the sample. Data usability is not   adversely affected by the high biases.

### 6.2.7 SDG J0605879

### 6.2.7.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.2.7.2 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.2.7.3 Continuing Calibration

CCAL recoveries for SVOC analysis of the samples covered in this SDG were acceptable, except as described below.

Affected Samples	Analyte	\% D	Notes
CCAL JWG0700194, analyzed January 10, 2007			
SS066CA	Bis(2-chloroethyl)ether	22\%	AMEC UJ qualified the non-detected result due to potential bias.
CCAL JWG0700213, analyzed January 10, 2007			
SS066DC, SS066DA, SS003DA, SS003CA, SS003CB, SS066BA, SS005DA, SS066AA, SS066AB, SS005AA, SS005CA, SS003AA, SS003BA, SS086AA, SS100AA, SS100BA, SS100CA, SS100DA	4-Chloroaniline	-21\%	AMEC UJ qualified the non-detected results for these due to potential bias.
CCAL JWG0700246, analyzed January 12, 2007			
SS086BA, SS086BB, SS088AA, SS088BA, SS091AA, SS091BA, SS075AA, SS075BA, SS077AA, SS077BA, SS049AA, SS049BA, SS052AA, SS052BA, SS005BA	Bis(2-chloroethyl)ether Hexachlorocyclopentadiene	$\begin{gathered} 24 \% \\ -25 \% \end{gathered}$	AMEC UJ qualified the non-detected results for these analytes due to potential bias.
CCAL JWG0700250, analyzed January 13, 2007			
SS068AA, SS068BA	Hexachloroethane Hexachlorocyclopentadiene	$\begin{gathered} \hline 26 \% \\ -27 \% \end{gathered}$	AMEC UJ qualified the non-detected results for these analytes due to potential bias.

### 6.2.7.4 Laboratory Blanks

No SVOCs were detected in the laboratory blank associated with this SDG with the following exception.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Analyte Concentrations ( $\boldsymbol{\mu g} / \mathbf{K g})$	Effects on Data Usability
JWG0604126-4	Bis(2-ethylhexyl)phthalate (32)	AMEC U qualified the detected result from samples   SS086AA, SS086BA, SS086BB, SS088AA, SS091AA,
		SS091BA, SS075AA, SS049AA, SS052AA, SS052BA and   SS068AA.

### 6.2.7.5 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS associated with this SDG.

### 6.2.7.6 MS/MSD Recovery

The laboratory selected and performed an MS/MSD on sample SS003DA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD.

### 6.2.7.7 Field Duplicates

Sample SS100DB was submitted as a field duplicate for SS100DA. The RPDs for dibenzofuran and carbazole were $\leq 30 \%$. The RPDs for 2,4-dimethylphenol ( $49 \%$ ) and biphenyl ( $48 \%$ ) were $\geq 30 \%$ and J qualified in both samples.

Sample SS066AB was submitted as a field duplicate for SS066AA. Only carbazole, dibenzofuran and bis(2-ethylhexyl)phthalate were detected and the RPDs were $\leq 30 \%$.

Sample SS066DC was submitted as a field duplicate for SS066DA. All analytes were nondetect so data quality could not be assessed.

Sample SS003CB was submitted as a field duplicate for SS003CA. Only carbazole and dibenzofuran were detected and the RPDs were $\leq 30 \%$.

Sample SS086BB was submitted as a field duplicate for SS086BA. Only carbazole and dibenzofuran were detected and the RPDs were $\leq 30 \%$.

### 6.2.7.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified acceptance limits for samples in this SDG, with the following exceptions.

| Sample ID | Internal Standard with recoveries <br> outside acceptance limits | Effects on Data Usability |
| :--- | :---: | :---: | :---: | | Project No.: 472008401 |
| :--- |
| Q:IProjectsIBeazer Gainesville\20071Data Summary <br> ReportlDVR_1_BeazerGainesville-REV.doc |

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Internal Standard with recoveries   outside acceptance limits	Effects on Data Usability		
SS100DA	Naphthalene-d ${ }_{8}$	AMEC UJ qualified the non-detected nitrobenzene,   SS100DB		
		Isophorone, 2-nitrophenol, bis(2-chloroethoxy)   methane, 2,4-dichlorophenol, 4-chloroaniline,   hexachlorobutadiene and 4-chloro-3-methylphenol.   AMEC J qualified the detected 2,4-dimethylphenol   result in both samples.		
SS100CA, SS100DA,				
SS100DB, SS086BA,		AMEC UJ qualified the non-detected 2-methyl-4,6-   dinitrophenol, n-nitrosodiphenylamine, 4-   SS086BB, SS088AA,   SS091AA, SS091BA,   SS075AA, SS049AA,   SS049BA, SS052AA		
		Bromophenyl phenyl ether, Hexachlorobenzene and   di-n-butyl phthalate in all samples. AMEC J		
qualified the detected Carbazole result in all			,	samples.
:---				

### 6.2.7.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG except as described below.

Sample ID	Surrogates with recoveries outside   acceptance limits	Effects on Data Usability		
SS100DA	Nitrobenzene-d   5$(185 \%)$			
SS100DB	Nitrobenzene- $d_{5}(159 \%)$		$\quad$	Data usability could not be adequately assessed due
:---				
to matrix interference.				

### 6.2.8 SDG J0605890

### 6.2.8.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.2.8.2 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.2.8.3 Continuing Calibration

CCAL recoveries for SVOC analysis of the samples covered in this SDG were acceptable, except as described below.

Affected Samples	Analyte	\% D	Notes
CCAL JWG0700246, analyzed January 12, 2007			
SS041AA	Bis(2-chloroethyl)ether Hexachlorocyclopentadiene	$\begin{gathered} \hline 24 \% \\ -25 \% \end{gathered}$	AMEC UJ qualified the non-detected results for these analytes.
CCAL JWG0700250, analyzed January 13, 2007			
SS041BA, SS030AA, SS086CA	Hexachloroethane Hexachlorocyclopentadiene	$\begin{gathered} \hline 26 \% \\ -27 \% \end{gathered}$	AMEC UJ qualified the non-detected results for these analytes.
CCAL JWG0700260, analyzed January 16, 2007			
SS030BA, SS094AA, SS094AB, SS094BA, SS101AA, SS101BA, SS045AA, SS047AA, SS047AC, SS047BA, SS024AA, SS024BA, SS045BA	Hexachlorobenzene Biphenyl	$\begin{aligned} & \hline-27 \% \\ & -24 \% \end{aligned}$	AMEC UJ qualified the non-detected results for these analytes.
CCAL JWG0700301, analyzed January 18, 2007			
$\begin{aligned} & \text { SS091DA, SS068CA, } \\ & \text { SS068DA, SS078CA, } \\ & \text { SS078DA, SS041DA, } \\ & \text { SS030DA } \end{aligned}$	Bis(2-chloroisopropyl) Ether	-22\%	AMEC UJ qualified the non-detected results for this analyte.
CCAL JWG0700303, analyzed January 18, 2007			
SS075CA, SS077DB, SS077CA, SS077DA	Bis(2-chloroisopropyl) Ether	-22\%	AMEC UJ qualified the non-detected results for this analyte.
CCAL JWG0700324, analyzed January 19, 2007			
SS077DB, SS077DA	Bis(2-chloroethyl) Ether	23\%	No qualifications were necessary since only Dibenzofuran reported from this analytical run.

### 6.2.8.4 Laboratory Blanks

No SVOCs were detected in the laboratory blanks associated with this SDG.

### 6.2.8.5 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS associated with this SDG.

### 6.2.8.6 MS/MSD Recovery

The laboratory selected and performed an MS/MSD on samples SS094AA, SS086DA and SS030DA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD except as described below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS086DA	Isophorone   4-Chloroaniline	$\mathbf{1 1 3 \% / 1 1 8 \%}$   $94 \% / \mathbf{9 6 \%}$	$4 \%$   $2 \%$	These analytes were not detected in the parent   sample. Data usability is not adversely   affected by the analytical imprecision.
	Dibenzofuran   Carbazole	$\mathbf{2 0 \% / \mathbf { 2 1 \% }} \mathbf{3 8 \% / \mathbf { 3 9 \% }}$	$\mathbf{1 \%} 1 \%$	AMEC J qualified both these analytes.
	Isophorone	$\mathbf{1 1 6 \% / 1 1 0 \%}$	$6 \%$	This analyte were not detected in the parent   sample. Data usability is not adversely   affected by the analytical imprecision.
SS030DA				

### 6.2.8.7 Field Duplicates

Sample SS094AB was submitted as a field duplicate for SS094AA. Only Carbazole and Dibenzofuran were detected in both samples and the RPDs were $\leq 30 \%$.

Sample SS047AC was submitted as a field duplicate for SS047AA. Only Carbazole was detected and the RPD was $\leq 30 \%$.

Sample SS077DB was submitted as a field duplicate for SS077DA. All analytes were nondetect so data quality could not be assessed.

### 6.2.8.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified acceptance limits for samples in this SDG, with the following exceptions.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Internal Standard with recoveries   outside acceptance limits	Effects on Data Usability
SS086CA	Phenanthrene-d $d_{10}$	AMEC UJ qualified the non-detected 2-methyl-4,6-   dinitrophenol, n-nitrosodiphenylamine, 4-   Bromophenyl phenyl ether, Hexachlorobenzene and   di-n-butyl phthalate in all samples. AMEC J   qualified the detected Carbazole result.
SS041AA, SS30AA,   SS086CA	Perylene-d ${ }_{12}$	No qualifications necessary as no analytes were   quantitated off this internal standard.

### 6.2.8.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG except as described below.

Sample ID	Surrogates with recoveries outside   acceptance limits	Effects on Data Usability
SS086CA	$2,4,6$-Tribromophenol $(144 \%)$	Data usability could not be adequately assessed due   to matrix interference.

### 6.2.9 SDG J0605919

### 6.2.9.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time of 7 days for aqueous extraction and 14 days for solid extraction and 40 days for analysis.

### 6.2.9.2 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.2.9.3 Continuing Calibration

CCV recoveries for SVOC analysis of the samples covered in this SDG were acceptable except as tabulated below.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Affected Samples	Analyte	CCAL   Recovery	Notes
CCAL JWG0700169, analyzed January 8, 2007			
$\begin{aligned} & \hline \text { EB-1 } \\ & \text { EB-2 } \end{aligned}$	Bis(2-chloroisopropyl)ether 4-Nitrophenol	$\begin{aligned} & 72 \% \\ & 76 \% \end{aligned}$	AMEC UJ qualified the non-detected results for these analytes because of possible low bias in the analytical results.
CCAL JWG0700213, analyzed January 11, 2007			
$\begin{aligned} & \hline \text { SS031CA, SS031DA } \\ & \text { SS031DB, SS026CC } \\ & \text { SS007DA, SS007DB } \\ & \text { SS026CA } \end{aligned}$	4-Chloroaniline	79\%	AMEC UJ qualified the non-detected results for these analytes because of possible low bias in the analytical results.
CCAL JWG0700260, analyzed January 16, 2007			
$\begin{aligned} & \text { SS026BA, SS026DA } \\ & \text { SS007CA, SS022AA } \\ & \text { SS026AA } \end{aligned}$	Hexachlorobenzene Biphenyl	$\begin{aligned} & 73 \% \\ & 76 \% \end{aligned}$	AMEC UJ qualified the non-detected results for these analytes because of possible low bias in the analytical results.
CCAL JWG0700324, analyzed January 19, 2007			
SS045DA, SS020CA   SS070DA, SS052CA   SS052DA, SS024DA   SS070AA, SS070CA   SS094CA, SS094DA   SS047DA, SS101CA   SS101DA, SS047CA   SS031AA, SS070BA   SS070AB	Bis(2-chloroisopropyl)ether	123\%	The recovery was high and this analyte was not detected in the associated samples. Data usability is not adversely affected by the high bias.
CCAL JWG0700351, analyzed January 23, 2007			
$\begin{aligned} & \hline \text { SD001AB } \\ & \text { SD002AA } \end{aligned}$	Bis(2-chloroethyl)ether	121\%	The recovery was high and this analyte was not detected in the associated samples. Data usability is not adversely affected by the high bias.

### 6.2.9.4 Laboratory and Equipment Blanks

No SVOCs were detected in the laboratory and equipment blanks associated with the samples covered in this SDG.

### 6.2.9.5 LCS Recovery

All LCS recoveries associated with SVOC analysis of the samples covered in this SDG were within laboratory-established acceptance limits, except for 4-nitroaniline in LCS JWG0700106, which was high at $97 \%$. This analyte was not detected in the associated samples; therefore, data usability is not affected by the high LCS recovery.

### 6.2.9.6 MS/MSD Recovery

The laboratory selected and performed an MS/MSD on samples SS020BA and SS031BA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD, except as bolded in the table below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS031BA	Isophorone	$\mathbf{1 1 2} \% / \mathbf{1 1 9} \%$	$6 \%$	This analyte was not detected in the parent   sample. Data usability is not adversely affected   by the high recoveries.

### 6.2.9.7 Field Duplicates

Sample SS070AB was submitted as a field duplicate for SS070AA. Only carbazole and dibenzofuran were detected in both samples and the RPDs were $\leq 30 \%$.

Sample SS031DA was submitted as a field duplicate for SS031DA. All analytes were nondetect so data quality could not be assessed.

Sample SS007DB was submitted as a field duplicate for SS007DA. All analytes were nondetect so data quality could not be assessed.

Sample SS022AB was submitted as a field duplicate for SSOAA. Only dibenzofuran was detected and the RPD was $\leq 30 \%$.

Sample SD001AB was submitted as a field duplicate for SD001AA. Only carbazole was detected in both samples and the RPD was $\leq 30 \%$.

### 6.2.9.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified acceptance limits for samples in this SDG, with the following exceptions.

Sample ID	Internal Standard with recoveries   outside acceptance limits	Effects on Data Usability
SS094CA, SS101CA	Phenanthrene-d   10	The recoveries were low and associated analytes   were not detected in the sample. Because low   SS101DA
Perylene- $\mathrm{d}_{12}$	internal standard recoveries indicate a possible high   SS070AA, SS047CA   SS070AB, SD004AA   SD004BA, SD001AA analytical results, data usability is not   adversely affected by the low internal standard   SD002AA	Perylene-d $d_{12}$
recoveries.		

### 6.2.9.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG, except as tabulated below.

Sample ID	Surrogates with recoveries outside   acceptance limits	Effects on Data Usability
SS101CA	Nitrobenzene- $\mathrm{d}_{5}(110 \%)$	
SS101DA	Nitrobenzene- $\mathrm{d}_{5}(111 \%)$	The recoveries were high and target analytes were   not detected in the associated samples. Data   usability is not adversely affected by the high biases.

### 6.2.9.10 Data Reporting

The reporting limits are elevated for all analytes in samples SS094DA, SS101CA, SS101DA. According to the laboratory non-conformance report, these samples would not concentrate to the desired 1.0 mL final volume. The reporting limits were adjusted to reflect the final volume of 10.0 mL .

The reporting limits are elevated for all analytes in samples SS070BA, SS026AA, SD001AA, SD001AB, SD003AA, and SD004BA. According to the laboratory non-conformance report, the extracts were highly colored and viscous, which indicated the need to perform a dilution prior to injection into the instrument. The reporting limits were adjusted to reflect the dilutions.

### 6.2.10 SDG J0605944

### 6.2.10.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time 14 days for solid extraction and 40 days for analysis.

### 6.2.10.2 Initial Calibration

The QAPP-specified criteria for SPCCs, CCCs and target analytes were met for the initial calibrations for this SDG.

The second source calibration verification value was met for the calibrations for this SDG.

### 6.2.10.3 Continuing Calibration

CCV recoveries for SVOC analysis of the samples covered in this SDG were acceptable.

### 6.2.10.4 Laboratory and Equipment Blanks

No SVOCs were detected in the laboratory and equipment blanks associated with the samples covered in this SDG.

### 6.2.10.5 LCS Recovery

All LCS recoveries associated with SVOC analysis of the samples covered in this SDG were within laboratory-established acceptance limits.

### 6.2.10.6 MS/MSD Recovery

The MS/MSD for this SDG was not performed on a project sample.

### 6.2.10.7 Field Duplicates

Sample SD006AC was submitted as a field duplicate for SD006AA. Only carbazole, dibenzofuran and bis(2-ethylhexyl)phthalate were detected and the RPDs were $\leq 30 \%$.

### 6.2.10.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified acceptance limits for samples in this SDG, with the following exceptions.

Perylene- $d_{12}$ was low in SD005AA, SD006AA, SD006BA, SD007AA, SD008AA, SD009AA and SD006AC; however no analytes were quantitated off this standard so no qualifications were necessary.

### 6.2.10.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory specified limits for SVOC analysis of the samples covered in this SDG.

### 6.3 Semivolatile Organic Compounds (PAHs and Pentachlorophenol) by USEPA Method 8270C SIM

### 6.3.1 SDG J0605714

### 6.3.1.1 Holding Times

The sample was extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.3.1.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.1.3 Continuing Calibration

CCAL recoveries for the samples in this SDG were acceptable met QAPP-specified criteria.

### 6.3.1.4 Laboratory Blanks

The following PAHs were detected in the laboratory blank associated with the samples covered in this SDG: Naphthalene ( $10 \mu \mathrm{~g} / \mathrm{Kg}$ ), 2-methylnaphthalene $(9.9 \mu \mathrm{~g} / \mathrm{Kg})$, acenaphthene (6.3 $\mu \mathrm{g} / \mathrm{Kg}$ ), phenanthrene ( $5.6 \mu \mathrm{~g} / \mathrm{Kg}$ ), anthracene ( $3.6 \mu \mathrm{~g} / \mathrm{Kg}$ ), indeno(1,2,3-cd)pyrene ( 1.1 $\mu \mathrm{g} / \mathrm{Kg}$ ) and benzo(g,h,i)perylene ( $1.0 \mu \mathrm{~g} / \mathrm{Kg}$ ). No qualifications were necessary as all sample results were greater than five times the blank concentration.

### 6.3.1.5 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS of the samples covered in this SDG.

### 6.3.1.6 MS/MSD Recovery

The MS/MSD was performed using samples from another SDG.

### 6.3.1.7 Field Duplicates

Sample SS090BC was submitted as a field duplicate for sample SS090BA. All the RPDs were $\leq 30 \%$.

### 6.3.1.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $-50 \%$ to $+100 \%$ acceptance limits for PAH analysis.

### 6.3.1.9 Surrogate Recoveries

SS059AA, SS059BA, SS060AA, SS060BA, SS073AA, SS073BA, SS085BA, SS085AA, SS089AA, SS089BA, SS090AA, SS090BC and SS090BA were diluted fifty to one hundred
times, thus surrogates were diluted below the range of calibration so no qualifications are not applicable.

2-Fluorobiphenyl and p-terphenyl-d14 were above the acceptance criteria for samples SS087AA and SS087BA due to matrix interference. Acenaphthene and fluorene were nondetect and therefore UJ qualified all other PAHs associated with these surrogates were J qualified.

### 6.3.2 SDG J0605735

### 6.3.2.1 Holding Times

The sample was extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.3.2.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.2.3 Continuing Calibration

CCAL recoveries for the samples in this SDG were acceptable met QAPP-specified criteria except as described below.

The 2,4,6-tribromophenol $\% \mathrm{D}$ was high at $27 \%, 33 \%$ and $35 \%$ affecting all samples in this SDG but no qualifications made since RRFs $>0.05$ and surrogate within criteria in the LCS and blank.

### 6.3.2.4 Laboratory Blanks

The following PAHs were detected in the laboratory blanks associated with the samples covered in this SDG: 2-methylnaphthalene ( 2.5 and $1.9 \mu \mathrm{~g} / \mathrm{Kg}$ ), fluoranthene ( $3.1 \mu \mathrm{~g} / \mathrm{Kg}$ ) and pyrene ( $2.7 \mu \mathrm{~g} / \mathrm{Kg}$ ). No qualifications were necessary as all sample results were greater than five times the blank concentration.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.3.2.5 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS of the samples covered in this SDG.

### 6.3.2.6 MS/MSD Recovery

The laboratory selected and performed an MS/MSD on sample SS069AA and SS023BA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD, except as bolded in the table below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS069AA	Naphthalene   2-Methylnaphthalene   Acenaphthylene   Acenaphthene   Fluorene   Phenanthrene   Dibenz(a,h)anthracene	$\begin{gathered} \hline \mathbf{1 2 2 \% / 1 1 5 \%} \\ \mathbf{1 3 3 \% / 1 2 5 \%} \\ \mathbf{1 3 2 \% / 1 2 3 \%} \\ \mathbf{1 4 7 \% / 1 3 8 \%} \\ \mathbf{1 5 7 \% / 1 4 6 \%} \\ 131 \% / \mathbf{1 5 0 \%} \\ \text { 135\%/155\% } \end{gathered}$	$\begin{aligned} & 5 \% \\ & 6 \% \\ & 3 \% \\ & 6 \% \\ & 7 \% \\ & 7 \% \\ & 6 \% \end{aligned}$	AMEC J qualified the detected Naphthalene, 2Methylnaphthalene, Acenaphthylene, Fluorene, Phenanthrene and Dibenz( $\mathrm{a}, \mathrm{h}$ )anthracene. Concentrations for Anthracene, Fluoranthene, Pyrene, Chrysene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3cd)pyrene and Benzo(g,h,i)perylene were $>4 x$ the spike concentration so recoveries could not be adequately assessed.
SS023BA	Naphthalene   2-Methylnaphthalene   Acenaphthene   Fluorene	$\begin{gathered} \hline \mathbf{1 1 1 \% / 1 0 9 \%} \\ \mathbf{1 2 7 \% / 1 2 6 \%} \\ 123 / 125 \% \\ 122 / \mathbf{1 3 2 \%} \end{gathered}$	$\begin{aligned} & 1 \% \\ & 1 \% \\ & 2 \% \\ & 8 \% \end{aligned}$	AMEC J qualified the detected Naphthalene result. All other compounds were non-detect so no qualifications necessary.

### 6.3.2.7 Field Duplicates

Sample SS067BB was submitted as a field duplicate for sample SS067BA. All the RPDs were $\leq 30 \%$ except as tabulated below.

Sample SS019BB was submitted as a field duplicate for sample SS019BA. All the RPDs were $\leq 30 \%$ except as tabulated below.

Sample SS054BB was submitted as a field duplicate for sample SS054AA. All the RPDs were $\leq 30 \%$.

Sample SS042BB was submitted as a field duplicate for sample SS042BA. All the RPDs were $\leq 30 \%$ except as tabulated below.

Sample SS023BB was submitted as a field duplicate for sample SS023BA. All the RPDs were $\leq 30 \%$ except as tabulated below.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Analyte	RPD	Notes
SS067BA/SS067BB	Naphthalene   2-Methylnaphthalene Acenaphthylene Pentachlorophenol Anthracene Fluoranthene Pyrene   Benz(a)anthracene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene	$\begin{aligned} & \hline 47 \% \\ & 51 \% \\ & 51 \% \\ & 32 \% \\ & 31 \% \\ & 68 \% \\ & 58 \% \\ & 39 \% \\ & 31 \% \\ & 39 \% \end{aligned}$	AMEC J qualified these analytes in both samples.
SS042BA/SS042BB	Fluoranthene   Pyrene   Chrysene   Benz(a)anthracene   Benzo(k)fluoranthene   Dibenzo(a,h)anthracene	$\begin{aligned} & \hline 59 \% \\ & 42 \% \\ & 43 \% \\ & 52 \% \\ & 32 \% \\ & 39 \% \end{aligned}$	AMEC J qualified these analytes in both samples.
SS023BA/SS023BB	Naphthalene   Anthracene	$\begin{aligned} & 32 \% \\ & 33 \% \end{aligned}$	AMEC J qualified these analytes in both samples.

### 6.3.2.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $-50 \%$ to $+100 \%$ acceptance limits for PAH analysis.

### 6.3.2.9 Surrogate Recoveries

All surrogates were within the laboratory acceptance criteria except as described below.


### 6.3.3 SDG J0605780

### 6.3.3.1 Holding Times

The sample was extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.3.3.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.3.3 Continuing Calibration

CCAL recoveries for the samples in this SDG were acceptable met QAPP-specified criteria except as described below.

The pentachlorophenol $\%$ D was high at $24 \%$ in CCAL JWG0604002. AMEC J qualified pentachlorophenol in samples SS017BA, SS016AA, SS016BA, SS007AA, SS007BA, SS007BC, SS074AA, SS074AA, SS074BA, SS015AA and SS015BA.

### 6.3.3.4 Laboratory Blanks

The following PAHs were detected in the laboratory blanks associated with the samples covered in this SDG: naphthalene (4.3, 2.0 and $1.5 \mu \mathrm{~g} / \mathrm{Kg}), 2$-methylnaphthalene $(4.2 \mu \mathrm{~g} / \mathrm{Kg})$, acenaphthene $(4.2 \mu \mathrm{~g} / \mathrm{Kg})$, fluorene ( $2.9 \mu \mathrm{~g} / \mathrm{Kg}$ ), pentachlorophenol ( 1.3 and $11 \mu \mathrm{~g} / \mathrm{Kg}$ ), phenanthrene $(4.4 \mu \mathrm{~g} / \mathrm{Kg})$, anthracene $(0.77 \mu \mathrm{~g} / \mathrm{Kg})$, fluoranthene $(0.80 \mu \mathrm{~g} / \mathrm{Kg})$ and pyrene $(0.53 \mu \mathrm{~g} / \mathrm{Kg})$. No qualifications were necessary as all sample results were greater than five times the blank concentration.

### 6.3.3.5 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS of the samples covered in this SDG.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.3.3.6 MS/MSD Recovery

The laboratory selected and performed an MS/MSD on sample SS007AA and SS050AA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD, except as bolded in the table below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS007AA	Naphthalene   2-Methylnaphthalene   Acenaphthylene   Acenaphthene   Fluorene   Pentachlorophenol   Phenanthrene   Anthracene   Fluoranthene   Pyrene   Chrysene   Benz(a)anthracene   Benzo(b)fluoranthene   Benzo(k)fluoranthene   Benzo(a)pyrene   Indeno(1,2,3-cd)pyrene   Dibenz(a,h)anthracene   Benzo(g,h,i)perylene	$137 \% / 152 \%$ $161 \% / 176 \%$ $168 \% / 180 \%$ $159 \% / 183 \%$ $161 \% / 181 \%$ $174 \% / 195 \%$ $167 \% / 180 \%$ $211 \% / 212 \%$ $217 \% / 205 \%$ $213 \% / 209 \%$ $260 \% / 204 \%$ $231 \% / 196 \%$ $313 \% / 267 \%$ $271 \% / 206 \%$ $226 \% / 197 \%$ $251 \% / 242 \%$ $202 \% / 205 \%$ $215 \% / 220 \%$	$9 \%$ $9 \%$ $6 \%$ $14 \%$ $12 \%$ $8 \%$ $7 \%$ $1 \%$ $5 \%$ $1 \%$ $19 \%$ $14 \%$ $12 \%$ $21 \%$ $11 \%$ $3 \%$ $1 \%$ $2 \%$	AMEC J qualified the detected Naphthalene, Acenaphthylene, Pentachlorophenol, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Chrysene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3cd)pyrene, Dibenz(a,h)anthracene and Benzo(g,h,i)perylene.
SS050AA	Naphthalene   2-Methylnaphthalene   Acenaphthylene   Pentachlorophenol   Phenanthrene   Anthracene   Fluoranthene   Pyrene   Chrysene   Benz(a)anthracene   Benzo(b)fluoranthene   Benzo(k)fluoranthene   Benzo(a)pyrene   Indeno(1,2,3-cd)pyrene   Dibenz(a,h)anthracene   Benzo(g,h,i)perylene	$\begin{gathered} \hline 26 \% / 25 \% \\ 33 \% / 34 \% \\ -45 \% /-49 \% \\ 24 \% / 20 \% \\ -2 \% /-2 \% \\ -73 \% /-82 \% \\ -874 \% /-844 \% \\ -874 \% /-869 \% \\ -593 \% /-590 \% \\ -517 \% /-518 \% \\ -426 \% /-439 \% \\ -402 \% /-441 \% \\ -236 \% /-253 \% \\ -166 \% /-187 \% \\ -19 \% /-36 \% \\ -137 \% /-153 \% \end{gathered}$	$\begin{gathered} \hline 2 \% \\ 2 \% \\ 3 \% \\ 2 \% \\ 0 \% \\ 5 \% \\ 9 \% \\ 1 \% \\ 1 \% \\ 0 \% \\ 3 \% \\ 10 \% \\ 7 \% \\ 7 \% \\ 15 \% \\ 6 \% \end{gathered}$	AMEC J qualified the detected Naphthalene, 2Methylnaphthalene, Acenaphthylene, Pentachlorophenol, Phenanthrene and Anthracene. Concentrations for Fluoranthene, Pyrene, Chrysene, Benz(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene and Indeno(1,2,3-cd)pyrene were $>4 x$ the spike concentration so recoveries could not be adequately assessed.

### 6.3.3.7 Field Duplicates

Sample SS012AC was submitted as a field duplicate for sample SS012AA. All the RPDs were $\leq 30 \%$.

Sample SS007BC was submitted as a field duplicate for sample SS007BA. All the RPDs were $\leq 30 \%$.

### 6.3.3.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified - $50 \%$ to $+100 \%$ acceptance limits for PAH analysis. Chrysene- $\mathrm{d}_{12}$ was initially high in sample SS025AA but was reanalyzed and within criteria, so no qualifications were necessary.

### 6.3.3.9 Surrogate Recoveries

All surrogates were within the laboratory acceptance criteria except as described below.

Sample ID	Surrogates with recoveries outside acceptance limits	Effects on Data Usability
$\begin{aligned} & \hline \text { SS050AA } \\ & \text { SS050BA } \end{aligned}$	2-Fluorobiphenyl (3\%) p-Terphenyl-d ${ }_{14}$ (34\%)	AMEC J qualified Naphthalene, 2-   Methylnaphthalene, Acenaphthylene,   Pentachlorophenol, Pyrene, Chrysene,   Benz(a)anthracene, Benzo(b)fluoranthene,   Benzo(k)fluoranthene, Benzo(a)pyrene,   Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene and Benzo(g,h,i)perylene and UJ qualified Acenaphthene and Fluorene
SS025AA	p -Terphenyl-d ${ }_{14}(0 \%)$	AMEC J qualified Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, $\operatorname{Dibenz}(\mathrm{a}, \mathrm{h})$ anthracene and Benzo(g,h,i)perylene.
SS017BA SS016AA SS007BA SS007BC SS074AA SS074BA	2-Fluorobiphenyl 2,4,6-Tribromophenol p -Terphenyl-d ${ }_{14}$	All three surrogate recoveries were high in all of these samples. They were all analyzed at dilutions. Surrogate recoveries could not be fully evaluated. Data usability is not adversely affected.

### 6.3.4 SDG J0605810

### 6.3.4.1 Holding Times

The sample was extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.3.4.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.4.3 Continuing Calibration

CCAL recoveries for the samples in this SDG were acceptable met QAPP-specified criteria except as described below.

The pentachlorophenol \% D was high at $24 \%$ in CCAL JWG0604002. AMEC J qualified pentachlorophenol in samples SS043BB, SS044AA, SS044BA, SS076AA, SS076BA, SS010AA, SS010AB, SS010BA, SS021AA and SS021BA.

The pentachlorophenol \% D was high at $23 \%$ in CCAL JWG0604003. AMEC J qualified pentachlorophenol in samples SS008AA, SS008BA, SS009AA, SS009BA, SS006AA, SS006BA, SS004AA, SS004BA, SS004BB, SS002AA, SS002AC, SS002BA, SS011AA, SS011BA, SS058AA, SS058BA, SS037AA, SS037BA, SS043AA and SS043BA.

### 6.3.4.4 Laboratory Blanks

There were no PAHs detected in the laboratory blanks associated with the samples covered in this SDG except as described below.

Blank ID	Analyte Concentrations ( $\mu \mathrm{g} / \mathrm{Kg}$ )	Effects on Data Usability
JWG0603919-4	Naphthalene (2.6)   Anthracene (0.83)   Fluoranthene (2.2)   Pyrene (1.5)   Chrysene (0.70)	AMEC U qualified the detected naphthalene results from samples SS009AA and SS009BA because the detected concentrations in the samples were less than five times the concentration detected in the method blank. All other concentrations were either non-detect or greater than five times the blank concentration.
JWG0603922-4	Naphthalene (4.3)   2-Methylnaphthalene (4.2)   Acenaphthene (4.2)   Fluorene (2.9)   Pentachlorophenol (1.3)   Phenanthrene (4.4)   Anthracene (0.77)   Fluoranthene (0.80) Pyrene (0.53)	No qualifications were necessary because the detected concentrations in the samples were greater than five times the concentration detected in the method blank.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.3.4.5 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS of the samples covered in this SDG.

### 6.3.4.6 MS/MSD Recovery

The laboratory selected and performed an MS/MSD on sample SS009AA. Recoveries were within the laboratory specified acceptance limits for the MS/MSD, except as bolded in the table below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS009AA	Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene   Pentachlorophenol Phenanthrene Fluoranthene Chrysene   Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	$\begin{aligned} & \hline 127 \% / 131 \% \\ & 145 \% / 148 \% \\ & 138 \% / 138 \% \\ & 150 \% / 153 \% \\ & 149 \% / 151 \% \\ & 158 \% / 165 \% \\ & 158 \% / 156 \% \\ & 146 \% / 140 \% \\ & 143 \% / 139 \% \\ & 144 \% / 140 \% \\ & 157 \% / 160 \% \\ & 159 \% / 165 \% \end{aligned}$	$2 \%$ $2 \%$ $0 \%$ $2 \%$ $1 \%$ $3 \%$ $1 \%$ $2 \%$ $1 \%$ $2 \%$ $1 \%$ $3 \%$	AMEC J qualified the detected Acenaphthylene, Pentachlorophenol, Phenanthrene, Fluoranthene, Chrysene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene and Dibenz( $\mathrm{a}, \mathrm{h}$ )anthracene.

### 6.3.4.7 Field Duplicates

Sample SS004BB was submitted as a field duplicate for sample SS004BA. All the RPDs were $\leq 30 \%$ except the following. AMEC J qualified the detected naphthalene (35\%), 2methylnaphthalene (39\%), acenaphthylene (44\%), fluorene ( $78 \%$ ), phenanthrene ( $42 \%$ ), anthracene ( $47 \%$ ), fluoranthene ( $58 \%$ ), pyrene ( $37 \%$ ), chrysene ( $31 \%$ ), benz(a)anthracene ( $43 \%$ ), benzo(b)fluoranthene ( $38 \%$ ), benzo(k)fluoranthene ( $43 \%$ ), benzo(a)pyrene ( $40 \%$ ), indeno( $1,2,3-\mathrm{cd})$ pyrene ( $47 \%$ ), dibenz (a,h)anthracene ( $46 \%$ ) and benzo( $\mathrm{g}, \mathrm{h}, \mathrm{i}$ ) perylene ( $46 \%$ ).

Sample SS002AC was submitted as a field duplicate for sample SS002AA. All the RPDs were $\leq 30 \%$.

Sample SS043BB was submitted as a field duplicate for sample SS043BA. All the RPDs were $\leq 30 \%$.

Sample SS010AB was submitted as a field duplicate for sample SS010AA. All the RPDs were $\leq 30 \%$.

### 6.3.4.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $-50 \%$ to $+100 \%$ acceptance limits for PAH analysis.

### 6.3.4.9 Surrogate Recoveries

All surrogates were within the laboratory acceptance criteria except as described below.

Sample ID	Surrogates with recoveries   outside acceptance limits	Effects on Data Usability		
SS009AA   SS009BA	2-Fluorobiphenyl $(138 / 134 \%)$   p-Terphenyl-d   14$(171 / 171 \%)$			AMEC J qualified Acenaphthylene, Pyrene, Chrysene,
:---				
Benz(a)anthracene, Benzo(b)fluoranthene,				
Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-				
cd)pyrene, Dibenz(a,h)anthracene and Benzo(g,h,i)perylene in				
both samples.				

### 6.3.5 SDG J0605839

### 6.3.5.1 Holding Times

The sample was extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.3.5.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.5.3 Continuing Calibration

CCAL recoveries for the samples in this SDG were acceptable met QAPP-specified criteria.

### 6.3.5.4 Laboratory Blanks

Naphthalene, 2-methylnaphthalene, pentachlorophenol and fluoranthene were detected below the MRL at a concentration of $2.5 \mu \mathrm{~g} / \mathrm{Kg}, 1.6 \mu \mathrm{~g} / \mathrm{Kg}, 17 \mu \mathrm{~g} / \mathrm{Kg}$ and $0.67 \mu \mathrm{~g} / \mathrm{Kg}$, respectively in the method blank JWG0603937-4.

- AMEC U qualified naphthalene for samples SS080BB, SS080CA, SS080DA, SS035CA, SS035DA, SS033AA and SS033BA
- AMEC U qualified 2-methylnaphthalene for samples SS080CA, SS080DA, SS035CA and SS035DA.
- AMEC U qualified pentachlorophenol for samples SS080CA, SS080DA, SS035CA, SS035DA and SS033AA

Naphthalene, anthracene, fluoranthene, pyrene, chrysene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene were detected below the MRL at a concentration of $1.6 \mu \mathrm{~g} / \mathrm{Kg}, 3.1 \mu \mathrm{~g} / \mathrm{Kg}$, $1.1 \mu \mathrm{~g} / \mathrm{Kg}, 1.1 \mu \mathrm{~g} / \mathrm{Kg}, 1.3 \mu \mathrm{~g} / \mathrm{Kg}, 0.93 \mu \mathrm{~g} / \mathrm{Kg}, 2.6 \mu \mathrm{~g} / \mathrm{Kg}, 2.1 \mu \mathrm{~g} / \mathrm{Kg}, 1.3 \mu \mathrm{~g} / \mathrm{Kg}, 1.9 \mu \mathrm{~g} / \mathrm{Kg}$ and $1.8 \mu \mathrm{~g} / \mathrm{Kg}$ respectively, in the method blank JWG0603940-4.

- AMEC U qualified naphthalene in samples SS048DA, SS090CD, SS057BA, SS057CA, SS057CB and SS057DA
- AMEC U qualified anthracene in samples SS048DA, SS057BA, SS057CA, SS057CB and SS057DA
- AMEC U qualified benzo(k)fluoranthene in samples SS095CA, SS057BA, SS057CA, SS057CB and SS057DA.
- AMEC U qualified chrysene in samples SS057BA, SS057CB and SS057DA.
- AMEC U qualified benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene in samples SS057BA, SS057CA, SS057CB and SS057DA.
- AMEC U qualified fluoranthene and pyrene in sample SS057DA.


### 6.3.5.5 LCS Recovery

Recoveries were within the laboratory specified acceptance limits for the LCS samples associated with this SDG.

### 6.3.5.6 MS/MSD Recovery

Sample SS080DA and SS036CA were selected by the laboratory for MS/MSD analyses. Phenanthrene \% recovery was low in the MS ( $-12 \%$ ) and MSD ( $-22 \%$ ) for SS080DA. AMEC J qualified the phenanthrene result in SS080DA.

Acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene and benz(a)anthracene in MS/MSD for sample SS036CA were present in high concentrations before spiking, as such control criteria are not applicable. MS and MDS \% recovery for benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene were all below the control criteria in MS and above criteria in MSD, and thus AMEC J qualified in the parent sample. Naphthalene, 2-methylnaphthalene, acenaphthylene, dibenz(a,h)anthracene and benzo(g,h,i)perylene were outside criteria in either the MS or MSD and therefore AMEC J qualified results for those compounds in SS036CA.

### 6.3.5.7 Field Duplicates

Sample SS036AC, SS048BB, SS057CB and SS080BB were submitted to the lab as field duplicates for SS0036AA, SS048BA, SS057CA and SS080BA. All RPDs for SS036AA/SS036AC and SS048BA/SS048BB were $\leq 30 \%$. The RPDs for the following compounds: anthracene, fluoranthene, pyrene, chrysene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene and benzo(g,h,i)perylene in samples SS080BA/SS080BB had an RPD $\geq$ $46 \%$ and were $J$ qualified in both samples.

### 6.3.5.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $-50 \%$ to $+100 \%$ acceptance limits for PAH analysis.

### 6.3.5.9 Surrogate Recoveries

SS048AA, SS095AA, SS035AA, SS032AA and SS032BA were diluted twenty to fifty times, thus surrogates were diluted below the range of calibration so no qualifications can be made.

2-Fluorobiphenyl \% recovery was below the acceptance criteria for sample SS036CA at 26\%. No qualifications were made since all other surrogates were within criteria.

### 6.3.6 SDG J0605876

### 6.3.6.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis, except as described below.

The laboratory re-extracted samples SS084CA and SS084DA 20 days beyond the 14 day holding time for extraction because of low-level naphthalene contamination in the associated method blank. The laboratory reported only the naphthalene results from the re-extracted analyses for these samples. AMEC J qualified the detected naphthalene results from samples SS084CA and SS084DA because of possible low bias in the analytical results because of the exceeded holding time.

### 6.3.6.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.6.3 Continuing Calibration

CCAL recoveries for the samples in this SDG were acceptable met QAPP-specified criteria.

### 6.3.6.4 Laboratory Blanks

PAHs or pentachlorophenol detected in the laboratory blanks associated with the samples covered in this report are described in the table below.

Blank ID	Analyte Concentrations ( $\boldsymbol{\mu g} / \mathbf{K g})$	Effects on Data Usability
JWG0603939-4	Naphthalene (2.3)	AMEC U qualified the detected naphthalene results from   samples SS097AA, SS097BA, SS097CA, SS097DA,   SS001AA, SS001CA, SS001DA, SS038AA, SS038AC,

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Analyte Concentrations ( $\mu \mathrm{g} / \mathrm{Kg}$ )	Effects on Data Usability
		SS038BA, SS038CA, SS038DA, SS038DB, SS039AA, SS039BA, SS039BB, SS039CA, SS039DA and SS029AA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.
	2-Methylnaphthalene (1.6)	AMEC U qualified the detected 2-methylnaphthalene results from samples SS097BA, SS097CA, SS097DA, SS038AA, SS038AC, SS038BA, SS038CA and SS039AA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.
	Fluoranthene (0.83)	AMEC U qualified the detected fluoranthene results from samples SS097CA, SS097DA, SS001DA, SS039BB and SS039DA because the detected concentrations in samples were less than five times the concentration detected in the method blank.
JWG0603972-4	Naphthalene (1.7)	AMEC U qualified the detected naphthalene results from samples SS029BA, SS029CA, SS029DA, SS096CA, SS096DA, SS028AA, SS028AB, SS072AA, SS072BA and SS072DA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.
	2-Methylnaphthalene (1.7)	AMEC U qualified the detected 2-methylnaphthalene results from samples SS029BA, SS072AA, SS072BA, SS072CA and SS072DA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.
	Pentachlorophenol (4.9)	AMEC U qualified the detected pentachlorophenol results from samples SS029BA SS029DA and SS096DA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.
	Pyrene (0.83)	AMEC U qualified the detected pyrene results from samples SS029CA and SS029DA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.
JWG0604043-4	Naphthalene (1.5)	AMEC U qualified the detected naphthalene results from samples SS062DA, SS064BA, SS064CA and SS064DA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.
JWG0604113-4	Naphthalene (3.8)	AMEC U qualified the detected naphthalene results from samples SS082AA, SS082CA, SS098CA, SS098DA, SS099CA, SS099DA, SS084DA, SS062AA, SS062BA and SS062CA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.
	2-Methylnaphthalene (1.6)	AMEC U qualified the detected 2-methylnaphthalene results from samples SS098CA, SS098DA, SS099CA, SS084DA, SS062AA, SS062BA and SS062CA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.
	Pentachlorophenol (13)	AMEC U qualified the detected pentachlorophenol results from samples SS082DA, SS098AA, SS098BA, SS098CA, SS098DA, SS099AA, SS084CA, SS062AA and SS062BA because the detected concentrations in the samples were less than five times the concentration detected in the method blank.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Analyte Concentrations ( $\mathbf{\mu g} / \mathbf{K g})$	Effects on Data Usability
	Fluoranthene (1.5)	AMEC U qualified the detected fluoranthene result from   sample SS084DA because the detected concentrations in the   sample were less than five times the concentration detected   in the method blank.
	Pyrene (1.0)	AMEC U qualified the detected pyrene result from sample   SS084DA because the detected concentrations in the sample   were less than five times the concentration detected in the   method blank.
JWG0700217-4	Naphthalene (0.97)   Fluoranthene (1.6)   Pyrene (1.1)	AMEC U qualified the detected naphthalene results from   samples SS084CA and SS084DA because the detected   concentrations in the samples were less than five times the   concentration detected in the method blank.

### 6.3.6.5 LCS Recovery

All LCS recoveries associated with PAH and pentachlorophenol analysis of the samples covered in this report were within laboratory-established acceptance limits.

### 6.3.6.6 MS/MSD Recovery

MS/MSD recoveries and RPDs were within the laboratory-established acceptance limits, except as tabulated below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS099AA	Acenaphthylene	14\%/6\%	3\%	AMEC J qualified the detected acenaphthylene result from this sample because of possible low bias in the analytical results due to potential matrix interference.
	Anthracene   Fluoranthene Pyrene   Chrysene   Benzo(a)anthracene   Benzo(b)fluoranthene   Benzo(k)fluoranthene   Benzo(a)pyrene   Indeno(1,2,3-cd)pyrene   Benzo(g,h,i)perylene	All 0\%	NA	The concentrations for these analytes were more than four times the concentration of the spike added; therefore, the recoveries could not be fully evaluated. Data usability is not adversely affected by the lack of spike recovery.
SS098CA	Anthracene	0\%/0\%	NA	AMEC J qualified the detected anthracene result from this sample because of possible low bias in the analytical results due to potential matrix interference.

### 6.3.6.7 Field Duplicates

Sample SS038DB, SS039BB and SS028AB were submitted to the lab as field duplicates for SS038DA, SS039BA and SS028AA. All RPDs were $\leq 30 \%$ with the following exceptions.

Sample ID	Analyte	RPD	Notes
	Anthracene	$124 \%$	AMEC J qualified the detected analytes from
	Fluoranthene	$50 \%$	both samples due to potential sampling
imprecision.			
	Pyrene	$71 \%$	
	Chrysene	$69 \%$	
	Benzo(b)fluoranthene	$115 \%$	
	Benzo(k)fluoranthene	$103 \%$	
	Benzo(a)pyrene	$124 \%$	
	Indeno(1,2,3-cd)pyrene	$130 \%$	
	Benzo(g,h,i)perylene	$126 \%$	

### 6.3.6.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $50 \%$ to $150 \%$ acceptance limits for PAH and pentachlorophenol analysis of the samples covered in this report.

### 6.3.6.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-established limits for PAH and pentachlorophenol analysis of the samples covered in this report, except as tabulated below.


Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Surrogates with recoveries   outside acceptance limits	Effects on Data Usability
SS028DA   SS028DC	2,4,6-Tribromophenol (184\%)	These samples were analyzed at 500-fold dilutions.   Surrogate recoveries could not be fully evaluated.   Data usability is not adversely affected.

### 6.3.7 SDG J0605879

### 6.3.7.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.3.7.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.7.3 Continuing Calibration

CCAL recoveries for the samples in this SDG were acceptable met QAPP-specified criteria except as described below.

Affected Samples	Analyte	$\begin{gathered} \text { CCAL \% } \\ \text { D } \end{gathered}$	Notes
CCAL JWG0604132, analyzed December 26, 2006			
$\begin{aligned} & \text { SS100AA, SS066AA, } \\ & \text { SS066AB, SS066BA, } \\ & \text { SS066CA, SS005AA, } \\ & \text { SS005BA } \end{aligned}$	Pentachlorophenol	21\%	AMEC J qualified the detected results for this analyte and UJ qualified the nondetected results.
SS066DA, SS066DC			AMEC UJ qualified the non-detected results for this analyte.
CCAL JWG0604173, analyzed December 27, 2006			
SS005CA, SS003AA, SS086AA, SS086BA, SS086BB, SS088AA, SS088BA, SS091AA, SS052BA, SS068AA	Pentachlorophenol	23\%	AMEC J qualified the detected results for this analyte.
SS003BA, SS003CA, SS003CB, SS0077BA			AMEC UJ qualified the non-detected results for this analyte.
CCAL JWG0700147, analyzed January 05, 2007			

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Affected Samples	Analyte	CCAL \%   D	Notes
SS091BA, SS075AA,	Benzo(b)fluoranthene   SS077AA, SS075BA   Indeno(1,2,3-cd)pyrene   Dibenz(a,h)anthracene	$21 \%$   $21 \%$   $27 \%$	AMEC J qualified the detected results for   these analytes. Only J qualify   Benzo(b)fluoranthene in SS075BA as other   analytes reported from different analytical   run.
CCAL JWG0700161, analyzed January 07, 2007			
SS052AA, SS052BA,	Benzo(b)fluoranthene	$28 \%$	AMEC J qualified the detected results for   this analyte.

### 6.3.7.4 Laboratory Blanks

PAHs or pentachlorophenol detected in the laboratory blanks associated with the samples covered in this report are described in the table below.

Blank ID	Analyte Concentrations   $(\boldsymbol{\mu g} / \mathbf{K g})$	Effects on Data Usability
JWG0604043-4	Naphthalene (1.5)	AMEC U qualified the detected naphthalene results from   samples SS066DA and SS068DC because the detected   concentrations in the samples were less than five times the   concentration detected in the method blank.
JWG0604114-4	Fluoranthene (1.1)	The detected concentrations in the samples were greater   than five times the concentration detected in the method   blank so no qualifications were necessary.
JWG0604115-4	Naphthalene (2.4)   Pentachlorophenol (13)	The detected concentrations in the samples were greater   than five times the concentration detected in the method   blank so no qualifications were necessary.

### 6.3.7.5 LCS Recovery

All LCS recoveries associated with PAH and pentachlorophenol analysis of the samples covered in this report were within laboratory-established acceptance limits.

### 6.3.7.6 MS/MSD Recovery

Sample SS052BA and SS077BA were selected by the laboratory for MS/MSD analyses. MS/MSD recoveries and RPDs were within the laboratory-established acceptance limits, except as bolded below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS052BA	2-Methylnaphthalene	$\mathbf{3 9 \%} \% / \mathbf{4 1 \%}$   $\mathbf{- 1 2 0 \% / - 1 1 3 \%}$	$1 \%$   $5 \%$	AMEC J qualified the detected result   from this sample because of possible   low bias in the analytical results due to   potential matrix interference.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
	Acenaphthylene Pentachlorophenol Anthracene Fluoranthene Pyrene   Chrysene   Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene	165\%/246\%   $267 \% / 532 \%$   $-713 \% /-712 \%$   $-495 \% / 511 \%$   $-757 \% / 230 \%$   $-720 \%-95 \%$   $39 \% / 554 \%$   $-1723 \% /-756 \%$   $-635 \% /-151 \%$   $89 \% / 364 \%$   $263 \% / 396 \%$   $331 \% / 346 \%$	NA	The concentrations for these analytes were more than four times the concentration of the spike added; therefore, the recoveries could not be fully evaluated. Data usability is not adversely affected by the lack of spike recovery.
	Dibenz(a,h)anthracene	138\%/187\%	10\%	AMEC J qualified the detected result from this sample because of possible high bias in the analytical result due to potential matrix interference.
SS077BA	Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Benzo(a)pyrene Dibenz(a,h)anthracene	$\begin{gathered} 71 \% / \mathbf{2 \%} \\ 82 \% / \mathbf{1 0 \%} \\ 96 \% / \mathbf{3 5 \%} \\ 91 \% / \mathbf{1 3 \%} \\ 88 \% / \mathbf{2 \%} \\ 97 \% / 7 \% \\ \hline 114 \% /-\mathbf{8 \%} \\ 88 \% /-5 \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 144 \% \\ 156 \% \\ 32 \% \\ 151 \% \\ 154 \% \\ 63 \% \\ 35 \% \\ 82 \% \\ \hline \end{gathered}$	AMEC J qualified the detected anthracene result from this sample because of possible low bias in the analytical results due to potential matrix interference.
	Fluoranthene Pyrene	$\begin{gathered} \hline 134 \% /-92 \% \\ 158 \% /-120 \% \end{gathered}$	$\begin{aligned} & \hline 38 \% \\ & \mathbf{4 0} \% \end{aligned}$	The concentrations for these analytes were more than four times the concentration of the spike added; therefore, the recoveries could not be fully evaluated. Data usability is not adversely affected by the lack of spike recovery.

### 6.3.7.7 Field Duplicates

Sample SS100DB, SS066AB, SS066DC, SS003CB, SS086BB were submitted to the lab as field duplicates for SS100DA, SS066AA, SS066DA, SS003CA, SS086BA. All RPDs were $\leq$ $30 \%$ with the following exceptions.

Sample ID	Analyte	RPD	Notes
SS100DA/SS100DB	Fluoranthene	$55 \%$	AMEC J qualified the detected analytes from   both samples due to potential sampling   imprecision.
SS066AA/SS066AB	Naphthalene   2-Methylnaphthene   Acenaphthene	$41 \%$   $38 \%$   $31 \%$	AMEC J qualified the detected analytes from   both samples due to potential sampling   imprecision.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Analyte	RPD	Notes
	Pentachlorophenol   Pyrene   Chrysene   Benz(a)anthracene   Benzo(k)fluoranthene   Benzo(a)pyrene   Indeno(1,2,3-cd)pyrene	$\begin{aligned} & \hline 37 \% \\ & 51 \% \\ & 54 \% \\ & 61 \% \\ & 43 \% \\ & 33 \% \\ & 33 \% \\ & \hline \end{aligned}$	
SS066DC/SS066DA	Fluorene   Phenanthrene   Anthracene   Fluoranthene   Pyrene   Chrysene   Benz(a)anthracene	$\begin{aligned} & \hline 55 \% \\ & 57 \% \\ & 73 \% \\ & 63 \% \\ & 63 \% \\ & 38 \% \\ & 48 \% \\ & \hline \end{aligned}$	AMEC J qualified the detected analytes from both samples due to potential sampling imprecision.
SS003CA/SS003CB	Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene   Chrysene   Benz(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	$38 \%$ $71 \%$ $58 \%$ $94 \%$ $99 \%$ $81 \%$ $93 \%$ $55 \%$ $70 \%$ $57 \%$ $33 \%$ $53 \%$	AMEC J qualified the detected analytes from both samples due to potential sampling imprecision.
SS086BA/SS086BB	Chrysene	56\%	AMEC J qualified the detected analytes from both samples due to potential sampling imprecision.

### 6.3.7.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $50 \%$ to $150 \%$ acceptance limits for PAH and pentachlorophenol analysis of the samples covered in this SDG except as described below.

All IS recoveries were initially low in sample SS066AA. The sample was reanalyzed and all IS recoveries were within criteria, so no qualifications were necessary.

Chrysene- $\mathrm{d}_{12}$ was low in SS066AB and SS005AA but the samples were reanalyzed and the IS recoveries were within criteria, so no qualifications were necessary.

Perylene- $\mathrm{d}_{12}$ was low in SS005AA, the sample was reanalyzed and the IS recovery was within criteria, so no qualifications were necessary.

### 6.3.7.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-established limits for PAH and pentachlorophenol analysis of the samples covered in this report, except as tabulated below.

Sample ID	Surrogates with recoveries   outside acceptance limits	Effects on Data Usability
SS100CA	2-Fluorobiphenyl	These samples were analyzed at dilutions. Surrogate   SS100DA   SS100DB
2,4,6-Tribromophenol		
SS075BA	p-Terphenyl-d ${ }_{14}$	is not adversely affected.
SS077AA		
SS100BA	2-Fluorobiphenyl (26\%)	These samples were analyzed at dilutions. Surrogate
SS005BA	2-Fluorobiphenyl (27\%)	recoveries could not be fully evaluated. Data usability
SS005CA	2-Fluorobiphenyl (11\%)	is not adversely affected.
SS003AA	2-Fluorobiphenyl (29\%)	
SS003CA	2-Fluorobiphenyl (24\%)	
SS003CD	2-Fluorobiphenyl (22\%)	
SS088BA	2-Fluorobiphenyl (25\%)	

### 6.3.8 SDG J0605890

### 6.3.8.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis except as described below.

The laboratory re-extracted samples SS049DA, SS041DA, SS088CA, SS088DA, SS091DA, SS068CA, SS075DA and SS084DA 17 days beyond the 14 day holding time for extraction because of naphthalene, 2-methylnaphthalene, acenaphthene, fluorene and phenanthrene contamination in the associated method blank. The laboratory reported only some of the analytes results from the re-extracted analyses for these samples.

Sample ID	Analyte	Days   Past   HT	Notes
SS088CA   SS088DA   SS075DA   SS049DA   SS041DA	Naphthalene   2-Methylnaphthalene   Acenaphthene   Fluorene   Phenanthrene	17	AMEC J qualified the detected analytes due to   potential low bias for the holding time   exceedance.
SS091DA	Naphthalene   2-Methylnaphthene   Acenaphthene   Fluorene   Phenanthrene	17	AMEC J qualified the detected analytes due to   potential low bias for the holding time   exceedance. AMEC R qualified the non-detected   Acenaphthene, Fluorene and Phenanthrene   results.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Analyte	Days   Past   HT	Notes
SS068CA	Naphthalene   2-Methylnaphthene   Acenaphthene   Fluorene   Phenanthrene	17	AMEC J qualified the detected analytes due to   potential low bias for the holding time   exceedance. AMEC R qualified the non-detected   Fluorene result.
SS078DA	Acenaphthene   Fluorene   Phenanthrene	17	AMEC J qualified the detected analytes due to   potential low bias for the holding time   exceedance. AMEC R qualified the non-detected   Phenanthrene result.
SS075CA	Naphthalene   2-Methylnaphthene   Acenaphthene   Fluorene	17	AMEC J qualified the detected analytes due to   potential low bias for the holding time   exceedance. AMEC R qualified the non-detected   Acenaphthene and Fluorene result.
SS030CA	2-Methylnaphthene   Acenaphthene   Phenanthrene	23	AMEC J qualified the detected analytes due to   potential low bias for the holding time   exceedance. AMEC R qualified the non-detected   Acenaphthene result.
SS030DA	Naphthalene   2-Methylnaphthalene   Acenaphthene   Fluorene   Phenanthrene	23	AMEC J qualified the detected analytes due to   potential low bias for the holding time   exceedance. AMEC R qualified the non-detected   2-Methylnaphthalene, Acenaphthene and   Fluorene result.

### 6.3.8.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.8.3 Continuing Calibration

CCAL recoveries for the samples in this SDG were acceptable met QAPP-specified criteria except as described below.

Affected Samples	Analyte	CCAL \%   D	Notes
CCAL JWG0700147, analyzed January 05, 2007			
SS041AA, SS041BA,	Benzo(b)fluoranthene	$21 \%$	AMEC J qualified the detected results for
SS030AA, SS094AA,	Indeno(1,2,3-cd)pyrene	$21 \%$	these analytes.
SS094AB, SS094BA,	Dibenz(a,h)anthracene	$27 \%$	
SS045AA, SS045BA,			
SS047AA, SS047BA			

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Affected Samples	Analyte	$\begin{gathered} \text { CCAL \% } \\ \text { D } \end{gathered}$	Notes
$\begin{aligned} & \text { SS030BA, SS101AA, } \\ & \text { SS101BA, SS047AC, } \\ & \text { SS024AA, SS024BA } \end{aligned}$	Dibenz(a,h)anthracene	27\%	AMECE J qualified the detected results for this analyte.
CCAL JWG0700161, analyzed January 07, 2007			
SS091DA, SS088DA,   SS068CA, SS068DA,   SS078BA, SS078CA,   SS078DA, SS075DA,   SS049DA, SS041DA   SS030DA	Benzo(b)fluoranthene	28\%	AMEC J qualified the detected results for this analyte.
CCAL JWG0700162, analyzed January 08, 2007			
SS086CA, SS049CA, SS075CA, SS077CA, SS041CA, SS030BA, SS101AA, SS101BA, SS047AC, SS024AA, SS024BA, SS086DA, SS030CA	Benzo(b)fluoranthene	24\%	AMEC J qualified the detected results for this analyte.
CCAL JWG0700167, analyzed January 08, 2007			
SS077DA, SS077DB	Benzo(b)fluoranthene	26\%	AMEC J qualified the detected results for this analyte.

### 6.3.8.4 Laboratory Blanks

PAHs or pentachlorophenol detected in the laboratory blanks associated with the samples covered in this report are described in the table below.

Blank ID	Analyte Concentrations   $(\mathbf{\mu g} / \mathbf{K g})$	Effects on Data Usability
JWG0604115-4	Naphthalene (2.4)	AMEC U qualified the detected naphthalene results from   samples SS047AA because the detected concentration was   less than five times the concentration detected in the method   blank.
JWG0604115-4	Pentachlorophenol (13)	AMEC U qualified the detected pentachlorophenol results   from samples 030AA, SS030BA, SS024AA and SS024BA   because the detected concentrations were less than five   times the concentration detected in the method blank.
JWG0604149-4	Naphthalene (420)   2-Methylnaphthalene (310)   Acenaphthylene (4.0)   Fluorene (70)   Pentachlorophenol (2)   Phenanthrene (20)   Anthracene (2.4)	AMEC U qualified the detected naphthalene, fluorene and   pentachlorophenol results from sample SS030CA because   the detected concentrations were less than five times the   concentration detected in the method blank. AMEC U   qualified the detected acenaphthylene and anthracene results   from sample SS030DA.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Analyte Concentrations ( $\mu \mathrm{g} / \mathrm{Kg}$ )	Effects on Data Usability
	Fluoranthene (1.3)   Pyrene (0.97)	
JWG0604166-4	Naphthalene (210) 2-Methylnaphthalene (140) Acenaphthene (84) Fluorene (32) Phenanthrene (11) Anthracene (1.6) Fluoranthene (1.4) Pyrene (1.0) Chrysene (0.50) Benzo(b)fluoranthene (0.90)	AMEC U qualified the detected anthracene in samples SS091DA and SS078DA. AMEC U qualified the detected naphthalene in samples SS068DA, SS078BA, SS078CA, SS078DA, SS041CA, SS049CA, SS078AA, SS086DA and SS091CA. AMEC U qualified the 2-methylnaphthalene results detected in samples SS068DA, SS078BA, SS078CA, SS078DA, SS086DA, SS091CA, SS078AA, SS049CA and SS041CA. AMEC U qualified the detected acenaphthene in samples SS068DA, SS078BA, SS078CA, SS091CA, SS078AA, SS049CA and SS041CA. AMEC U qualified the detected fluorene result in samples SS068DA, SS078BA, SS078CA, SS091CA SS078AA, SS049CA and SS041CA. AMEC U qualified the detected phenanthrene results in samples SS068DA, SS078BA, SS078CA, SS091CA, SS078AA and SS041CA
JWG0700225-4	Naphthalene (2.5)   2-Methylnaphthalene (1.8)   Fluoranthene (1.2)   Pyrene (0.77)	AMEC U qualified the detected naphthalene result in sample SS068CA. AMEC U qualified the detected 2methylnaphthalene result in sample SS041DA.

### 6.3.8.5 LCS Recovery

All LCS recoveries associated with PAH and pentachlorophenol analysis of the samples covered in this report were within laboratory-established acceptance limits except as described below.

LCS ID	Analyte \% Recovery	Effects on Data Usability
JWG0604149-3	Naphthalene (292) 2-Methylnaphthalene (225) Acenaphthene (169)	AMEC J qualified the naphthalene result in samples SS030CA and SS077DB due to the high LCS recovery. AMEC also J qualified 2-methylnaphthalene and acenaphthene from sample SS077DB.
JWG0604166-3	Naphthalene (168)   2-Methylnaphthalene (136)	AMEC J qualified the detected naphthalene and 2methylnaphthalene in samples SS086CA, SS077CA, SS077DA, SS078AA, SS078BA, SS078CA, SS086DA, SS091CA, SS068DA, SS078DA, SS049CA and SS041CA.

### 6.3.8.6 MS/MSD Recovery

Sample SS030CA and SS091DA were selected by the laboratory for MS/MSD analyses. MS/MSD recoveries and RPDs were within the laboratory-established acceptance limits, except as bolded below.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS030CA	Fluoranthene	$\mathbf{- 1 1 6 \% / - \mathbf { 1 3 3 } \%}$	$11 \%$	AMEC J qualified the detected   fluoranthene and pyrene result from   this sample because of possible low   bias in the analytical results due to   potential matrix interference.
	Chrysene	$\mathbf{2 7 \%} / \mathbf{1 3 \%}$	$10 \%$	
	Pyrene	$\mathbf{- 7 4 \% / - 9 1 \%}$	$10 \%$	

### 6.3.8.7 Field Duplicates

Sample SS094AB, SS047AC and SS077DBwere submitted to the lab as field duplicates for SS094AA, SS047AA and SS077DA. All RPDs were $\leq 30 \%$ with the following exceptions.

Sample ID	Analyte	RPD	Notes
SS094AA/SS094AB	Naphthalene   Benzo(b)fluoranthene	$54 \%$   $35 \%$	AMEC J qualified the detected analytes from   both samples due to potential sampling   imprecision.
SS047AA/SS047AC	Pentachlorophenol	$42 \%$	AMEC J qualified the detected analytes from   both samples due to potential sampling   imprecision.
SS077DA/SS077DB	Naphthalene	$32 \%$	AMEC J qualified the detected analyte from   both samples due to potential sampling   imprecision.

### 6.3.8.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $50 \%$ to $150 \%$ acceptance limits for PAH and pentachlorophenol analysis of the samples covered in this SDG except as described below. Sample SS086CA had low phenanthrene- $\mathrm{d}_{10}$ but the sample was reanalyzed and the IS recovery was within criteria, so no qualifications were necessary.

### 6.3.8.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-established limits for PAH and pentachlorophenol analysis of the samples covered in this report, except as tabulated below.

Sample ID	Surrogates with recoveries   outside acceptance limits	Effects on Data Usability
SS101AA	2-Fluorobiphenyl	These samples were analyzed at dilutions. Surrogate   SS101BA
SS077CA	2,4,6-Tribromophenol	recoveries could not be fully evaluated. Data usability
SS077DA	p-Terphenyl-d ${ }_{14}$	
SS077DB		

### 6.3.9 SDG J0605919

### 6.3.9.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time of seven days for aqueous extraction and 14 days for solid extraction and 40 days for analysis, except as described below.

The laboratory re-extracted samples SS52CA, SS52DA, SS047CA, SS047DA, SS045CA, SS045DA, SS024CA, SS031BA, SS031CA, SS031DA, SS026BA, SS007CA, SS0022AA, SS0022AB, SS0022DA, SS020CA, SS020CC, SS020DA, SS046CA and SS046DA 24 days beyond the 14 day holding time for extraction because of low-level naphthalene, 2methylnaphthalene, acenaphthene, fluorene, phenanthrene, and anthracene contamination in the associated method blanks. The laboratory reported these analyte results from the re-extracted sample analyses. AMEC UJ qualified the non-detected results and J qualified the detected results for naphthalene, 2-methylnaphthalene, acenaphthene, fluorene and phenanthrene from samples SS52CA, SS52DA, SS047DA, SS045CA, SS045DA, SS031BA, SS031CA, SS031DA, SS026BA, SS0022DA, SS020CA, SS020CC, SS020DA, SS046CA, SS046DA and SS0022DA; the naphthalene, 2-methylnaphthalene, acenaphthene and fluorene results from sample SS047CA; the naphthalene, 2-methylnaphthalene, acenaphthene, fluorene and anthracene results from sample SS024CA; and the acenaphthene and fluorene results from samples SS007CA, SS0022AA, and SS0022AB because of possible low bias in the analytical results due to the exceeded holding time.

The laboratory re-extracted sample SS070AA 23 days beyond the 14 day holding time for extraction, because of surrogate recoveries. AMEC J qualified the detected results for this sample because of possible low bias in the analytical results due to the exceeded holding time.

### 6.3.9.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.9.3 Continuing Calibration

CCV recoveries for PAH and pentachlorophenol analysis of the samples covered in this SDG were acceptable.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.3.9.4 Laboratory and Equipment Blanks

No PAHs or pentachlorophenol were detected in the laboratory or equipment blanks associated with the samples covered in this report, except as described in the table below.

Blank ID	Analyte Concentrations ( $\mu \mathrm{g} / \mathrm{Kg}$ )	Effects on Data Usability
JWG0604149-4	Naphthalene (420)   2-Methylnaphthalene (310)   Acenaphthylene (4.0)   Acenaphthene (210)   Fluorene (70)   Pentachlorophenol (2.0)   Phenanthrene (20)   Anthracene (2.4)   Fluoranthene (1.3)   Pyrene (0.97)	The concentrations for these analytes in the associated samples were more than five times the blank concentrations. Data usability is not adversely affected by the method blank detections.
JWG0604170-4	Naphthalene (130)	AMEC U qualified the detected naphthalene results from samples SS046AA, SS046BA, SD002AA, SD003AA, SD004AA, and SD004BA because the concentrations in the samples were less than five times the concentration detected in the method blank.
	2-Methylnaphthalene (93)	AMEC U qualified the detected 2-methylnaphthalene results from samples SS046AA, SS046BA, and SD004BA because the concentrations in the samples were less than five times the concentration detected in the method blank.
	Acenaphthene (74)	AMEC U qualified the detected acenaphthene results from samples SS046AA and SD004AA because the concentrations in the samples were less than five times the concentration detected in the method blank.
	Fluorene (34)	AMEC U qualified the detected fluorene results from samples SS046AA, SS046BA, and SD004AA because the concentrations in the samples were less than five times the concentration detected in the method blank.
JWG0700100-4	Naphthalene (49)	AMEC U qualified the detected naphthalene results from samples SS031DB, SS026AA, SS026CA, SS026CC, SS026DA, SS007CA, SS007DA, SS007DB, SS0022AA, SS0022AB, SS0022BA, SS0022CA, SS020AA, and SS020BA because the concentrations in the samples were less than five times the concentration detected in the method blank.
	2-Methylnaphthalene (55)	AMEC U qualified the detected 2-methylnaphthalene results from samples SS031DB, SS026CA, SS026CC, SS026DA, SS007CA, SS007DA, SS007DB, SS0022AA, SS0022AB, SS0022BA, SS0022CA, SS020AA, and SS020BA because the concentrations in the samples were less than five times the concentration detected in the method blank.
	Acenaphthene (48)	AMEC U qualified the detected acenaphthene results from samples SS031DB, SS026CA, SS026CC, SS026DA, SS007DA, SS007DB, SS0022BA, SS0022CA, and SS020BA because the concentrations in the samples were less than five times the concentration detected in the method blank.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Analyte Concentrations ( $\mu \mathrm{g} / \mathrm{Kg}$ )	Effects on Data Usability
	Fluorene (24)	AMEC U qualified the detected fluorene results from samples SS031DB, SS026CA, SS026CC, SS026DA, SS007DA, SS007DB, SS0022BA, SS0022CA, SS020AA, and SS020BA because the concentrations in the samples were less than five times the concentration detected in the method blank.
	Phenanthrene (12)	AMEC U qualified the detected phenanthrene results from samples SS031DB, SS026CA, SS026CC, SS026DA, SS007CA, SS007DA, SS007DB, SS0022AA, SS0022AB, SS0022BA, SS0022CA and SS020BA because the concentrations in the samples were less than five times the concentration detected in the method blank.
JWG0700177-4	Naphthalene (1.5)	AMEC U qualified the detected naphthalene results from samples SS031CA and SS031DA because the concentrations in the samples were less than five times the concentration detected in the method blank.
JWG0700178-4	Penthachlorophenol (1.2) Fluoranthene (0.8) Pyrene (0.60)	The concentrations for these analytes in the associated samples were more than five times the blank concentrations. Data usability is not adversely affected by the method blank detections.
EB-01	Naphthalene $(0.14)$ 2-Methylnaphthalene $(0.15)$ Acenaphthene $(0.28)$ Fluorene $(0.18)$ Pentachlorophenol $(0.53)$ Phenanthrene $(0.46)$ Anthracene $(0.054)$ Fluoranthene $(0.24)$ Pyrene $(0.14)$ Benzo(a)anthracene $(0.021)$ Chrysene $(0.019)$	AMEC U qualified the detected pentachlorophenol results from samples SS007DA and SS007DB because the sample concentrations were less than five times the equipment blank concentrations.   All other analytes were either not detected or the sample concentrations were more than five times the equipment blank concentrations; therefore data usability is not adversely affected.
EB-02	Naphthalene (0.63)   2-Methylnaphthalene (0.18)   Acenaphthene (0.61)   Fluorene (0.39)   Pentachlorophenol (0.38)   Phenanthrene (0.36)   Anthracene (0.050)   Fluoranthene (0.14)   Pyrene (0.084)	

### 6.3.9.5 LCS Recovery

All LCS recoveries associated with PAH and pentachlorophenol analysis of the samples covered in this report were within laboratory-established acceptance limits, except as tabulated below.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

LCS ID	Analytes with recoveries outside acceptance limits (\%)	Effects on Data Usability
JWG0604149-3	$\begin{gathered} \text { Naphthalene (292\%) } \\ \text { 2-Methylnaphthalene (225\%) } \\ \text { Acenaphthene }(169 \%) \end{gathered}$	AMEC J qualified the detected results for these analytes from samples SS094CA, SS094DA, SS101CA, and SS101DA; the detected naphthalene results from samples SS024DA, SS070AB, SS070DA, SS070BA, and SS070CA; and the detected 2methylnaphthalene results from samples SS070BA and SS070CA because of possible high bias in the analytical results.
JWG0604170-3	```Naphthalene (144%) 2-Methylnaphthalene (130%) Acenaphthene (121%)```	AMEC J qualified the detected results for these analytes from sample SS046AA; the detected naphthalene results from samples SS046BA, SD002AA, SD003AA, SD004BA, and SD004AA; the detected 2-methylnaphthalene results from samples SS046BA and SD004BA; and the detected acenaphthene result from sample SD004AA because of possible high bias in the analytical results.

### 6.3.9.6 MS/MSD Recovery

MS/MSD recoveries and RPDs were within the laboratory-established acceptance limits, except as bolded below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Notes
SS046BA	Phenanthrene	114\%/233\%	38\%	AMEC J qualified the detected phenanthrene result from this sample because of possible high bias in the analytical results due to potential matrix interference.
	Pentachlorophenol Fluoranthene Pyrene Chrysene   Benzo(b)fluoranthene   Benzo(k)fluoranthene	$\begin{gathered} \hline 156 \% / 263 \% \\ \mathbf{1 6 5 \% / 2 8 9 \%} \\ 357 \% / 248 \% \\ 102 \% / 152 \% \\ -396 \% /-210 \% \\ -71 \% / 12 \% \end{gathered}$	$\begin{gathered} \hline 9 \% \\ 10 \% \\ 7 \% \\ 4 \% \\ 8 \% \\ 8 \% \end{gathered}$	The concentrations for these analytes were more than four times the concentration of the spike added; therefore, the recoveries could not be fully evaluated. Data usability is not adversely affected by the high or low spike recoveries.

### 6.3.9.7 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $50 \%$ to $150 \%$ acceptance limits for PAH and pentachlorophenol analysis of the samples covered in this report.

### 6.3.9.8 Surrogate Recoveries

Surrogate recoveries were within the laboratory-established limits for PAH and pentachlorophenol analysis of the samples covered in this report, except as tabulated below.

Sample ID	Surrogates with recoveries outside acceptance limits	Effects on Data Usability
SS070AB SS070BA SS026AA SD001AA SD001AB SD004BA	2-Fluorobiphenyl (0\%) 2,4,6-Tribromophenol (0\%) p-Terphenyl-d ${ }_{14}(0 \%)$	These samples were analyzed at 100 -fold dilutions. Surrogate recoveries could not be fully evaluated. Data usability is not adversely affected.
$\begin{aligned} & \text { SS094DA } \\ & \text { SS101DA } \end{aligned}$	$\begin{aligned} & \text { p-Terphenyl-d }{ }_{14}(214 \%) \\ & \text { p-Terphenyl-d } \\ & 14 \\ & (294 \%) \end{aligned}$	This sample was analyzed at 50 -fold and 5000fold dilutions. Surrogate recoveries could not be fully evaluated. Data usability is not adversely affected.
SS101CA	2,4,6-Tribromophenol (0\%)   p-Terphenyl-d ${ }_{14}$ (298\%)	

### 6.3.9.9 Data Reporting

Samples SS094CA, SS094DA, SS101CA, SS101DA, SS20CA, SS52DA, SS047CA, SS047DA, SS024DA, SS070AA, SS070AB, SS070BA, SS070CA, SS031AA, SS026AA, SS026BA, SS020AA, SS046AA, SS046BA, SD001AA, SD001AB, SD002AA, SD003AA, SD004AA, and SD004BA required dilutions due to the presence of elevated levels of target analytes. The reporting limits were adjusted to reflect the dilutions.

### 6.3.10 SDG J0605944

### 6.3.10.1 Holding Times

All samples were extracted and analyzed within the QAPP-recommended maximum holding time of 14 days for solid extraction and 40 days for analysis.

### 6.3.10.2 Initial Calibration

The QAPP-specified criteria of SPCCs, CCCs and target analytes were met for the initial calibrations associated with PAH analysis.

The second source calibration verification QAPP requirement of $\pm 25 \%$ of the expected value was met.

### 6.3.10.3 Continuing Calibration

CCAL recoveries for the samples in this SDG were acceptable met QAPP-specified criteria except as described below.

Affected Samples	Analyte	CCAL \%   D	Notes
CCAL JWG0700206, analyzed January 10, 2007			
SD006BA, SD007AA,   SD008AA, SD009AA,   SD006AC	Benzo(b)fluoranthene	$26 \%$	AMEC J qualified the detected results for   this analyte.

### 6.3.10.4 Laboratory Blanks

PAHs or pentachlorophenol detected in the laboratory blanks associated with the samples covered in this report are described in the table below.

Blank ID	Analyte Concentrations   $(\mathbf{\mu g} / \mathbf{K g})$	Effects on Data Usability
JWG0604170-4	Naphthalene (130)	AMEC U qualified the detected naphthalene results from   samples SD005AA, SD007AA, SD008AA, SD006AC and   2-Methylnaphthalene (93)   Acenaphthene (74)
Fluorene (34)	SD009AA. AMEC U qualified the detected 2-   methylnaphthalene results from samples SD005AA,   SD006AA, SD006BA and SD007AA. AMEC U qualified	
	Pentachlorophenol (1.5)	SDe detect fluorene results from samples SD005AA and   the   Phenanthrene (12)
Anthracene (1.4)	SD009AA because the detected concentration was less than	
five times the concentration detected in the method blank.		
	Fluoranthene (0.77)	

### 6.3.10.5 LCS Recovery

All LCS recoveries associated with PAH and pentachlorophenol analysis of the samples covered in this report were within laboratory-established acceptance limits except as described below. Naphthalene, 2-methylnaphthalene and acenaphthene recoveries were high but naphthalene and 2-methylnaphthalene were $U$ qualified due to blank contamination and the Acenaphthene results were all non-detect, so no qualifications were necessary.

### 6.3.10.6 MS/MSD Recovery

The laboratory selected a non-project sample for the MS/MSD analysis for this batch so data quality could not be assessed.

### 6.3.10.7 Field Duplicates

Sample SD006AC was submitted to the lab as a field duplicates for SD006AA. All RPDs were $\leq 30 \%$ with the following exceptions.

Sample ID	Analyte	RPD	Notes
SD006AA/SD006AC	Benzo(b)fluoranthene	$39 \%$	AMEC J qualified the detected analytes from
	Indeno(1,2,3-cd)pyrene	$34 \%$	both samples due to potential sampling   imprecision.
	Dibenz(a,h)anthracene	$34 \%$	

### 6.3.10.8 Internal Standard Recoveries

IS recoveries were within the QAPP-specified $50 \%$ to $150 \%$ acceptance limits for PAH and pentachlorophenol analysis of the samples covered in this SDG.

### 6.3.10.9 Surrogate Recoveries

Surrogate recoveries were within the laboratory-established limits for PAH and pentachlorophenol analysis of the samples covered in this report, except as tabulated below.

Sample ID	Surrogates with recoveries   outside acceptance limits	Effects on Data Usability
SD006BA	2-Fluorobiphenyl $(21 \%)$   $2,4,6$-Tribromophenol $(16 \%)$   p-Terphenyl- $\mathrm{d}_{14}(24 \%)$	These samples were analyzed at dilutions. Surrogate   recoveries could not be fully evaluated. Data usability   is not adversely affected.

### 6.4 Metals by USEPA 6020 and USEPA 7471A

Samples were analyzed by USEPA method 6020, not by QAPP-specified method 6010B. There is no impact to data quality so no qualifications necessary. The results may be considered usable with the limitations and exceptions described below.

### 6.4.1 SDG J0605714

### 6.4.1.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.1.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.1.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs were acceptable.

### 6.4.1.4 Low Level Calibration Check Standard

All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable with all analytes within $\pm 50 \%$ of the expected value.

### 6.4.1.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.1.6 Laboratory Blanks

Chromium and vanadium were detected at concentrations above the MDL in the laboratory blank. The chromium results, for all samples, are greater than ten times the contract required quantitation limit (CRQL), so data usability is not adversely affected. The vanadium result of $0.91 \mathrm{mg} / \mathrm{kg}$ shows a possible low bias in the analytical results so AMEC UJ qualified the nondetected vanadium results from samples SS059AA, SS060AA, SS060BA, SS087AA and SS089BA. The detected vanadium results in samples SS059BA, SS073AA, SS073BA, SS085AA, SS085BA, SS087BA, SS089AA, SS090AA and SS090BA were J qualified.

### 6.4.1.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks except as described below. The initial calibration check contained an antimony result above the MDL but below the CRQL. Sample results for SS085AA, SS090BA and SS090BC which were also above the MDL but below the CRQL were U qualified. The CCB4 contained results for barium, chromium and lead but all sample results are greater than ten times the blank result so no qualifications were necessary.

### 6.4.1.8 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples.

### 6.4.1.9 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.1.10 MS/MSD Recovery

MS/MSD analysis was performed on sample SS059AA. Recoveries were within control limits for the MS. The recovery for arsenic and chromium exceeded the recovery criteria, $151 \%$ and $141 \%$ respectively in the MSD. AMEC J qualified the detected arsenic and chromium results in all samples due to potential matrix interference.

### 6.4.1.11 Post Digestion Spike Recovery

The QAPP-specified acceptance limits for metals post digestion spike recoveries are $75 \%$ to $125 \%$ recovery. All recoveries were within acceptance limits except for arsenic, which recovered high at $146 \%$. All samples were J qualified.

### 6.4.1.12 Serial Dilution

Percent difference for serial dilution analysis performed on sample SS059AA met QAPPspecified criteria with less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL. The percent difference was greater than $10 \%$ for cadmium, selenium and silver, however the initial sample result was less than 50 times the MDL so no qualifications were made.

### 6.4.1.13 Laboratory Duplicates

The laboratory performed duplicate analyses on sample SS059AA. The RPDs were within the acceptance limits of $\leq 20 \%$ RPD.

### 6.4.1.14 Field Duplicates

Sample SS090BC was used this as a field duplicate for SS090BA. All RPDs were $\leq 30 \%$ with the exception of vanadium, which had an RPD of $38 \%$. AMEC J qualified the vanadium result in SS090BC and SS090BA. Table 3 is provided with RPDs.

### 6.4.2 SDG J0605735

### 6.4.2.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.2.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.2.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs were acceptable.

### 6.4.2.4 Low Level Calibration Check Standard

All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable with all analytes within $\pm 50 \%$ of the expected value.

### 6.4.2.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.2.6 Laboratory Blanks

Chromium was detected above the MDL in the laboratory blank at $0.21 \mathrm{mg} / \mathrm{kg}$. The chromium results, for all samples, are greater than ten times the CRQL, so data usability is not adversely affected.

### 6.4.2.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks except as described below.

Blank ID	Detected   analytes	Analyte   concentration   $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Detected analytes	Analyte concentration ( $\mu \mathrm{g} / \mathrm{L}$ )	Samples affected	Effects on Data Usability
$\begin{aligned} & \text { ICB } \\ & 12 / 05 / 06 \end{aligned}$	Antimony	0.106	SS079AA, SS079BA, SS067AA, SS067BA, SS067BB, SS069AA, SS069BA, SS092AA, SS092BA, SS093AA, SS093BA, SS083AA, SS083BA, SS081AA, SS081BA, SS019AA, SS019BA, SS019BB, SS054AA	The concentrations in the associated samples were more than 5 times the concentration detected in the blank or non-detect. Data usability is not adversely affected.
$\begin{aligned} & \mathrm{CCBs} \\ & 12 / 05 / 06 \end{aligned}$	Barium   Antimony   Barium   Antimony   Barium   Chromium   Lead   Barium   Antimony   Barium	$\begin{aligned} & \hline 0.330 \\ & 0.156 \\ & -0.442 \\ & 0.147 \\ & 1.71 \\ & 0.17 \\ & 0.133 \\ & 0.395 \\ & 0.112 \\ & -0.442 \\ & \hline \end{aligned}$		Antimony, barium, chromium, and lead were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \text { ICB } \\ & 12 / 12 / 06 \end{aligned}$	Antimony   Silver   Vanadium	$\begin{aligned} & \hline 0.337 \\ & -0.117 \\ & 0.452 \end{aligned}$	SS054ABSS054BASS071AASS071BASS042AASS042BASS042BBSS023AASS023BASS023BBSS040AASS040BA	AMEC UJ qualified the non-detected silver results from samples SS054AB, SS054BA, SS071AA, SS071BA, SS042AA, SS042BA, SS042BB, SS023AA,   SS023BA, SS023BB, SS040AA and SS040BA because of possible low bias in the analytical results due to the low instrument bias. Antimony and vanadium results were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank.
$\begin{aligned} & \text { CCBs } \\ & 12 / 12 / 06 \end{aligned}$	Silver   Barium   Chromium   Lead   Silver   Vanadium   Antimony   Barium   Silver   Vanadium	$\begin{aligned} & \hline 0.115 \\ & 2.25 \\ & 0.255 \\ & 0.264 \\ & -0.115 \\ & 0.202 \\ & 0.130 \\ & -0.144 \\ & -0.117 \\ & 0.336 \end{aligned}$		Silver, antimony, barium, chromium, lead, vanadium and selenium were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank. Data usability is not adversely affected.

### 6.4.2.8 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples.

### 6.4.2.9 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.2.10 MS/MSD Recovery

MS/MSD analysis was performed on samples SS079AA and SS054AB for all metals but mercury. The MS/MSD for mercury was performed on samples SS067BB and SS071BA. All recoveries were within criteria except as described below.

For sample SS079AA recoveries were within control limits for the MS. The recovery for arsenic and chromium exceeded the recovery criteria, $151 \%$ and $141 \%$ respectively, in the MSD. AMEC J qualified the detected arsenic and chromium results in all samples due to potential matrix interference.

For sample SS067BB the MS criteria was within control limits but the MSD was high 148\%. AMEC J qualified the detected mercury results for samples SS079AA, SS079BA, SS067AA, SS067BA, SS067BB, SS069AA, SS069BA, SS092AA, SS093AA, SS093BA, SS083AA, SS083BA, SS081AA and SS019AA.

### 6.4.2.11 Post Digestion Spike Recovery

The QAPP-specified acceptance limits for metals post digestion spike recoveries are $75 \%$ to $125 \%$ recovery. All recoveries were within acceptance limits except for arsenic, which recovered high at $146 \%$. All samples were $J$ qualified.

### 6.4.2.12 Serial Dilution

Percent difference for serial dilution analysis performed on sample SS059AA met QAPPspecified criteria with less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL. The percent difference was greater than $10 \%$ for cadmium, selenium and silver, however the initial sample result was less than 50 times the MDL so no qualifications were made.

### 6.4.2.13 Laboratory Duplicates

The laboratory performed duplicate analyses on sample SS079AA and SS054AB for all metals but mercury. The mercury duplicate analysis was performed on samples SS071BA and SS067BB. The RPDs were within the acceptance limits of $\leq 20 \%$ RPD.

### 6.4.2.14 Field Duplicates

Sample SS067BB, SS019BB, SS054BB, SS042BB and SS023BB were submitted to the laboratory as a field duplicates for SS067BA, SS019BA, SS054BA, SS042BA and SS023BA. All RPDs were $\leq 30 \%$ with the following exceptions.

- AMEC J qualified the detected antimony, arsenic, chromium, copper and lead results in samples SS067BA and SS067BB due to elevated RPDs of $46 \%, 59 \%, 64 \%, 76 \%$ and $38 \%$, respectively.
- AMEC J qualified the detected arsenic and chromium results in samples SS023BA and SS023BB due to elevated RPDs of $32 \%$ and $37 \%$, respectively.


### 6.4.3 SDG J0605780

### 6.4.3.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.3.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.3.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs were acceptable.

### 6.4.3.4 Low Level Calibration Check Standard

All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable with all analytes within $\pm 50 \%$ of the expected value.

### 6.4.3.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.3.6 Laboratory Blanks

Chromium was detected above the MDL in the laboratory blank at $0.13 \mathrm{mg} / \mathrm{kg}$. The chromium results, for all samples, are greater than ten times the CRQL, so data usability is not adversely affected.

### 6.4.3.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks except as described below.

Blank ID	Detected analytes	Analyte concentration $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability
$\begin{aligned} & \hline \text { ICB } \\ & 12 / 13 / 06 \end{aligned}$	Antimony Vanadium	$\begin{aligned} & \hline 0.218 \\ & 0.268 \end{aligned}$	SS050AA, SS050BA SS051AA, SS051BA SS025AA, SS025BA SS027AA, SS027BA SS034AA, SS034BA SS013AA, SS012AA	The concentrations in the associated samples were either more than 5 times the concentration detected in the blank or non-detect. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { CCBs } \\ & 12 / 13 / 06 \end{aligned}$	Antimony   Vanadium   Antimony   Arsenic   Barium   Vanadium   Vanadium   Barium	0.109 0.205 0.143 -0.467 0.818 0.307 0.274 0.117	$\begin{aligned} & \text { SS012AC, SS012BA } \\ & \text { SS014AA, SS014BA } \\ & \text { SS018AA, SS018BA } \end{aligned}$	Antimony, barium, vanadium and arsenic were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { ICB } \\ & 12 / 09 / 06 \end{aligned}$	Antimony   Barium   Vanadium	$\begin{aligned} & \hline 0.783 \\ & 0.103 \\ & 0.996 \end{aligned}$	$\begin{aligned} & \hline \text { SS017BA, SS016AA } \\ & \text { SS016BA, SS007AA, } \\ & \text { SS007BA, SS007BC } \\ & \text { SS074AA, SS074BA } \\ & \text { SS015AA, SS015BA } \end{aligned}$	The concentrations in the associated samples were either more than 5 times the concentration detected in the blank or non-detect. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { CCBs } \\ & 12 / 09 / 06 \end{aligned}$	Antimony   Antimony   Vanadium   Antimony   Vanadium   Antimony	$\begin{aligned} & \hline 0.285 \\ & 0.287 \\ & -0.277 \\ & 0.345 \\ & 0.538 \\ & 0.202 \end{aligned}$		AMEC UJ qualified the non-detected vanadium results from samples SS016AA, SS016BA and SS007BA due to low instrument bias. All other concentrations were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank.

### 6.4.3.8 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples.

### 6.4.3.9 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.3.10 MS/MSD Recovery

MS/MSD analysis was performed on samples SS050AA and SS017BA (no mercury). An MS/MSD for mercury was also performed on sample SS013BA. All recoveries were within criteria except as bolded below.

Sample ID	Analyte	MS/MSD   Recovery	Notes
SS050AA	Antimony	$\mathbf{7 0 . 3 \% / 6 8 . 2 \%}$	AMEC J qualified the detected results and UJ   qualified the non-detected results from   Arsenic   Chromium
		$\mathbf{7 0 . 3 \% / 4 8 . 2 \%}$	
		$\mathbf{3 1 . 2 \%} / \mathbf{1 6 . 1 \%}$	samples SS050AA, SS050BA, SS051AA,   SS051BA, SS025AA, SS025BA, SS027AA,   SS027BA, SS034AA, SS034BA, SS013AA,     
			SS013BA, SS012AA, SS012AC, SS012BA,   SS014AA, SS014BA, SS018AA, S018BA,
			SS017AA because of possible low bias in the   analytical results due to potential matrix   interference.
SS017BA		$74.6 \% / 70.3 \%$	AMEC UJ and J qualified the non-detected   and detected results for samples SS017BA,
			SS016AA, SS016BA, SS007AA, SS007BA,  
			SS007BC, SS074AA, SS074BA, SS015AA   and SS015BA

### 6.4.3.11 Post Digestion Spike Recovery

The QAPP-specified acceptance limits for metals post digestion spike recoveries are $75 \%$ to $125 \%$ recovery. All recoveries were within acceptance limits except for mercury, which recovered low at $71 \%$ but both the MS/MSD recoveries were within criteria.

### 6.4.3.12 Serial Dilution

Percent difference for serial dilution analysis performed on sample SS050AA met QAPPspecified criteria with less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL. The percent difference was greater than $10 \%$ for selenium, silver and vanadium; however the initial sample result was less than 50 times the MDL so no qualifications were made. The percent difference was not met for antimony at $31.6 \%$. AMEC J qualified the results for samples SS050AA, SS050BA, SS051AA, SS051BA, SS025AA, SS025BA, SS027AA, SS027BA, SS034AA, SS034BA, SS013AA, SS012AA, SS012AC, SS012BA, SS014AA, SS014BA, SS018AA and SS018BA.

### 6.4.3.13 Laboratory Duplicates

The laboratory performed duplicate analyses on sample SS050AA, which included mercury and SS017BA, which was for all metals but mercury. A mercury duplicate analysis was also performed on sample SS013BA. The RPDs were within the acceptance limits of $\leq 20 \%$ RPD.

### 6.4.3.14 Field Duplicates

Sample SS012AC and SS007BC were submitted to the laboratory as a field duplicates for SS012AA and SS007BA. All RPDs were $\leq 30 \%$ with the following exceptions.

- AMEC J qualified the detected arsenic, barium, chromium, copper, lead and vanadium results in samples SS012AA and SS012AC due to elevated RPDs of $39 \%, 40 \%, 41 \%$, $41 \%, 39 \%$ and $37 \%$, respectively.


### 6.4.4 SDG J0605810

### 6.4.4.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.4.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.4.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs were acceptable.

### 6.4.4.4 Low Level Calibration Check Standard

All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable with all analytes within $\pm 50 \%$ of the expected value.

### 6.4.4.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.4.6 Laboratory Blanks

Chromium was detected above the MDL in the laboratory blank at $0.19 \mathrm{mg} / \mathrm{kg}$. The chromium results, for all samples, are greater than ten times the CRQL, so data usability is not adversely affected.

### 6.4.4.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks except as described below.

Blank ID	Detected   analytes	Analyte   concentration   $(\mu \mathrm{mg} / \mathbf{L})$	Samples affected	Effects on Data Usability

Beazer East, Inc Koppers Inc. Site Data Review / Validation Report

Blank ID	Detected analytes	Analyte concentration $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability
	Barium   Vanadium   Antimony	$\begin{aligned} & \hline-0.109 \\ & -0.501 \\ & 0.141 \end{aligned}$		associated samples were more than 5 times the absolute concentration detected in the blank.

### 6.4.4.8 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples.

### 6.4.4.9 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.4.10 MS/MSD Recovery

MS/MSD analysis was performed on samples SS008AA and SS043BB. An MS/MSD for mercury was also performed on sample SS013BA. All recoveries were within criteria except as bolded below.

Sample ID	Analyte	MS/MSD   Recovery	Notes
SS050AA	Antimony	$78.2 \% / 71.9 \%$	AMEC J qualified the detected results   and UJ qualified the non-detected   results from samples SS008AA,   SS008BA, SS009AA, SS009BA,
			SS006AA, SS006BA, SS004AA,   SS004BA, SS004BB, SS002AA,   SS002AC, SS002BA, SS011AA,  
			SS011BA, SS058AA, SS058BA,   SS037AA, SS037BA, SS043AA and   SS043BA because of possible low bias   in the analytical results due to potential   matrix interference.

### 6.4.4.11 Post Digestion Spike Recovery

The QAPP-specified acceptance limits for metals post digestion spike recoveries are $75 \%$ to $125 \%$ recovery. All recoveries were within acceptance limits except for arsenic and chromium, which recovered low at $70 \%$ and $44 \%$ but both the MS/MSD recoveries were within criteria.

### 6.4.4.12 Serial Dilution

Percent difference for serial dilution analysis performed on sample SS008AA met QAPPspecified criteria with less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL.

### 6.4.4.13 Laboratory Duplicates

The laboratory performed duplicate analyses on sample SS008AA and SS043BB. The RPDs were within the acceptance limits of $\leq 20 \%$ RPD.

### 6.4.4.14 Field Duplicates

Sample SS004BB, SS002AC, SS043BB and SS010AB were submitted to the laboratory as a field duplicates for SS004BA, SS002AA, SS043BA and SS010AA. All RPDs were $\leq 30 \%$ with the following exceptions.

- AMEC J qualified the detected arsenic, barium, chromium, copper, lead and vanadium results in samples SS002AA and SS002AC due to elevated RPDs of $36 \%, 31 \%, 39 \%$, $35 \%, 33 \%$ and $36 \%$, respectively.


### 6.4.5 SDG J0605839

### 6.4.5.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.5.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.5.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs were acceptable.

### 6.4.5.4 Low Level Calibration Check Standard

All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable with all analytes within $\pm 50 \%$ of the expected value.

### 6.4.5.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.5.6 Laboratory Blanks

Chromium was detected above the MDL in the laboratory blank at $0.14 \mathrm{mg} / \mathrm{kg}$. The chromium results, for all samples, are greater than ten times the CRQL, so data usability is not adversely affected.

### 6.4.5.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks except as described below.

Blank ID	Detected analytes	Analyte concentration $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability
$\begin{aligned} & \hline \text { ICB } \\ & 01 / 03 / 07 \end{aligned}$	Vanadium	-0.563	SS036AA, SS036AC, SS039BA, SS036CA, SS036DA, SS048AA, SS048BA, SS048BB, SS048CA, SS048DA, SS095AA, SS095BA, SS095CA, SS095DA, SS057AA, SS057BA, SS057CA, SS057CB, SS057DA, SS080AA	AMEC UJ qualified the non-detected vanadium results for samples SS095AA, SS095BA and SS095CA due to low instrument bias. The concentrations in the other samples were either more than 5 times the concentration detected in the blank or non-detected.
$\begin{aligned} & \text { CCBs } \\ & 01 / 03 / 07 \end{aligned}$	Vanadium   Antimony   Barium   Vanadium   Barium   Selenium   Vanadium	$\begin{aligned} & 0.275 \\ & 0.140 \\ & 0.869 \\ & -0.541 \\ & 0.140 \\ & 0.906 \\ & 0.886 \end{aligned}$		Antimony, barium, selenium and vanadium were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { ICB } \\ & 01 / 03 / 07 \end{aligned}$	Antimony	-0.144	SS080BA, SS080BB, SS080CA, SS080DA, SS035AA, SS035BA, SS035CA, SS035DA, SS033AA, SS033BA, SS032AA, SS032BA	The concentrations in the associated samples were more than 5 times the concentration detected in the blank or non-detect. Data usability is not adversely affected.
CCBs	Vanadium	0.327		AMEC UJ qualified the non-detected vanadium results from samples

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Detected analytes	Analyte concentration $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability
01/03/07	Barium   Antimony   Barium	$\begin{aligned} & \hline-0.182 \\ & -0.101 \\ & -0.179 \end{aligned}$		SS076AA, SS076BA, SS021AA and SS021BA due to low instrument bias. All the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank.
$\begin{aligned} & \hline \text { ICB } \\ & 01 / 07 / 07 \end{aligned}$	Arsenic Selenium	$\begin{aligned} & \hline-0.312 \\ & -1.10 \end{aligned}$	$\begin{aligned} & \text { SS095AA, SS095BA, } \\ & \text { SS057AA } \end{aligned}$	AMEC UJ qualified the non-detected result for selenium for samples SS095AA, SS095BA and SS057AA. The arsenic concentrations in the associated samples were more than 5 times the concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { CCB } \\ & 01 / 07 / 07 \end{aligned}$	Selenium	1.3		All associated samples were nondetect.

### 6.4.5.8 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples.

### 6.4.5.9 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.5.10 MS/MSD Recovery

MS/MSD analysis was performed on samples SS036AA for all metals and SS080BA for all metals but mercury. An MS/MSD for mercury was also performed on samples SS095AA and SS080CA. All recoveries were within criteria except as described below.

Sample ID	Analyte	MS/MSD   Recovery	Notes
SS095AA	Mercury	$-\mathbf{6 1 . 5 \% / 1 6 2 . 9 \%}$	No qualifications were applicable   because the sample result was greater   than four times the spike amount   added.

### 6.4.5.11 Post Digestion Spike Recovery

The QAPP-specified acceptance limits for metals post digestion spike recoveries are $75 \%$ to $125 \%$ recovery except the following. The mercury spike recovery for SS095AA was $1 \%$ but concentration in sample was greater than four times the spike amount added.

### 6.4.5.12 Serial Dilution

Percent difference for serial dilution analysis performed on sample SS036AA met QAPPspecified criteria with less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL.

### 6.4.5.13 Laboratory Duplicates

The laboratory performed duplicate analyses for all metals but mercury on samples SS036AA and SS080BA. The lab performed duplicate analysis for mercury on SS095AA and SS080CA. The RPDs are within the specified acceptance limits of $\leq 20 \%$ RPD.

### 6.4.5.14 Field Duplicates

Sample SS036AC, SS048BB, SS057CB and SS080BB were submitted to the lab as field duplicates for SS0036AA, SS048BA, SS057CA and SS080BA. All RPDs were $\leq 30 \%$ with the following exceptions.

- AMEC J qualified the detected arsenic, barium, chromium, copper and vanadium results in samples SS036AA and SS036AC due to elevated RPDs of $44 \%, 49 \%$, $\%$, $50 \%, 51 \%$ and $67 \%$, respectively.
- AMEC J qualified the detected arsenic, chromium, copper, lead and mercury results in samples SS048BA SS048BB due to elevated RPDs of $87 \%, 62 \%, 84 \%, 41 \%$ and $41 \%$, respectively.


### 6.4.6 SDG J0605876

### 6.4.6.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.6.2 Initial Calibration

ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.6.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.6.4 Low Level Calibration Check Standard

The QAPP-specified acceptance limits for metals low-level check standards are within $\pm 50 \%$ of the true value. All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable except as described below.

Arsenic recovery was high at $153 \%$ in the low-level check standard analyzed on January 10 , 2007 at 22:51. The arsenic concentration in the associated sample was greater than two-times the low-level check standard concentration. Data usability is not adversely affected by the high bias.

### 6.4.6.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.6.6 Laboratory Blanks

Target analytes detected at concentrations above the MDL in laboratory blanks associated with metals analysis of the samples covered in this report are described below.

Blank ID	Detected   analytes	Analyte   concentration   (mg/Kg)	Samples affected	Effects on Data Usability
MB3-1213   MBS3-1213	Chromium   Chromium	0.13   0.21	None	Chromium concentrations in all   associated samples were greater than   five times the concentrations detected   in the associated method blanks. Data   usability is not adversely affected by   the low-level method blank results.
MBS4-0110	Chromium	0.14		
MB7-1213	Chromium	0.19		

### 6.4.6.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks associated with metals analysis of the samples covered in this report except as described below. AMEC reported the highest analyte concentrations (or absolute concentration) from the CCBs within each analytical sequence in the table below.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Detected analytes	Analyte concentration $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability
$\begin{aligned} & \hline \text { ICB } \\ & 12 / 13 / 06 \end{aligned}$	Antimony Vanadium	$\begin{aligned} & \hline 0.386 \\ & -0.679 \end{aligned}$	SS097AA SS097BA SS097CA SS097DA SS001AA SS001BA	AMEC UJ qualified the non-detected vanadium results from samples SS097AA, SS097BA, SS001CA, and SS038AA because of possible low bias in the analytical results because of the low instrument bias.
$\begin{aligned} & \hline \text { CCBs } \\ & 12 / 13 / 06 \end{aligned}$	Barium   Barium   Chromium   Lead	$\begin{aligned} & 1.62 \\ & -0.113 \\ & 0.156 \\ & 0.225 \end{aligned}$	$\begin{aligned} & \text { SS001CA } \\ & \text { SS001DA } \\ & \text { SS038AA } \end{aligned}$	Antimony, barium, chromium, and lead were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank. Data usability is not adversely affected.
ICB 1/8/07	Vanadium	-0.185	SS038AC SS038BA SS038CA SS038DA SS038DB SS039AA	AMEC UJ qualified the non-detected vanadium results from samples SS038AC, SS038BA, SS038CA, SS039BA, SS039BB, and SS028AB because of possible low bias in the analytical results due to the low instrument bias.
$\begin{aligned} & \hline \text { CCBs } \\ & 1 / 8 / 07 \end{aligned}$	Antimony   Arsenic   Barium   Barium   Selenium   Vanadium   Vanadium	0.129 0.364 0.254 -0.108 0.799 -0.737 0.534	SS039BA SS039BB SS039CA SS039DA SS029AA SS029BA SS029CA SS029DA SS096AA SS096BA SS096CA SS096DA SS028AA SS028AB	Antimony, arsenic, barium, selenium and vanadium were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { ICB } \\ & 1 / 10 / 07 \end{aligned}$	Chromium	0.139	SS038AC	Chromium and arsenic concentrations in the associated samples were more than
$\begin{aligned} & \hline \text { CCB } \\ & 1 / 10 / 07 \end{aligned}$	Arsenic	0.297	SS096AA	five times the concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { ICB } \\ & 1 / 12 / 07 \end{aligned}$	Antimony	0.197	SS099DA SS084AA SS084BA SS084CA SS084DA SS062AA	Antimony was either not detected above the MRL or the concentrations in the associated samples were more than five times the absolute concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \text { CCBs } \\ & 1 / 12 / 07 \end{aligned}$	Antimony   Barium   Selenium   Vanadium	$\begin{aligned} & -0.157 \\ & 0.472 \\ & 0.844 \\ & 0.277 \end{aligned}$	$\begin{aligned} & \text { SS062BA } \\ & \text { SS062CA } \\ & \text { SS062CC } \\ & \text { SS062DA } \\ & \text { SS064AA } \\ & \text { SS064BA } \\ & \text { SS064CA } \\ & \text { SS064DA } \end{aligned}$	Barium, selenium, and vanadium were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the concentration detected in the blank. Data usability is not adversely affected.

### 6.4.6.8 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples associated with metals analysis of the samples covered in this report.

### 6.4.6.9 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.6.10 MS/MSD Recovery

MS/MSD recoveries were within the QAPP-specified $75 \%$ to $125 \%$ acceptance limits and RPDs were less than the method-specified $20 \%$ acceptance limit, except as bolded in the table below.

Sample ID	Analyte	MS/MSD   Recovery	RPD	Effects on Data Usability
SS038AC	Chromium	31.6\%/192\%	23.3\%	The chromium concentration in the sample was more than four times the spike concentration added. The MS/MSD results could not be fully evaluated. AMEC J qualified the detected chromium results from samples SS038AC, SS038BA, SS038CA, SS038DA, SS038DB, SS039AA, SS039BA, SS039BB, SS039CA, SS039DA, SS029AA, SS029BA, SS029CA, SS029DA, SS096AA, SS096BA, SS096CA, SS096DA, SS028AA, and SS028AB because of possible bias in the analytical results due to the analytical imprecision.
	Copper	64.0\%/100\%	13.3\%	AMEC J qualified the detected copper results from samples SS038AC, SS038BA, SS038CA, SS038DA, SS038DB, SS039AA, SS039BA, SS039BB, SS039CA, SS039DA, SS029AA, SS029BA, SS029CA, SS029DA, SS096AA, SS096BA, SS096CA, SS096DA, SS028AA, and SS028AB because of possible low bias in the analytical results due to potential matrix interference.
SS038BA	Mercury	166\%/106\%	15.1\%	AMEC J qualified the detected mercury results from samples SS038AC, SS038BA, SS038CA, SS038DA, SS038DB, SS039AA, SS039BA, SS039BB, SS039CA, SS039DA, SS029AA, SS029BA, SS029CA, SS029DA, SS096AA, SS096BA, SS096CA, SS096DA, and SS028AA because of possible high bias in the analytical results due to potential matrix interference.

### 6.4.6.11 Post-Digestion Spike Recovery

Post-digestion spike recoveries were within the QAPP-specified $75 \%$ to $125 \%$ acceptance limits, except as tabulated below.

| Sample ID | Analyte | Recovery | Effects on Data Usability |
| :---: | :---: | :---: | :--- |$|$| SS097AA |
| :--- |
| Lead |
| SS099CA |
| Mercury |

### 6.4.6.12 Serial Dilution

Percent difference for serial dilution analysis performed on samples in this report met QAPPspecified criteria of less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL.

### 6.4.6.13 Laboratory Duplicates

The laboratory performed duplicate analyses for all metals on samples SS097AA and all metals but mercury on samples SS038AC, SS028BA and SS099DA. The lab performed duplicate analysis for mercury on SS099CA, SS038BA and SS028AB. The RPDs were within the specified acceptance limits of $\leq 20 \%$ RPD except as described below.

The chromium RPD for sample SS038AC was high at $23.3 \%$. AMEC J qualified the detected chromium result in SS038AC.

### 6.4.6.14 Field Duplicates

Sample SS038DB, SS039BB and SS028AB were submitted to the lab as field duplicates for SS0038DA, SS039BA and SS028AA. All RPDs were $\leq 30 \%$ with the following exceptions.

- AMEC J qualified the detected arsenic, barium, chromium, and vanadium results from samples SS038DA and SS038DB because of possible bias in the analytical results due to field sampling and/or analytical imprecision.


### 6.4.7 SDG J0605879

### 6.4.7.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.7.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.7.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs were acceptable.

### 6.4.7.4 Low Level Calibration Check Standard

All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable with all analytes within $\pm 50 \%$ of the expected value.

### 6.4.7.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.7.6 Laboratory Blanks

Chromium was detected above the MDL in the laboratory blank at $0.16 \mathrm{mg} / \mathrm{kg}, 0.16 \mathrm{mg} / \mathrm{kg}$ and $0.17 \mathrm{mg} / \mathrm{kg}$. The chromium results, for all samples, are greater than ten times the CRQL, so data usability is not adversely affected.

### 6.4.7.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks except as described below.

Blank ID	Detected   analytes	Analyte   concentration   $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Detected analytes	Analyte concentration $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability
$\begin{aligned} & \hline \text { ICB } \\ & 01 / 09 / 07 \end{aligned}$	Antimony Chromium Vanadium	$\begin{aligned} & \hline 0.109 \\ & 0.139 \\ & 0.256 \end{aligned}$	SS100AA, SS100BA, SS100CA, SS100DA, SS100DB, SS66AA, SS066AB, SS066BA, SS066CA, SS066DA, SS066DC, SS005AA, SS005BA, SS005CA, SS005DA, SS003AA, SS003BA, SS003CA, SS003CB, SS003DA	The concentrations in the associated samples were either more than 5 times the concentration detected in the blank or not detected. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { CCBs } \\ & 01 / 09 / 07 \end{aligned}$	Selenium   Vanadium   Arsenic   Selenium   Vanadium   Antimony   Vanadium	1.20 0.397 0.612 1.63 -0.594 -0.145 0.320		Antimony, arsenic, selenium and vanadium were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { ICB } \\ & 12 / 27 / 06 \end{aligned}$	Chromium Vanadium	$\begin{aligned} & 0.125 \\ & 0.886 \end{aligned}$	SS086AA, SS086BA, SS086BB, SS088AA, SS088BA, SS091AA, SS091BA, SS075AA, SS075BA, SS077AA, SS077BA, SS049AA, SS049BA, SS052AA, SS052BA, SS068AA, SS068BA	The concentrations in the associated samples were either more than 5 times the concentration detected in the blank or not detected. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { CCBs } \\ & 12 / 27 / 06 \end{aligned}$	Barium   Vanadium   Barium   Vanadium   Barium   Vanadium	-0.107 0.242 -0.101 0.583 -0.108 0.936		All the concentrations in the associated samples were either more than 5 times the absolute concentration detected in the blank or not detected.

### 6.4.7.8 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples.

### 6.4.7.9 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.7.10 MS/MSD Recovery

MS/MSD analysis was performed on samples SS100AA for all metals and SS086AA for all metals but mercury. An MS/MSD for mercury was also performed on samples SS066AA and SS091AA. All recoveries were within criteria except as bolded below.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Analyte	MS/MSD   Recovery	Notes
SS100AA	Arsenic Chromium Copper Mercury	$\begin{gathered} \hline 26.0 \% / 35.9 \% \\ 0 \% / 62.7 \% \\ 69.3 \% / 71.7 \% \\ 66.5 \% / 44.8 \% \end{gathered}$	AMEC J qualified arsenic, chromium, copper and mercury in SS100AA, SS100BA, SS100CA, SS100DA, SS100DB, SS066AA, SS066AB, SS066BA, SS066CA, SS066DA, SS066DC, SS005AA, SS005BA, SS005CA, SS005DA, SS003AA, SS003BA, SS003CA, SS003CB and SS003DA. AMEC UJ qualified mercury in sample SS066DA.
SS086AA	Antimony Chromium Silver	$\begin{aligned} & \hline 77.7 \% / 72.0 \% \\ & 84.8 \% / 74.2 \% \\ & 85.8 \% / 73.3 \% \end{aligned}$	AMEC either J qualified the detected result or UJ qualified the non-detect for samples SS086AA, SS086BA, SS086BB, SS088AA, SS088BA, SS091AA, SS091BA, SS075AA, SS075BA, SS077AA, SS077BA, SS049AA, SS049BA, SS052AA, SS052BA, SS068AA and SS068BA.

### 6.4.7.11 Post Digestion Spike Recovery

The QAPP-specified acceptance limits for metals post digestion spike recoveries are $75 \%$ to $125 \%$ recovery except the following. The chromium spike recovery for SS0100AA was high at $126 \%$. All associated samples have already been J qualified due to low spike recovery.

### 6.4.7.12 Serial Dilution

Percent difference for serial dilution analysis performed on sample SS036AA met QAPPspecified criteria with less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL with the following exception. The percent difference for lead was $159 \%$. AMEC J qualified the detected lead results in samples SS100AA, SS100BA, SS100CA, SS100DA, SS100DB, SS66AA, SS066AB, SS066BA, SS066CA, SS066DA, SS066DC, SS005AA, SS005BA, SS005CA, SS005DA, SS003AA, SS003BA, SS003CA, SS003CB and SS003DA due to the potential high bias.

### 6.4.7.13 Laboratory Duplicates

The laboratory performed duplicate analyses for all metals on sample SS100AA and all metals but mercury on SS086AA. The lab also performed duplicate analysis for mercury on SS066AA and SS091AA. The RPDs are within the specified acceptance limits of $\leq 20 \%$ RPD.

### 6.4.7.14 Field Duplicates

Sample SS100DB, SS066AB, SS066DC, SS003CB and SS086BB were submitted to the lab as field duplicates for SS100DA, SS066AA, SS066DA, SS003CA and SS086BA. All RPDs were $\leq 30 \%$ with the following exceptions.

- AMEC J qualified the detected arsenic, chromium and copper results in samples SS100DA and SS100DB due to elevated RPDs of $118 \%, 91 \%$ and $100 \%$, respectively.
- AMEC J qualified the detected barium, copper, lead and vanadium results in samples SS066AA and SS066AB due to elevated RPDs of $38 \%, 47 \%, 112 \%$ and $58 \%$, respectively.
- AMEC J qualified the detected barium result in samples SS066DA and SS066DC due to the elevated RPD of $32 \%$.
- AMEC J qualified the detected vanadium result in samples SS003CA and SS066CB due to the elevated RPD of $32 \%$.
- AMEC J qualified the detected barium, copper and vanadium results in samples SS066AA and SS066AB due to elevated RPDs of $40 \%, 33 \%$ and $36 \%$, respectively.


### 6.4.8 SDG J0605890

### 6.4.8.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.8.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.8.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs were acceptable.

### 6.4.8.4 Low Level Calibration Check Standard

All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable with all analytes within $\pm 50 \%$ of the expected value.

### 6.4.8.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.8.6 Laboratory Blanks

Chromium was detected above the MDL in the laboratory blank at $0.24 \mathrm{mg} / \mathrm{kg}$ and $0.26 \mathrm{mg} / \mathrm{kg}$. The chromium results, for all samples, are greater than ten times the CRQL, so data usability is not adversely affected. Vanadium was detected above the MDL at -0.91 . AMEC J qualified the detected results in samples SS041AA, SS041BA, SS030AA, SS030BA, SS094AA, SS094AB, SS094BA, SS101AA, SS101BA, SS045AA, SS045BA, SS047AA, SS047AC, SS047BA, SS024AA, SS024BA, SS086CA, SS086DA, SS088CA and SS088DA due to potential low instrument bias.

### 6.4.8.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks except as described below.

Blank ID	Detected analytes	Analyte concentration ( $\mu \mathrm{g} / \mathrm{L}$ )	Samples affected	Effects on Data Usability
$\begin{aligned} & \hline \text { ICB } \\ & 01 / 10 / 07 \end{aligned}$	Antimony   Arsenic   Chromium   Selenium	$\begin{aligned} & \hline 0.159 \\ & -0.368 \\ & 0.133 \\ & -1.17 \end{aligned}$	SS041AA, SS041BA, SS030AA, SS030BA, SS094AA, SS094AB, SS094BA, SS101AA, SS101BA, SS045AA, SS045BA, SS047AA, SS047AC, SS047BA, SS024AA, SS024BA, SS086CA, SS086DA, SS088CA, SS088DA	The concentrations in the associated samples were more than 5 times the concentration detected in the blank or non-detect. Data usability is not adversely affected. AMEC UJ qualified the non-detected selenium results in all the associated samples due to potential low instrument bias.
$\begin{aligned} & \text { CCBs } \\ & 01 / 10 / 07 \end{aligned}$	Vanadium   Selenium   Chromium   Selenium	$\begin{aligned} & \hline 0.782 \\ & -1.11 \\ & 0.130 \\ & -1.09 \end{aligned}$		Chromium, selenium and vanadium were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { CCB } \\ & 01 / 16 / 07 \end{aligned}$	Vanadium   Vanadium	$\begin{aligned} & \hline 0.256 \\ & 0.195 \end{aligned}$	$\begin{aligned} & \hline \text { SS030BA, SS094AA, } \\ & \text { SS094AB, SS094BA, } \end{aligned}$	All the concentrations in the associated samples were more than 5 times the

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Detected analytes	Analyte concentration ( $\mu \mathrm{g} / \mathrm{L}$ )	Samples affected	Effects on Data Usability
			SS101AA, SS101BA, SS045AA, SS045BA, SS047AA, SS047AC, SS047BA, SS024AA, SS024BA, SS086CA, SS086DA, SS088CA, SS088DA	absolute concentration detected in the blank.
$\begin{aligned} & \text { CCBs } \\ & \text { 12/27/06 } \end{aligned}$	Vanadium Antimony Vanadium	$\begin{aligned} & 0.458 \\ & -0.111 \\ & 0.296 \end{aligned}$	SS091CA, SS091DA, SS068CA, SS068DA, SS078AA, SS078BA, SS078CA, SS078DA, SS075CA, SS075DA, SS077CA, SS077DA, SS049CA, SS049DA, SS041CA, SS041DA, SS030CA, SS030DA, SS077DB	All the concentrations in the associated samples were either more than 5 times the absolute concentration detected in the blank or non-detect. AMEC UJ qualified the non-detected antimony result for samples SS091CA, SS091DA, SS068CA, SS068DA, SS078AA, SS078BA, SS078CA, SS078DA, SS075DA and SS077DA due to potential low instrument bias.

### 6.4.8.8 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples.

### 6.4.8.9 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.8.10 MS/MSD Recovery

MS/MSD analysis was performed on samples SS041AA for all metals and SS091CA for all metals but mercury. An MS/MSD for mercury was also performed on samples SS101BA and SS075CA. All recoveries were within criteria except as bolded below.

Sample ID	Analyte	MS/MSD   Recovery	Notes
SS041AA	Antimony	$\mathbf{6 6 . 1 \%} / \mathbf{6 2 . 6 \%}$	AMEC J qualified the antimony in SS041AA,   SS041BA, SS030AA, SS030BA, SS101AA,   SS101BA, SS045BA and SS086CA. AMEC UJ   qualified the antimony in samples SS094AA,   SS094AB, SS094BA, SS045AA, SS047AA,

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

| Sample ID | Analyte | MS/MSD <br> Recovery | Notes |
| :---: | :---: | :---: | :--- |$|$| SS047AC, SS047BA, SS024AA, SS024BA, |
| :--- |

### 6.4.8.11 Post Digestion Spike Recovery

The QAPP-specified acceptance limits for metals post digestion spike recoveries are $75 \%$ to $125 \%$ recovery except the following. The mercury spike recovery for SS0101BA was low at $73 \%$. All associated sample has already been J qualified due to low spike recovery.

### 6.4.8.12 Serial Dilution

Percent difference for serial dilution analysis performed on samples SS041AA, SS091CA and SS030BA (for vanadium only) met QAPP-specified criteria with less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL with the following exception.

The percent difference for vanadium in sample SS041AA was $29.6 \%$. AMEC J qualified the detected vanadium results in samples SS041AA, SS041BA, SS030AA, SS030BA, SS094AA, SS094AB, SS094BA, SS101AA, SS101BA, SS045AA, SS045BA, SS047AA, SS047AC, SS047BA, SS024AA, SS024BA, SS086CA, SS086DA, SS088CA and SS088DA due to the potential low bias.

The percent difference for copper, lead and vanadium in sample SS091CA was high at 21.6\%, $23.8 \%$ and $14.7 \%$, respectively. AMEC J qualified the detected copper, lead and vanadium results in samples SS091CA, SS091DA, SS068CA, SS068DA, SS078AA, SS078BA,

SS078CA, SS078DA, SS075CA, SS075DA, SS077CA, SS077DA, SS049CA, SS049DA, SS041CA, SS041DA, SS030CA, SS030DA and SS077DB.

### 6.4.8.13 Laboratory Duplicates

The laboratory performed duplicate analyses for all metals on sample SS041AA and all metals but mercury on SS091CA. The lab also performed duplicate analysis for mercury on SS101BA and SS075CA. The RPDs are within the specified acceptance limits of $\leq 20 \%$ RPD.

### 6.4.8.14 Field Duplicates

Sample SS094AB, SS047AC, SS066DC and SS077DB were submitted to the lab as field duplicates for SS094AA, SS047AA and SS077DA. All RPDs were $\leq 30 \%$ with the following exceptions.

- AMEC J qualified the detected barium results in samples SS094AA and SS094AB due to an elevated RPD of $32 \%$.
- AMEC J qualified the detected mercury results in samples SS047AC and SS047AA due to an elevated RPD of $37 \%$.
- AMEC J qualified the detected barium, copper, mercury and vanadium results in samples SS077DA and SS077DB due to elevated RPDs of $39 \%, 56 \%, 144 \%$ and $34 \%$, respectively.


### 6.4.9 SDG J0605919

### 6.4.9.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.9.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.9.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable, except as described below.

Mercury recovery in CCV8 analyzed on January 4, 2007 at $10: 56$ was low at $87 \%$. AMEC J qualified the detected mercury results from samples SS094CA, SS094DA, SS101CA, SS101DA, SS52CA, SS52DA, SS047CA, SS047DA, SS045CA, and SS045DA because of possible low bias in the analytical results.

### 6.4.9.4 Low Level Calibration Check Standard

QAPP-specified acceptance limits for metals low-level check standards are within $50 \%$ of the true value. All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable with all analytes within $\pm 50 \%$ of the expected value.

### 6.4.9.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.9.6 Laboratory Blanks

Target analytes were not detected at concentrations above the MDL in laboratory blanks associated with metals analysis of the samples covered in this report, except as described below.

Blank ID	Detected analytes	Analyte concentration $(\mathrm{mg} / \mathrm{Kg})$	Samples affected	Effects on Data Usability
MBS5-1220	Antimony	-0.44	SS094CA SS094DA SS101CA SS101DA SS52CA SS52DA SS047CA SS047DA	AMEC J qualified the detected antimony results from samples SS070AA and SS070AB and UJ qualified the nondetected antimony results from the remaining of the associated samples because of possible low bias in the analytical results due to the low instrument bias.
	Chromium	0.30	$\begin{aligned} & \text { SS045CA } \\ & \text { SS045DA } \\ & \text { SS024CA } \\ & \text { SS024DA } \\ & \text { SS070BA } \\ & \text { SS070CA } \\ & \text { SS070DA } \\ & \text { SS031AA } \\ & \text { SS031BA } \\ & \text { SS031CA } \\ & \text { SS070AA } \\ & \text { SS070AB } \end{aligned}$	Chromium concentrations in all associated samples were greater than five times the concentration detected in the associated method blank. Data usability is not adversely affected by the low-level method blank result.
MB1-1221	Chromium	0.18	None	Chromium concentrations in all associated samples were greater than five

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Detected   analytes	Analyte   concentration   (mg/Kg)	Samples   affected	Effects on Data Usability
				times the concentration detected in the   associated method blank. Data usability is   not adversely affected by the low-level   method blank result.

### 6.4.9.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks associated with metals analysis of the samples covered in this report except as described below. AMEC reported the highest analyte concentrations (or absolute concentration) from the CCBs within each analytical sequence in the table below.

Blank ID	Detected analytes	Analyte concentration $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability
$\begin{aligned} & \text { ICB and CCBs } \\ & 01 / 10 / 07 \end{aligned}$	Antimony	-0.922	SS094CA, SS094DA SS101CA,SS101DA SS052CA, SS052DA SS047CA, SS047DA SS045CA, SS045DA SS024CA, SS024DA SS070AA, SS070AB SS070BA, SS070CA SS070DA, SS031AA SS031BA, SS031CA	Antimony results from associated samples have been previously qualified based on method blank detection; therefore, no further qualification is required.
	Arsenic	-0.53		AMEC UJ qualified the non-detected arsenic results from samples SS024AC and SS031CA because of possible low bias in the analytical results due to the low instrument bias.
	Vanadium	0.891		AMEC U qualified the detected vanadium results from samples SS094CA, SS094DA, SS101CA, SS101DA, SS52CA, SS52DA, SS047DA, SS045DA, SS070CA, SS070DA, SS031AA, and SS031CA because the sample concentrations were less than five times the blank concentrations.
CCB 1/12/07	Vanadium	0.541	$\begin{gathered} \hline \text { SS020CA, SS020CC, } \\ \text { SS020DA, SS046AA } \\ \text { SS046BA, SS046CA } \\ \text { SS046DA, SD001AA } \\ \text { SD001AB, SD002AA } \\ \text { SD003AA,SD004AA } \\ \text { SD004BA } \end{gathered}$	Vanadium concentrations in the associated samples were more than 5 times the concentration detected in the blank. Data usability is not adversely affected by the lowlevel CCB result.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Detected analytes	Analyte concentration ( $\mu \mathrm{g} / \mathrm{L}$ )	Samples affected	Effects on Data Usability
CCBs 12/26/06	Barium	-0.187	$\begin{gathered} \hline \text { SS031DA, SS031DB } \\ \text { SS026AA, SS026BA } \\ \text { SS026CA, SS026CC } \\ \text { SS026DA, SS007CA } \\ \text { SS007DA, SS007DB, } \\ \text { SS022AA,SS022AB } \\ \text { SS022BA, SS022CA } \\ \text { SS0022DA, SS020AA } \\ \text { SS020BA } \end{gathered}$	Barium concentrations in the associated samples were more than five times the CCB concentration. Data usability is not adversely affected, by the low instrument bias.

### 6.4.9.8 Equipment Blanks

Target analytes were not detected at concentrations above the MDL in equipment blanks associated with metals analysis of the samples covered in this report, except as described below.

| Blank ID | Detected <br> analytes | Analyte <br> concentration <br> $(\mu \mathrm{g} / \mathrm{L})$ | Samples <br> affected | Effects on Data Usability |
| :--- | :--- | :--- | :--- | :--- |$|$| EB-01 | Antimony <br> Chrium <br> Chromium | 0.12 <br> 0.16 <br> 0.66 |
| :--- | :--- | :--- |
| EB-02 | Antimony <br> Chromium <br> Copper | Antimony, barium and chromium <br> concentrations in the associated samples <br> were not detected above the MDL or the <br> analyte concentrations were more than five <br> times the blank detections. Data usability is <br> not adversely affected by the equipment <br> blank contamination. |
| 0.68 | None | Antimony, chromium and copper <br> concentrations in the associated samples <br> were not detected above the MDL or the <br> analyte concentrations were more than five <br> times the blank detections. Data usability is <br> not adversely affected by the equipment <br> blank contamination. |

### 6.4.9.9 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples associated with metals analysis of the samples covered in this report.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

### 6.4.9.10 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.9.11 MS/MSD Recovery

MS/MSD recoveries were within the QAPP-specified $75 \%$ to $125 \%$ acceptance limits and RPDs were less than the method-specified $20 \%$ acceptance limit, except as bolded below.

Sample ID	Analyte	MS/MSD   Recovery	Effects on Data Usability
SS094CA	Mercury	80\%/73\%	AMEC J qualified the detected mercury result from samples SS094CA, SS094DA, SS101CA, SS101DA, SS52CA, SS52DA, SS047CA, SS047DA, and SS045CA because of possible low bias in the analytical results due to potential matrix interference.
SS031DA	Antimony	67\%/67\%	AMEC UJ qualified the non-detected antimony results from samples SS031DA, SS031DB, SS026AA, SS026BA, SS026CA, SS026CC, SS026DA, SS007CA, SS007DA, SS007DB, SS0022AA, SS0022BA, SS0022CA and SS0022DA; and J qualified the detected antimony results from samples SS0022AB, SS020AA, and SS020BA because of possible low bias in the analytical results due to potential matrix interference.
SS020CA	Antimony	71\%/73\%	AMEC J qualified the detected antimony results from samples SS020CA, SD001AA, SD002AA, SD003AA, SD004AA and SD004BA and UJ qualified the nondetected antimony results from samples SS020CC, SS020DA, SS046AA, SS046BA, SS046CA, SS046DA, and SD001AB because of possible low bias in the analytical result due to potential matrix interference.
SD004BA	Mercury	0\%/302\%	AMEC J qualified the detected mercury result from sample SD004BA because of possible bias in the analytical result due to analytical imprecision.

### 6.4.9.12 Post-Digestion Spike Recovery

Post-digestion spike recoveries were within the QAPP-specified $75 \%$ to $125 \%$ acceptance limits.

### 6.4.9.13 Serial Dilution

Percent difference for serial dilution analysis performed on samples in this report met QAPPspecified criteria with less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL except as tabulated below.

Sample ID	Analyte	\%   Difference	Effects on Data Usability
SS094CA	Vanadium	$58.6 \%$	AMEC J qualified the detected vanadium result from   sample SS094CA because of possible bias in analytical   result due to potential matrix interference.
SS031DA	Barium            Chromium   Lead	$16.8 \%$	AMEC J qualified the detected barium, chromium and   lead results from sample SS031DA because of possible   bias in analytical results due to potential matrix   interference.
SS020CA	Lead	16.3	$11.5 \%$
	Vanadium	27.3	AMEC J qualified the detected lead and vanadium   results from sample SS020CA because of possible bias   in analytical results due to potential matrix   interference.

### 6.4.9.14 Laboratory Duplicates

The laboratory performed duplicate analyses for all metals on sample SS094CA and all metals but mercury on SS031DA and SS020CA. The lab also performed duplicate analysis for mercury on SS045DA, SS007DB and SD004BA. The RPDs are within the specified acceptance limits of $\leq 20 \%$ RPD.

### 6.4.9.15 Field Duplicates

Sample SS070AB, SS031DB, SS007DB, SS022AB and SD001AB were submitted to the lab as field duplicates for SS070AA, SS031DA, SS007DA, SS022AA and SD001AA. All RPDs were $\leq 30 \%$ with the following exceptions.

- AMEC J qualified the detected chromium, and copper results from samples SS031DA and SS031DB because of possible bias in the analytical results due to field sampling and/or analytical imprecision.
- AMEC J qualified the detected barium, lead and vanadium results from samples SD001AA and SD001AB because of possible bias in the analytical results due to field sampling and/or analytical imprecision.


### 6.4.10 SDG J0605944

### 6.4.10.1 Holding Times

All samples were analyzed for metals within the QAPP-recommended technical holding time of 180 days and for mercury within the QAPP- recommended technical holding time of 28 days.

### 6.4.10.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 6020 and 7471A were acceptable.

### 6.4.10.3 Initial and Continuing Calibration Verification

QAPP-specified acceptance limits for metals initial and continuing calibration verification (ICV and CCV) are $90 \%$ to $110 \%$. All ICV and CCVs were acceptable.

### 6.4.10.4 Low Level Calibration Check Standard

All low-level check standards associated with the analysis of these samples using USEPA Methods 6020 and 7471A were acceptable with all analytes within $\pm 50 \%$ of the expected value.

### 6.4.10.5 Inductively Coupled Plasma Interference Check Sample

All interference check samples exhibited recoveries within the QAPP-specified acceptance limits of $80 \%$ to $120 \%$.

### 6.4.10.6 Laboratory Blanks

Chromium was detected above the MDL in the laboratory blank at $0.15 \mathrm{mg} / \mathrm{kg}$. The chromium results, for all samples, are greater than ten times the CRQL, so data usability is not adversely affected.

### 6.4.10.7 Initial and Continuing Calibration Blanks

Target analytes were not detected at concentrations greater than the MDL in initial or continuing calibration blanks except as described below.

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Blank ID	Detected analytes	Analyte concentration $(\mu \mathrm{g} / \mathrm{L})$	Samples affected	Effects on Data Usability
$\begin{aligned} & \hline \text { ICB } \\ & 01 / 16 / 07 \end{aligned}$	Antimony Vanadium	$\begin{aligned} & \hline 0.381 \\ & 0.352 \end{aligned}$	SD005AA, SD006AA,   SD006BA, SD007AA,   SD008AA, SD009AA, SD006AC	The concentrations in the associated samples were more than 5 times the concentration detected in the blank or non-detect. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { CCBs } \\ & 01 / 16 / 07 \end{aligned}$	Antimony   Arsenic   Barium   Selenium   Antimony   Chromium   Vanadium   Selenium	0.150 -0.362 0.138 1.09 0.137 0.132 -0.265 0.927		Antimony, Arsenic, Barium, Selenium, Chromium and Vanadium were either not detected above the MRL or the concentrations in the associated samples were more than 5 times the absolute concentration detected in the blank. Data usability is not adversely affected.
$\begin{aligned} & \hline \text { CCBs } \\ & 01 / 17 / 07 \end{aligned}$	Chromium	-0.123	SD005AA	The concentration in the associated sample was more than 5 times the absolute concentration detected in the blank.

### 6.4.10.8 LCS Recovery

Recoveries were within the QAPP-specified $80 \%$ to $120 \%$ acceptance limits in all LCS samples.

### 6.4.10.9 Internal Standard Recoveries

Recoveries of all internal standards were within the laboratory-specified acceptance limits of $60 \%$ to $125 \%$ for ICP-MS metals analysis.

### 6.4.10.10 MS/MSD Recovery

MS/MSD analysis was performed on sample SD005AA for all metals and SS091CA for all metals but mercury. An MS/MSD for mercury was also performed on samples SS101BA and SS075CA. All recoveries were within criteria except as described below.

Sample ID	Analyte	MS/MSD   Recovery	Notes
SS041AA	Antimony	$\mathbf{7 1 . 6 \% / 7 6 . 6 \%}$	AMEC J qualified the antimony results
	Chromium	$\mathbf{1 3 . 2 \% / 1 0 . 4 \%}$	in samples SD005AA, SD006AA,   SD006BA, SD007AA, SD009AA and   SD006AC. AMEC UJ qualified the

Beazer East, Inc
Koppers Inc. Site
Data Review / Validation Report

Sample ID	Analyte	MS/MSD   Recovery	Notes
			antimony result in sample SD008AA.   AMEC J qualified the chromium   results in samples SD005AA,   SD006AA, SD006BA, SD007AA,   SD008AA, SD009AA and SD006AC.

### 6.4.10.11 Post Digestion Spike Recovery

The QAPP-specified acceptance limits for metals post digestion spike recoveries are $75 \%$ to $125 \%$ recovery except the following. The chromium spike recovery for SD005AA was low at $54 \%$. AMEC J qualified samples SD005AA, SD006AA, SD006BA, SD007AA, SD008AA, SD009AA and SD006AC due to low spike recovery.

### 6.4.10.12 Serial Dilution

Percent difference for serial dilution analysis performed on sample SD005AA met QAPPspecified criteria with less than $10 \%$ difference for analytes with concentrations greater than 50 times the MDL with the following exception.

The percent difference for antimony was $52.4 .6 \%$. AMEC J qualified the detected antimony results in samples SD005AA, SD006AA, SD006BA, SD007AA, SD009AA and SD006AC due to the potential bias. AMEC UJ qualified the non-detected result in sample SD008AA.

The percent difference for vanadium in samples was high at $15.6 \%$. AMEC J qualified the detected vanadium results in samples SD005AA, SD006AA, SD006BA, SD007AA, SD008AA, SD009AA and SD006AC.

### 6.4.10.13 Laboratory Duplicates

The laboratory performed duplicate analyses for all metals on sample SD005AA. The RPDs are within the specified acceptance limits of $\leq 20 \%$ RPD.

### 6.4.10.14 Field Duplicates

Sample SD006AC was submitted to the lab as field duplicate for SD006AA. All RPDs were $\leq$ $30 \%$ with the following exceptions.

- AMEC J qualified the detected mercury and vanadium results due to elevated RPDs of $129 \%$ and $41 \%$, respectively.


### 6.5 Total Organic Carbon (TOC)

Samples were analyzed by USEPA method 9060 and not the QAPP-specified Lloyd Kahn method. Data is not adversely affected.

### 6.5.1 SDG J0605944

### 6.5.1.1 Holding Times

All samples were analyzed for TOC within the recommended technical holding time of 28 days.

### 6.5.1.2 Initial Calibration

All ICAL associated with analysis of these samples using USEPA Methods 9060 were acceptable.

### 6.5.1.3 Continuing Calibration Verification

QAPP-specified acceptance limits for TOC continuing calibration verification (CCV) are $90 \%$ to $110 \%$. All CCVs were acceptable.

### 6.5.1.4 Laboratory Blanks

TOC was not detected above the RL in the laboratory blank.

### 6.5.1.5 Calibration Blanks

TOC was not detected at concentrations greater than the RL in the calibration blanks.

### 6.5.1.6 LCS Recovery

Recoveries were within the laboratory specified $85 \%$ to $115 \%$ acceptance limits in all LCS samples.

### 6.5.1.7 MS Recovery

MS analysis was performed on sample SD005AA. All recoveries were within laboratory specified criteria.

### 6.5.1.8 Laboratory Duplicates

The laboratory performed duplicate analyses for TOC on sample SD005AA. The RPDs are within the specified acceptance limits of $\leq 20 \%$ RPD.

### 6.5.1.9 Field Duplicates

Sample SD006AC was submitted to the lab as field duplicate for SD006AA. All RPDs were $\leq$ 30\%.

### 7.0 Summary and Conclusions

The data are generally usable and of good quality, with the exceptions and limitations listed below.

The data for the analyses of VOCs, SVOCs, PAHs, Metals and TOC are generally usable and of good quality, with the exceptions and limitations listed below. The majority of data qualifications for samples covered in this report were made for trace level blank contamination, minor calibration deviations, matrix interferences and duplicate imprecision.

There were a small number of samples that showed severe matrix interference for the analysis of VOCs. AMEC R qualified isopropylbenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2-dibromo-3-chloropropane and 1,2,4-trichlorobenzene in samples SS077CA, SS100CA, SS100DA, SS100DB and SD006AC due to extremely low internal standards. All VOC internal standards were extremely low for sample SS073BA; as such AMEC R qualified all VOC compounds for the sample.

There was laboratory blank and LCS contamination for a number of the PAH compounds causing the laboratory to re-extract past the technical holding times. The laboratory reported the original set of data when the re-extracted data matched the original set. Otherwise for a limited number of samples some compounds were reported past the holding time.

## REFERENCES

AMEC, 2006. Quality Assurance Project Plan, Revised Supplemental Soil and Sediment Sampling Plan-Additional Data for Risk Assessment, Cabot Carbon/Koppers Superfund Site, prepared by AMEC Earth \& Environmental.
U. S. Environmental Protection Agency, October 1999a. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA540/R-99/008.
U. S. Environmental Protection Agency, October 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, EPA 540-R-04-004.
U.S. Environmental Protection Agency, Region IV, July 1999b. Data Validation Standard Operating Procedures for Contract Laboratory Program Routine Analytical Services.

## LIMITATIONS

This report was prepared exclusively for Beazer East, Inc by AMEC Earth \& Environmental, Inc. (AMEC). The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in AMEC services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. This Data Validation/Review Report is intended to be used by Beazer East, Inc for the Supplemental Soil and Sediment Sampling Plan, Cabot Carbon/Koppers Superfund Site only, subject to the terms and conditions of its contract with AMEC. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

## TABLES

Table 1
Field Samples Submitted to Columbia Analytical Services, Inc.
Koppers Inc. Site
SDG J0605714

Sample Location	Collection Date	Matrix	Columbia   Sample ID	Data Validation Level	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$			Notes
SS059AA	11/29/06	Soil	J0605714-001	DQR	X	X	X	X	
SS059BA	11/30/06	Soil	J0605714-002	DQR	X	X	X	X	
SS060AA	11/30/06	Soil	J0605714-003	DQR	X	X	X	X	
SS060BA	11/30/06	Soil	J0605714-004	DQR	X	X	X	X	
SS073AA	11/30/06	Soil	J0605714-005	DQR	X	X	X	X	
SS073BA	11/30/06	Soil	J0605714-006	DQR	X	X	X	X	
SS085AA	11/30/06	Soil	J0605714-007	DQR	X	X	X	X	
SS085BA	11/30/06	Soil	J0605714-008	DQR	X	X	X	X	
SS087AA	11/30/06	Soil	J0605714-009	DQR	X	X	X	X	
SS087BA	11/30/06	Soil	J0605714-010	DQR	X	X	X	X	
SS089AA	11/30/06	Soil	J0605714-011	DQR	X	X	X	X	
SS089BA	11/30/06	Soil	J0605714-012	DQR	X	X	X	X	
SS090AA	11/30/06	Soil	J0605714-013	DQR	X	X	X	X	
SS090BA	11/30/06	Soil	J0605714-014	DQR	X	X	X	X	
SS090BC	11/30/06	Soil	J0605714-015	DQR	X	X	X	X	Field Duplicate of SS090BA

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan

Table 1
Field Samples Submitted to Columbia Analytical Services, Inc.
Koppers Inc. Site
SDG J0605735

Sample   Location	Collection Date	Matrix	Columbia Sample ID	Data   Validation Level	0   0   0	¢			Notes
SS079AA	11/30/06	Soil	J0605735-001	DQR	X	X	X	X	
SS079BA	11/30/06	Soil	J0605735-002	DQR	X	X	X	X	
SS067AA	11/30/06	Soil	J0605735-003	DQR	X	X	X	X	
SS067BA	11/30/06	Soil	J0605735-004	DQR	X	X	X	X	
SS067BB	11/30/06	Soil	J0605735-005	DQR	X	X	X	X	Field Duplicate for SS067BA
SS069AA	11/30/06	Soil	J0605735-006	DQR	X	X	X	X	
SS069BA	11/30/06	Soil	J0605735-007	DQR	X	X	X	X	
SS092AA	11/30/06	Soil	J0605735-008	Full	X	X	X	X	
SS092BA	11/30/06	Soil	J0605735-009	Full	X	X	X	X	
SS093AA	12/1/06	Soil	J0605735-010	DQR	X	X	X	X	
SS093BA	12/1/06	Soil	J0605735-011	DQR	X	X	X	X	
SS083AA	12/1/06	Soil	J0605735-012	DQR	X	X	X	X	
SS083BA	12/1/06	Soil	J0605735-013	DQR	X	X	X	X	
SS081AA	12/1/06	Soil	J0605735-014	Full	X	X	X	X	
SS081BA	12/1/06	Soil	J0605735-015	Full	X	X	X	X	
SS019AA	12/1/06	Soil	J0605735-016	DQR	X	X	X	X	
SS019BA	12/1/06	Soil	J0605735-017	DQR	X	X	X	X	
SS019BB	12/1/06	Soil	J0605735-018	DQR	X	X	X	X	Field Duplicate for SS019BA
SS054AA	12/1/06	Soil	J0605735-019	DQR	X	X	X	X	
SS054AB	12/1/06	Soil	J0605735-020	DQR	X	X	X	X	Field Duplicate for SS054AA
SS054BA	12/1/06	Soil	J0605735-021	DQR	X	X	X	X	
SS071AA	12/1/06	Soil	J0605735-022	DQR	X	X	X	X	
SS071BA	12/1/06	Soil	J0605735-023	DQR	X	X	X	X	
SS042AA	12/1/06	Soil	J0605735-024	DQR	X	X	X	X	
SS042BA	12/1/06	Soil	J0605735-025	DQR	X	X	X	X	
SS042BB	12/1/06	Soil	J0605735-026	DQR	X	X	X	X	Field Duplicate for SS042BA
SS023AA	12/1/06	Soil	J0605735-027	DQR	X	X	X	X	
SS023BA	12/1/06	Soil	J0605735-028	DQR	X	X	X	X	
SS023BB	12/1/06	Soil	J0605735-029	DQR	X	X	X	X	Field Duplicate for SS023BA
SS040AA	12/1/06	Soil	J0605735-030	DQR	X	X	X	X	
SS040BA	12/1/06	Soil	J0605735-031	DQR	X	X	X	X	

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan
DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan

Table 1
Field Samples Submitted to Columbia Analytical Services, Inc.
Koppers Inc. Site
SDG J0605780

Sample Location	Collection Date	Matrix	Columbia Sample ID	Data   Validation Level	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { U } \\ & 0 \\ & \text { 心 } \end{aligned}$			Notes
SS050AA	12/4/06	Soil	J0605780-001	DQR	X	X	X	X	
SS050BA	12/4/06	Soil	J0605780-002	DQR	X	X	X	X	
SS051AA	12/4/06	Soil	J0605780-003	DQR	X	X	X	X	
SS051BA	12/4/06	Soil	J0605780-004	DQR	X	X	X	X	
SS025AA	12/4/06	Soil	J0605780-005	DQR	X	X	X	X	
SS025BA	12/4/06	Soil	J0605780-006	DQR	X	X	X	X	
SS027AA	12/4/06	Soil	J0605780-007	DQR	X	X	X	X	
SS027BA	12/4/06	Soil	J0605780-008	DQR	X	X	X	X	
SS034AA	12/4/06	Soil	J0605780-009	DQR	X	X	X	X	
SS034BA	12/4/06	Soil	J0605780-010	DQR	X	X	X	X	
SS013AA	12/4/06	Soil	J0605780-011	DQR	X	X	X	X	
SS013BA	12/4/06	Soil	J0605780-012	DQR	X	X	X	X	
SS012AA	12/4/06	Soil	J0605780-013	DQR	X	X	X	X	
SS012AC	12/4/06	Soil	J0605780-014	DQR	X	X	X	X	Field Duplicate of SS012AA
SS012BA	12/4/06	Soil	J0605780-015	DQR	X	X	X	X	
SS014AA	12/4/06	Soil	J0605780-016	DQR	X	X	X	X	
SS014BA	12/4/06	Soil	J0605780-017	DQR	X	X	X	X	
SS018AA	12/4/06	Soil	J0605780-018	DQR	X	X	X	X	
SS018BA	12/4/06	Soil	J0605780-019	DQR	X	X	X	X	
SS017AA	12/4/06	Soil	J0605780-020	DQR	X	X	X	X	
SS017BA	12/4/06	Soil	J0605780-021	DQR	X	X	X	X	
SS016AA	12/4/06	Soil	J0605780-022	DQR	X	X	X	X	
SS016BA	12/4/06	Soil	J0605780-023	DQR	X	X	X	X	
SS007AA	12/4/06	Soil	J0605780-024	Full	X	X	X	X	
SS007BA	12/4/06	Soil	J0605780-025	Full	X	X	X	X	
SS007BC	12/4/06	Soil	J0605780-026	Full	X	X	X	X	Field Duplicate of SS007BA
SS074AA	12/4/06	Soil	J0605780-027	DQR	X	X	X	X	
SS074BA	12/4/06	Soil	J0605780-028	DQR	X	X	X	X	
SS015AA	12/4/06	Soil	J0605780-029	Full	X	X	X	X	
SS015BA	12/4/06	Soil	J0605780-030	Full	X	X	X	X	

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan
DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan

Table 1
Field Samples Submitted to Columbia Analytical Services, Inc.
Koppers Inc. Site
SDG J0605810

Sample Location	Collection Date	Matrix	Columbia Sample ID	Data   Validation Level	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$	u 0 ¢		$\begin{aligned} & \overline{(0)} \\ & \stackrel{n}{0} \\ & \stackrel{0}{0} \end{aligned}$	Notes
SS008AA	12/5/06	Soil	J0605810-001	Full	X	X	X	X	
SS008BA	12/5/06	Soil	J0605810-002	Full	X	X	X	X	
SS009AA	12/5/06	Soil	J0605810-003	DQR	X	X	X	X	
SS009BA	12/5/06	Soil	J0605810-004	DQR	X	X	X	X	
SS006AA	12/5/06	Soil	J0605810-005	DQR	X	X	X	X	
SS006BA	12/5/06	Soil	J0605810-006	DQR	X	X	X	X	
SS004AA	12/5/06	Soil	J0605810-007	Full	X	X	X	X	
SS004BA	12/5/06	Soil	J0605810-008	DQR	X	X	X	X	
SS004BB	12/5/06	Soil	J0605810-009	DQR	X	X	X	X	Field Duplicate of SS004BA
SS002AA	12/5/06	Soil	J0605810-010	DQR	X	X	X	X	
SS002AC	12/5/06	Soil	J0605810-011	Full	X	X	X	X	Field Duplicate of SS002AA
SS002BA	12/5/06	Soil	J0605810-012	Full	X	X	X	X	
SS011AA	12/5/06	Soil	J0605810-013	DQR	X	X	X	X	
SS011BA	12/5/06	Soil	J0605810-014	DQR	X	X	X	X	
SS058AA	12/5/06	Soil	J0605810-015	DQR	X	X	X	X	
SS058BA	12/5/06	Soil	J0605810-016	DQR	X	X	X	X	
SS037AA	12/5/06	Soil	J0605810-017	DQR	X	X	X	X	
SS037BA	12/5/06	Soil	J0605810-018	DQR	X	X	X	X	
SS043AA	12/5/06	Soil	J0605810-019	DQR	X	X	X	X	
SS043BA	12/5/06	Soil	J0605810-020	DQR	X	X	X	X	
SS043BB	12/5/06	Soil	J0605810-021	DQR	X	X	X	X	Field Duplicate of SS043BA
SS044AA	12/5/06	Soil	J0605810-022	DQR	X	X	X	X	
SS044BA	12/5/06	Soil	J0605810-023	DQR	X	X	X	X	
SS076AA	12/5/06	Soil	J0605810-024	DQR	X	X	X	X	
SS076BA	12/5/06	Soil	J0605810-025	DQR	X	X	X	X	
SS010AA	12/5/06	Soil	J0605810-026	DQR	X	X	X	X	
SS010AB	12/5/06	Soil	J0605810-027	DQR	X	X	X	X	Field Duplicate of SS010AA
SS010BA	12/5/06	Soil	J0605810-028	DQR	X	X	X	X	
SS021AA	12/6/06	Soil	J0605810-029	DQR	X	X	X	X	
SS021BA	12/6/06	Soil	J0605810-030	DQR	X	X	X	X	

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan
DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan

Table 1
Field Samples Submitted to Columbia Analytical Services, Inc.
Koppers Inc. Site
SDG J0605839

Sample Location	Collection Date	Matrix	Columbia Sample ID	Data   Validation Level	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	告			Notes
SS036AA	12/6/06	Soil	J0605839-001	DQR	X	X	X	X	
SS036AC	12/6/06	Soil	J0605839-002	DQR	X	X	X	X	Field Duplicate of SS036AA
SS036BA	12/6/06	Soil	J0605839-003	DQR	X	X	X	X	
SS036CA	12/6/06	Soil	J0605839-004	DQR	X	X	X	X	
SS036DA	12/6/06	Soil	J0605839-005	DQR	X	X	X	X	
SS048AA	12/6/06	Soil	J0605839-006	DQR	X	X	X	X	
SS048BA	12/6/06	Soil	J0605839-007	DQR	X	X	X	X	
SS048BB	12/6/06	Soil	J0605839-008	DQR	X	X	X	X	Field Duplicate of SS048BA
SS048CA	12/6/06	Soil	J0605839-009	DQR	X	X	X	X	
SS048DA	12/6/06	Soil	J0605839-010	DQR	X	X	X	X	
SS095AA	12/6/06	Soil	J0605839-011	DQR	X	X	X	X	
SS095BA	12/6/06	Soil	J0605839-012	DQR	X	X	X	X	
SS095CA	12/6/06	Soil	J0605839-013	DQR	X	X	X	X	
SS095DA	12/6/06	Soil	J0605839-014	DQR	X	X	X	X	
SS057AA	12/6/06	Soil	J0605839-015	DQR	X	X	X	X	
SS057BA	12/6/06	Soil	J0605839-016	DQR	X	X	X	X	
SS057CA	12/6/06	Soil	J0605839-017	DQR	X	X	X	X	
SS057CB	12/6/06	Soil	J0605839-018	DQR	X	X	X	X	Field Duplicate of SS057CA
SS057DA	12/6/06	Soil	J0605839-019	DQR	X	X	X	X	
SS080AA	12/6/06	Soil	J0605839-020	DQR	X	X	X	X	
SS080BA	12/6/06	Soil	J0605839-021	Full	X	X	X	X	
SS080BB	12/6/06	Soil	J0605839-022	Full	X	X	X	X	Field Duplicate of SS080BA
SS080CA	12/6/06	Soil	J0605839-023	DQR	X	X	X	X	
SS080DA	12/6/06	Soil	J0605839-024	DQR	X	X	X	X	
SS035AA	12/6/06	Soil	J0605839-025	DQR	X	X	X	X	
SS035BA	12/6/06	Soil	J0605839-026	DQR	X	X	X	X	
SS035CA	12/6/06	Soil	J0605839-027	DQR	X	X	X	X	
SS035DA	12/6/06	Soil	J0605839-028	DQR	X	X	X	X	
SS033AA	12/6/06	Soil	J0605839-029	Full	X	X	X	X	
SS033BA	12/6/06	Soil	J0605839-030	Full	X	X	X	X	
SS032AA	12/6/06	Soil	J0605839-031	Full	X	X	X	X	
SS032BA	12/6/06	Soil	J0605839-032	Full	X	X	X	X	

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan
DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan

Table 1
Field Samples Submitted to Columbia Analytical Services Inc.
Koppers Inc. Site
SDG J0605876

Sample Location	Collection Date	Matrix	Columbia   Sample ID	Data Validation Level	$\begin{aligned} & 0 \\ & 00 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ひ } \\ & 0 \\ & \text { in } \end{aligned}$			Notes
SS097AA	12/7/2006	Soil	J0605876-001	Full	x	x	X	x	
SS097BA	12/7/2006	Soil	J0605876-002	Full	X	X	X	X	
SS097CA	12/7/2006	Soil	J0605876-003	DQR	x	X	X	x	
SS097DA	12/7/2006	Soil	J0605876-004	DQR	X	X	X	x	
SS001AA	12/7/2006	Soil	J0605876-005	Full	X	X	X	x	
SS001BA	12/7/2006	Soil	J0605876-006	DQR	x	X	x	x	
SS001CA	12/7/2006	Soil	J0605876-007	DQR	x	x	x	x	
SS001DA	12/7/2006	Soil	J0605876-008	DQR	x	X	x	x	
SS038AA	12/7/2006	Soil	J0605876-009	DQR	x	x	x	x	
SS038AC	12/7/2006	Soil	J0605876-010	DQR	x	x	x	x	
SS038BA	12/7/2006	Soil	J0605876-011	DQR	X	X	X	X	
SS038CA	12/7/2006	Soil	J0605876-012	DQR	X	X	X	X	
SS038DA	12/7/2006	Soil	J0605876-013	DQR	X	X	X	X	
SS038DB	12/7/2006	Soil	J0605876-014	DQR	X	X	x	x	Field Duplicate of SS038DA
SS039AA	12/7/2006	Soil	J0605876-015	DQR	X	X	X	X	
SS039BA	12/7/2006	Soil	J0605876-016	DQR	X	X	X	X	
SS039BB	12/7/2006	Soil	J0605876-017	DQR	x	X	x	X	Field Duplicate of SS039BA
SS039CA	12/7/2006	Soil	J0605876-018	DQR	X	X	X	X	
SS039DA	12/7/2006	Soil	J0605876-019	DQR	x	X	X	X	
SS029AA	12/7/2006	Soil	J0605876-020	DQR	X	X	X	X	
SS029BA	12/7/2006	Soil	J0605876-021	DQR	X	X	X	X	
SS029CA	12/7/2006	Soil	J0605876-022	DQR	x	x	X	x	
SS029DA	12/7/2006	Soil	J0605876-023	DQR	x	x	x	x	
SS096AA	12/7/2006	Soil	J0605876-024	DQR	X	X	X	X	
SS096BA	12/7/2006	Soil	J0605876-025	DQR	X	X	X	X	
SS096CA	12/7/2006	Soil	J0605876-026	DQR	X	X	X	X	
SS096DA	12/7/2006	Soil	J0605876-027	DQR	X	X	X	X	
SS028AA	12/7/2006	Soil	J0605876-028	DQR	X	X	X	X	
SS028AB	12/7/2006	Soil	J0605876-029	DQR	X	X	x	X	Field Duplicate of SS028AA
SS028BA	12/7/2006	Soil	J0605876-030	DQR	X	X	X	X	
SS028CA	12/7/2006	Soil	J0605876-031	DQR	X	X	X	x	
SS028DA	12/7/2006	Soil	J0605876-032	DQR	X	X	X	X	
SS028DC	12/7/2006	Soil	J0605876-033	DQR	X	X	X	X	
SS072AA	12/7/2006	Soil	J0605876-034	DQR	X	X	X	X	
SS072BA	12/7/2006	Soil	J0605876-035	DQR	X	X	X	X	
SS072CA	12/7/2006	Soil	J0605876-036	DQR	X	X	X	x	
SS072CC	12/7/2006	Soil	J0605876-037	DQR	X	X	X	X	
SS072DA	12/7/2006	Soil	J0605876-038	DQR	X	X	X	X	
SS082AA	12/7/2006	Soil	J0605876-039	Full	X	X	X	X	
SS082BA	12/7/2006	Soil	J0605876-040	Full	X	X	X	X	
SS082CA	12/7/2006	Soil	J0605876-041	Full	X	X	X	X	
SS082DA	12/7/2006	Soil	J0605876-042	Full	X	X	X	X	

3/29/2007

Table 1
Field Samples Submitted to Columbia Analytical Services Inc.
Koppers Inc. Site
SDG J0605876

SS098AA	12/8/2006	Soil	J0605876-043	DQR	x	x	x	x	
SS098BA	12/8/2006	Soil	J0605876-044	DQR	X	X	X	x	
SS098CA	12/8/2006	Soil	J0605876-045	DQR	X	X	X	x	
SS098DA	12/8/2006	Soil	J0605876-046	DQR	X	X	x	x	
SS099AA	12/8/2006	Soil	J0605876-047	DQR	X	X	X	x	
SS099BA	12/8/2006	Soil	J0605876-048	DQR	X	X	X	x	
SS099CA	12/8/2006	Soil	J0605876-049	DQR	X	X	X	X	
SS099DA	12/8/2006	Soil	J0605876-050	DQR	X	X	x	x	
SS084AA	12/8/2006	Soil	J0605876-051	DQR	x	x	x	x	
SS084BA	12/8/2006	Soil	J0605876-052	DQR	X	x	x	x	
SS084CA	12/8/2006	Soil	J0605876-053	DQR	X	X	X	x	
SS084DA	12/8/2006	Soil	J0605876-054	DQR	X	X	X	X	
SS062AA	12/8/2006	Soil	J0605876-055	DQR	X	X	X	X	
SS062BA	12/8/2006	Soil	J0605876-056	DQR	X	X	X	x	
SS062CA	12/8/2006	Soil	J0605876-057	DQR	X	X	X	x	
SS062CC	12/8/2006	Soil	J0605876-058	DQR	X	X	X	x	
SS062DA	12/8/2006	Soil	J0605876-059	DQR	x	x	x	x	
SS064AA	12/8/2006	Soil	J0605876-060	DQR	X	X	X	X	
SS064BA	12/8/2006	Soil	J0605876-061	DQR	X	X	X	X	
SS064CA	12/8/2006	Soil	J0605876-062	DQR	X	X	X	X	
SS064DA	12/8/2006	Soil	J0605876-063	DQR	X	X	X	X	
Trip Blank 1	12/8/2006	Water	J0605876-064	DQR	X				Trip Blank
Trip Blank 2	12/8/2006	Water	J0605876-065	DQR	X				Trip Blank
Trip Blank 3	12/8/2006	Water	J0605876-066	DQR	X				Trip Blank
Trip Blank 4	12/8/2006	Water	J0605876-067	DQR	x				Trip Blank
Trip Blank 5	12/8/2006	Water	J0605876-068	DQR	X				Trip Blank
Trip Blank 6	12/8/2006	Water	J0605876-069	DQR	X				Trip Blank
Trip Blank 7	12/8/2006	Water	J0605876-070	DQR	X				Trip Blank

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan

Table 1
Field Samples Submitted to Columbia Analytical Services Inc.
Koppers Inc. Site
SDG J0605879

Sample Location	Collection Date	Matrix	Columbia Sample ID	Data   Validation Level	0 0 8	べ			Notes
SS100AA	12/8/06	Soil	J0605879-001	DQR	X	X	X	X	
SS100BA	12/8/06	Soil	J0605879-002	DQR	X	X	X	X	
SS100CA	12/8/06	Soil	J0605879-003	DQR	X	X	X	X	
SS100DA	12/8/06	Soil	J0605879-004	DQR	X	X	X	X	
SS100DB	12/8/06	Soil	J0605879-005	DQR	X	X	X	X	Field Duplicate of SS100DA
SS66AA	12/8/06	Soil	J0605879-006	DQR	X	X	X	X	
SS066AB	12/8/06	Soil	J0605879-007	DQR	X	X	X	X	Field Duplicate of SS66AA
SS066BA	12/8/06	Soil	J0605879-008	DQR	X	X	X	X	
SS066CA	12/8/06	Soil	J0605879-009	DQR	X	X	X	X	
SS066DA	12/8/06	Soil	J0605879-010	DQR	X	X	X	X	
SS066DC	12/8/06	Soil	J0605879-011	DQR	X	X	X	X	Field Duplicate of SS066DA
SS005AA	12/8/06	Soil	J0605879-012	Full	X	X	X	X	
SS005BA	12/8/06	Soil	J0605879-013	Full	X	X	X	X	
SS005CA	12/8/06	Soil	J0605879-014	Full	X	X	X	X	
SS005DA	12/8/06	Soil	J0605879-015	Full	X	X	X	X	
SS003AA	12/8/06	Soil	J0605879-016	Full	X	X	X	X	
SS003BA	12/8/06	Soil	J0605879-017	Full	X	X	X	X	
SS003CA	12/8/06	Soil	J0605879-018	Full	X	X	X	X	
SS003CB	12/8/06	Soil	J0605879-019	Full	X	X	X	X	Field Duplicate of SS003CA
SS003DA	12/8/06	Soil	J0605879-020	Full	X	X	X	X	
SS086AA	12/9/06	Soil	J0605879-021	DQR	X	X	X	X	
SS086BA	12/9/06	Soil	J0605879-022	DQR	X	X	X	X	
SS086BB	12/9/06	Soil	J0605879-023	DQR	X	X	X	X	Field Duplicate of SS086BA
SS088AA	12/9/06	Soil	J0605879-024	DQR	X	X	X	X	
SS088BA	12/9/06	Soil	J0605879-025	DQR	X	X	X	X	
SS091AA	12/9/06	Soil	J0605879-026	DQR	X	X	X	X	
SS091BA	12/9/06	Soil	J0605879-027	DQR	X	X	X	X	
SS075AA	12/9/06	Soil	J0605879-028	DQR	X	X	X	X	
SS075BA	12/9/06	Soil	J0605879-029	DQR	X	X	X	X	
SS077AA	12/9/06	Soil	J0605879-030	DQR	X	X	X	X	
SS077BA	12/9/06	Soil	J0605879-031	DQR	X	X	X	X	
SS049AA	12/9/06	Soil	J0605879-032	DQR	X	X	X	X	
SS049BA	12/9/06	Soil	J0605879-033	DQR	X	X	X	X	
SS052AA	12/9/06	Soil	J0605879-034	DQR	X	X	X	X	
SS052BA	12/9/06	Soil	J0605879-035	DQR	X	X	X	X	
SS068AA	12/9/06	Soil	J0605879-036	DQR	X	X	X	X	
SS068BA	12/9/06	Soil	J0605879-037	DQR	X	X	X	X	
Trip Blank 1	12/9/06	Water	J0605879-038	DQR	X				Trip Blank
Trip Blank 2	12/9/06	Water	J0605879-039	DQR	X				Trip Blank
Trip Blank 3	12/9/06	Water	J0605879-040	DQR	X				Trip Blank
Trip Blank 4	12/9/06	Water	J0605879-041	DQR	X				Trip Blank
Trip Blank 5	12/9/06	Water	J0605879-042	DQR	X				Trip Blank

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan
DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan
3/29/2007
DVR_1_Table1.xls SDG J0605879
Page 8 of 12

Table 1
Field Samples Submitted to Columbia Analytical Services Inc.
Koppers Inc. Site
SDG J0605890

Sample Location	Collection Date	Matrix	Columbia   Sample ID	Data Validatio n Level	$\begin{aligned} & \text { n} \\ & 0 \\ & 0 \end{aligned}$	ひ 0 む		$\begin{aligned} & \bar{\pi} \\ & \stackrel{n}{0} \\ & \stackrel{n}{0} \end{aligned}$	Notes
SS041AA	12/11/06	Soil	J0605890-001	DQR	X	X	X	X	
SS041BA	12/11/06	Soil	J0605890-002	DQR	X	X	X	X	
SS030AA	12/11/06	Soil	J0605890-003	DQR	X	X	X	X	
SS030BA	12/11/06	Soil	J0605890-004	DQR	X	X	X	X	
SS094AA	12/11/06	Soil	J0605890-005	DQR	X	X	X	X	
SS094AB	12/11/06	Soil	J0605890-006	DQR	X	X	X	X	Field Duplicate of SSolita SS094AA
SS094BA	12/11/06	Soil	J0605890-007	DQR	X	X	X	X	
SS101AA	12/11/06	Soil	J0605890-008	DQR	X	X	X	X	
SS101BA	12/11/06	Soil	J0605890-009	DQR	X	X	X	X	
SS045AA	12/11/06	Soil	J0605890-010	DQR	X	X	X	X	
SS045BA	12/11/06	Soil	J0605890-011	DQR	X	X	X	X	
SS047AA	12/11/06	Soil	J0605890-012	Full	X	X	X	X	
SS047AC	12/11/06	Soil	J0605890-013	Full	X	X	X	X	Field Duplicate of SS047AA
SS047BA	12/11/06	Soil	J0605890-014	Full	X	X	X	X	
SS024AA	12/11/06	Soil	J0605890-015	DQR	X	X	X	X	
SS024BA	12/11/06	Soil	J0605890-016	DQR	X	X	X	X	
SS086CA	12/11/06	Soil	J0605890-017	DQR	X	X	X	X	
SS086DA	12/11/06	Soil	J0605890-018	DQR	X	X	X	X	
SS088CA	12/11/06	Soil	J0605890-019	DQR	X	X	X	X	
SS088DA	12/11/06	Soil	J0605890-020	DQR	X	X	X	X	
SS091CA	12/11/06	Soil	J0605890-021	DQR	X	X	X	X	
SS091DA	12/11/06	Soil	J0605890-022	DQR	X	X	X	X	
SS068CA	12/11/06	Soil	J0605890-023	DQR	X	X	X	X	
SS068DA	12/11/06	Soil	J0605890-024	DQR	X	X	X	X	
SS078AA	12/11/06	Soil	J0605890-025	DQR	X	X	X	X	
SS078BA	12/11/06	Soil	J0605890-026	DQR	X	X	X	X	
SS078CA	12/11/06	Soil	J0605890-027	DQR	X	X	X	X	
SS078DA	12/11/06	Soil	J0605890-028	DQR	X	X	X	X	
SS075CA	12/11/06	Soil	J0605890-029	DQR	X	X	X	X	
SS075DA	12/11/06	Soil	J0605890-030	DQR	X	X	X	X	
SS077CA	12/11/06	Soil	J0605890-031	DQR	X	X	X	X	
SS077DA	12/11/06	Soil	J0605890-032	DQR	X	X	X	X	
SS049CA	12/11/06	Soil	J0605890-033	DQR	X	X	X	X	
SS049DA	12/11/06	Soil	J0605890-034	DQR	X	X	X	X	
SS041CA	12/11/06	Soil	J0605890-035	DQR	X	X	X	X	
SS041DA	12/11/06	Soil	J0605890-036	DQR	X	X	X	X	
SS030CA	12/11/06	Soil	J0605890-037	DQR	X	X	X	X	
SS030DA	12/11/06	Soil	J0605890-038	DQR	X	X	X	X	
SS077DB	12/11/06	Soil	J0605890-039	DQR	X	X	X	X	Field Duplicate of SSO77DA

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan
DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan

Table 1
Field Samples Submitted to Columbia Analytical Services Inc.
Koppers Inc. Site
SDG J0605919

Sample Location	Collection Date	Matrix	Columbia Sample ID	Data Validation Level	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ๗ } \\ & 0 \\ & \text { ॐ } \end{aligned}$	$\begin{aligned} & \bar{\pi} \\ & \stackrel{n}{0} \\ & \stackrel{n}{0} \end{aligned}$		Notes
SS094CA	12/11/2006	Soil	J0605917-001	DQR	x	X	X	X	
SS094DA	12/11/2006	Soil	J0605919-002	DQR	x	X	X	X	
SS101CA	12/11/2006	Soil	J0605919-003	DQR	X	X	X	X	
SS101DA	12/11/2006	Soil	J0605919-004	DQR	X	X	X	X	
SS52CA	12/11/2006	Soil	J0605919-005	DQR	X	X	X	x	
SS52DA	12/11/2006	Soil	J0605919-006	DQR	x	X	x	x	
SS047CA	12/11/2006	Soil	J0605919-007	DQR	x	X	X	x	
SS047DA	12/11/2006	Soil	J0605919-008	DQR	x	X	X	X	
SS045CA	12/11/2006	Soil	J0605919-009	DQR	X	X	X	X	
SS045DA	12/11/2006	Soil	J0605919-010	DQR	X	X	X	X	
SS024CA	12/11/2006	Soil	J0605919-011	DQR	X	X	X	x	
SS024DA	12/11/2006	Soil	J0605919-012	DQR	X	X	X	X	
EB-01	12/12/2006	Water	J0605919-013	DQR	X	X	X	X	Equipment blank
EB-02	1212/2006	Water	J0605919-014	DQR	x	x	x	x	Equipment blank
SS070AA	12/12/2006	Soil	J0605919-015	DQR	x	X	X	X	
SS070AB	12/12/2006	Soil	J0605919-016	DQR	X	x	x	x	Field Duplicate of SS070AA
SS070BA	12/7/2006	Soil	J0605919-017	DQR	x	x	x	x	
SS070CA	12/12/2006	Soil	J0605919-018	DQR	x	x	X	x	
SS070DA	12/12/2006	Soil	J0605919-019	DQR	X	X	X	X	
SS031AA	12/12/2006	Soil	J0605919-020	DQR	X	X	X	X	
SS031BA	12/12/2006	Soil	J0605919-021	DQR	X	X	x	x	
SS031CA	12/12/2006	Soil	J0605919-022	DQR	X	X	X	X	
SS031DA	12/12/2006	Soil	J0605919-023	DQR	X	x	X	X	
SS031DB	12/12/2006	Soil	J0605919-024	DQR	X	X	x	x	Field Duplicate of SS031DA
SS026AA	12/12/2006	Soil	J0605919-025	DQR	X	X	X	X	
SS026BA	12/12/2006	Soil	J0605919-026	DQR	x	X	X	X	
SS026CA	12/12/2006	Soil	J0605919-027	DQR	X	X	X	X	
SS026CC	12/12/2006	Soil	J0605919-028	DQR	X	X	X	X	
SS026DA	12/12/2006	Soil	J0605919-029	DQR	X	X	X	X	
SS007CA	12/12/2006	Soil	J0605919-030	Full	x	X	X	X	
SS007DA	12/12/2006	Soil	J0605919-031	Full	X	X	X	X	
SS007DB	12/12/2006	Soil	J0605919-032	Full	X	x	x	x	Field Duplicate of SS007DA
SS0022AA	12/12/2006	Soil	J0605919-033	DQR	X	X	X	X	
SS0022AB	12/12/2006	Soil	J0605919-034	DQR	X	X	X	x	Field duplicate of SS0022AA
SS0022BA	12/12/2006	Soil	J0605919-035	DQR	X	X	X	X	
SS0022CA	12/12/2006	Soil	J0605919-036	DQR	x	X	X	X	
SS0022DA	12/12/2006	Soil	J0605919-037	DQR	X	X	X	X	
SS020AA	12/12/2006	Soil	J0605919-038	DQR	X	X	X	X	
SS020BA	12/12/2006	Soil	J0605919-039	DQR	X	X	X	X	
SS020CA	12/12/2006	Soil	J0605919-040	DQR	x	x	x	x	
SS020CC	12/12/2006	Soil	J0605919-041	DQR	x	X	X	X	
SS020DA	12/12/2006	Soil	J0605919-042	DQR	X	X	x	X	

3/29/2007

Table 1
Field Samples Submitted to Columbia Analytical Services Inc.
Koppers Inc. Site
SDG J0605919

SS046AA	12/12/2006	Soil	J0605919-043	Full	x	x	x	x	
SS046BA	12/12/2006	Soil	J0605919-044	DQR	x	x	x	X	
SS046CA	12/12/2006	Soil	J0605919-045	DQR	X	X	X	X	
SS046DA	12/12/2006	Soil	J0605919-046	DQR	x	x	x	X	
SD001AA	12/12/2006	Soil	J0605919-047	DQR	x	x	X	X	
SD001AB	12/12/2006	Soil	J0605919-048	DQR	X	X	X	x	Field Duplicate of SD001AA
SD002AA	12/12/2006	Soil	J0605919-049	DQR	X	x	x	x	
SD003AA	12/12/2006	Soil	J0605919-050	DQR	X	X	X	X	
SD004AA	12/12/2006	Soil	J0605919-051	Full	X	X	X	X	
SD004BA	12/12/2006	Soil	J0605919-052	Full	X	X	X	X	

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan

Table 1
Field Samples Submitted to Columbia Analytical Services Inc.
Koppers Inc. Site
SDG J0605944

Sample Location	Collection Date	Matrix	Columbia   Sample ID	Data Validation Level	-	$\begin{aligned} & \text { ひ } \\ & 0 \\ & \text { is } \end{aligned}$			$\begin{aligned} & \text { U } \\ & \end{aligned}$		Notes
SD005AA	12/12/06	Sediment	J0605944-001	DQR	X	X	X	X	X	X	
SD006AA	12/12/06	Sediment	J0605944-002	DQR	X	X	X	X	X	X	
SD006BA	12/12/06	Sediment	J0605944-003	DQR	X	X	X	X	X	X	
SD007AA	12/12/06	Sediment	J0605944-004	Full	X	X	X	X	X	X	
SD008AA	12/12/06	Sediment	J0605944-005	DQR	X	X	X	X	X	X	
SD009AA	12/12/06	Sediment	J0605944-006	DQR	X	X	X	X	X	X	
SD006AC	12/12/06	Sediment	J0605944-007	DQR	X	X	X	X	X	X	Field Duplicate of SD006AA

Full: Full data validation procedure as described in Section 9.2.2 of the Quality Assurance Project Plan DQR: Data quality review as described by Section 9.2.2 of the Quailty Assurance Project Plan

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
SDG J0605714				
Sample SS090BA/SS090BC				
DIBENZOFURAN	76	61	22\%	None
CARBAZOLE	430	340	23\%	None
BUTYL BENZYL PHTHALATE	23	ND	NC	None
BIS(2-ETHYLHEXYL) PHTHALATE	26	27	4\%	None
NAPHTHALENE	230	190	19\%	None
ACENAPHTHYLENE	2500	2200	13\%	None
FLUORENE	200	210	5\%	None
PENTACHLOROPHENOL	1900	1500	24\%	None
PHENANTHRENE	650	550	17\%	None
ANTHRACENE	13000	12000	8\%	None
FLUORANTHENE	4400	3300	29\%	None
PYRENE	4500	3400	28\%	None
CHRYSENE	3900	2900	29\%	None
BENZ(A)ANTHRACENE	2700	2100	25\%	None
BENZO(B)FLUORANTHENE	5400	4400	20\%	None
BENZO(K)FLUORANTHENE	4400	3500	23\%	None
BENZO(A)PYRENE	2900	2400	19\%	None
INDENO(1,2,3-CD)PYRENE	3700	3100	18\%	None
DIBENZO(A,H)ANTHRACENE	790	690	14\%	None
BENZO(G,H,I)PERYLENE	3400	2900	16\%	None
ANTIMONY	0.69	0.51	30\%	None
ARSENIC	41	35	16\%	None
BARIUM	13	11	17\%	None
CHROMIUM	43	38	12\%	None
COPPER	30	27	11\%	None
LEAD	13	11	17\%	None
MERCURY	0.27	0.26	4\%	None
VANADIUM	1.9	1.3	38\%	J
SDG J0605735				
Sample SS067BA/SS067BB				
N-NITROSODIPHENYLAMINE	86	ND	NC	None
2,4-DIMETHYLPHENOL	30	ND	NC	None
4-CHLORO-3-METHYLPHENOL	34	ND	NC	None
2,4,5-TRICHLOROPHENOL	45	ND	NC	None
2-NITROANILINE	30	ND	NC	None
DIMETHYL PHTHALATE	36	ND	NC	None
3-NITROANILINE	37	ND	NC	None
DIBENZOFURAN	140	63	76\%	J
2,4-DINITROTOLUENE	82	ND	NC	None
4-CHLOROPHENYL PHENYL ETHER	35	ND	NC	None
DIETHYL PHTHALATE	64	ND	NC	None
4-NITROANALINE	70	ND	NC	None
2-METHYL-4,6-DINITROPHENOL	60	ND	NC	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
4-BROMOPHENYL PHENYL ETHER	53	ND	NC	None
HEXACHLOROBENZENE	78	ND	NC	None
CARBAZOLE	880	310	96\%	J
DI-N-BUTYL PHTHALATE	190	ND	NC	None
BUTYL BENZYL PHTHALATE	180	25	151\%	J
BIS(2-ETHYLHEXYL) PHTHALATE	190	29	147\%	J
DI-N-OCTYL PHTHALATE	180	21	158\%	J
NAPHTHALENE	290	180	47\%	J
2-METHYNAPHTHALENE	220	130	51\%	J
ACENAPHTHYLENE	2200	1300	51\%	J
PENTACHLOROPHENOL	2900	2100	32\%	J
PHENANTHRENE	1000	1200	18\%	None
ANTHRACENE	3700	2700	31\%	J
FLUORANTHENE	5900	12000	68\%	J
PYRENE	6600	12000	58\%	J
CHRYSENE	5600	7500	29\%	None
BENZ(A)ANTHRACENE	3700	5500	39\%	J
BENZO(B)FLUORANTHENE	8300	7600	9\%	None
BENZO(K)FLUORANTHENE	6700	6200	8\%	None
BENZO(A)PYRENE	4300	3500	21\%	None
INDENO(1,2,3-CD)PYRENE	5900	4300	31\%	J
DIBENZO(A,H)ANTHRACENE	1500	1200	22\%	None
BENZO(G,H,I)PERYLENE	5200	3500	39\%	J
ANTIMONY	3.5	2.2	46\%	J
ARSENIC	220	120	59\%	J
BARIUM	25	19	27\%	None
CHROMIUM	350	180	64\%	J
COPPER	190	85	76\%	J
LEAD	28	19	38\%	J
MERCURY	0.38	0.32	17\%	None
Sample SS019BA/SS019BB				
DIBENZOFURAN	16	ND	NC	None
CARBAZOLE	29	24	19\%	None
BUTYL BENZYL PHTHALATE	23	28	20\%	None
BIS(2-ETHYLHEXYL) PHTHALATE	32	27	17\%	None
NAPHTHALENE	23	20	14\%	None
2-METHYLNAPHTHALENE	19	ND	NC	None
ACENAPHTHYLENE	59	52	13\%	None
FLUORENE	23	ND	NC	None
PENTACHLOROPHENOL	85	67	24\%	None
PHENANTHRENE	410	150	93\%	J
ANTHRACENE	160	99	47\%	J
FLUORANTHENE	980	460	72\%	J
PYRENE	830	390	72\%	J
CHRYSENE	670	320	71\%	J

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
BENZO(A)ANTHRACENE	540	220	84\%	J
BENZO(B)FLUORANTHENE	730	400	58\%	J
BENZO(K)FLUORANTHENE	550	290	62\%	J
BENZO(A)PYRENE	580	270	73\%	J
INDENO(1,2,3-CD)PYRENE	550	300	59\%	J
DIBENZO(A,H)ANTHRACENE	130	66	65\%	J
BENZO(G,H,I)PERYLENE	460	260	56\%	J
ARSENIC	3.9	4.4	12\%	None
BARIUM	6.2	7	12\%	None
CHROMIUM	6.9	8.3	18\%	None
COPPER	5	5.5	10\%	None
LEAD	33	40	19\%	None
MERCURY	0.047	0.045	4\%	None
VANADIUM	1.6	1.8	12\%	None
Sample SS054AA/SS054BB				
ACETONE	75	32	80\%	J
BIS(2-CHLOROETHYL) ETHER	1300	ND	NC	None
DIBENZOFURAN	220	250	13\%	None
4-NITROANALINE	ND	69	NC	None
CARBAZOLE	300	350	15\%	None
BUTYL BENZYL PHTHALATE	61	ND	NC	None
BIS(2-ETHYLHEXYL) PHTHALATE	110	120	9\%	None
NAPHTHALENE	570	610	7\%	None
2-METHYLNAPHTHALENE	380	410	8\%	None
ACENAPHTHYLENE	710	740	4\%	None
ACENAPHTHENE	73	75	3\%	None
FLUORENE	45	51	13\%	None
PENTACHLOROPHENOL	320	330	3\%	None
PHENANTHRENE	1200	1200	0\%	None
ANTHRACENE	1200	1300	8\%	None
FLUORANTHENE	2900	3000	3\%	None
PYRENE	2400	2500	4\%	None
CHRYSENE	2300	2400	4\%	None
BENZO(A)ANTHRACENE	1500	1500	0\%	None
BENZO(B)FLUORANTHENE	2900	3200	10\%	None
BENZO(K)FLUORANTHENE	2200	2100	5\%	None
BENZO(A)PYRENE	1700	1700	0\%	None
INDENO(1,2,3-CD)PYRENE	1900	1800	5\%	None
DIBENZO(A,H)ANTHRACENE	490	550	12\%	None
BENZO(G,H,I)PERYLENE	1500	1400	7\%	None
ANTIMONY	1.7	2	16\%	None
ARSENIC	26	23	12\%	None
BARIUM	85	76	11\%	None
CADMIUM	0.54	0.47	14\%	None
CHROMIUM	43	40	7\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
COPPER	54	49	10\%	None
LEAD	150	140	7\%	None
MERCURY	0.32	0.33	3\%	None
SELENIUM	ND	1.2	NC	None
VANADIUM	12	11	9\%	None
Sample SS042BA/SS042BB				
2,4-DIMETHYLPHENOL	36	36	0\%	None
DIBENZOFURAN	72	62	15\%	None
CARBAZOLE	370	410	10\%	None
BIS(2-ETHYLHEXYL) PHTHALATE	30	ND	NC	None
NAPHTHALENE	130	100	26\%	None
2-METHYLNAPHTHALENE	92	ND	NC	None
ACENAPHTHYLENE	2300	1800	24\%	None
FLUORENE	110	91	19\%	None
PENTACHLOROPHENOL	450	370	20\%	None
PHENANTHRENE	610	470	26\%	None
ANTHRACENE	3400	2900	16\%	None
FLUORANTHENE	7500	4100	59\%	J
PYRENE	8400	5500	42\%	J
CHRYSENE	5400	3500	43\%	J
BENZO(A)ANTHRACENE	3900	2300	52\%	J
BENZO(B)FLUORANTHENE	6600	5100	26\%	None
BENZO(K)FLUORANTHENE	5400	3900	32\%	J
BENZO(A)PYRENE	4500	3400	28\%	None
INDENO(1,2,3-CD)PYRENE	3900	3000	26\%	None
DIBENZO(A,H)ANTHRACENE	1200	810	39\%	J
BENZO(G,H,I)PERYLENE	3300	2600	24\%	None
ARSENIC	15	14	7\%	None
BARIUM	17	16	6\%	None
CHROMIUM	23	22	4\%	None
COPPER	15	15	0\%	None
LEAD	13	13	0\%	None
MERCURY	0.12	0.12	0\%	None
VANADIUM	3.5	3	15\%	None
Sample SS023BA/SS023BB				
CARBAZOLE	38	23	49\%	J
NAPHTHALENE	22	16	32\%	J
ACENAPHTHYLENE	87	69	23\%	None
PENTACHLOROPHENOL	130	140	7\%	None
PHENANTHRENE	74	61	19\%	None
ANTHRACENE	140	100	33\%	J
FLUORANTHENE	460	420	9\%	None
PYRENE	410	360	13\%	None
CHRYSENE	340	290	16\%	None
BENZO(A)ANTHRACENE	150	140	7\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
BENZO(B)FLUORANTHENE	370	310	18\%	None
BENZO(K)FLUORANTHENE	260	240	8\%	None
BENZO(A)PYRENE	140	120	15\%	None
INDENO(1,2,3-CD)PYRENE	150	150	0\%	None
DIBENZO(A,H)ANTHRACENE	33	33	0\%	None
BENZO(G,H,I)PERYLENE	120	120	0\%	None
ARSENIC	13	18	32\%	J
BARIUM	7.6	9.9	26\%	None
CHROMIUM	9.6	14	37\%	J
COPPER	12	14	15\%	None
LEAD	7.5	9.1	19\%	None
MERCURY	0.02	0.02	0\%	None
VANADIUM	1.3	1.5	14\%	None
SDG J0605780				
Sample SS012AAISS012AC				
DIBENZOFURAN	47	50	6\%	None
CARBAZOLE	230	220	4\%	None
BIS(2-ETHYLHEXYL)PHTHALATE	25	ND	NC	None
NAPHTHALENE	46	51	10\%	None
2-METHYLNAPHTHALENE	26	30	14\%	None
ACENAPHTHYLENE	450	460	2\%	None
FLUORENE	29	32	10\%	None
PENTACHLOROPHENOL	530	550	4\%	None
PHENANTHRENE	130	140	7\%	None
ANTHRACENE	830	870	5\%	None
FLUORANTHENE	840	830	1\%	None
PYRENE	1200	1200	0\%	None
CHRYSENE	1100	1100	0\%	None
BENZO(A)ANTHRACENE	750	760	1\%	None
BENZO(B)FLUORANTHENE	1600	1700	6\%	None
BENZO(K)FLUORANTHENE	1400	1300	7\%	None
BENZO(A)PYRENE	1100	1100	0\%	None
INDENO(1,2,3-CD)PYRENE	850	860	1\%	None
DIBENZO(A,H)ANTHRACENE	230	230	0\%	None
BENZO(G,H,I)PERYLENE	710	730	3\%	None
ANTIMONY	1.3	0.96	30\%	None
ARSENIC	49	33	39\%	J
BARIUM	60	40	40\%	J
CHROMIUM	44	29	41\%	J
COPPER	47	31	41\%	J
LEAD	46	31	39\%	J
MERCURY	0.13	0.14	7\%	None
VANADIUM	8	5.5	37\%	J
Sample SS007BA/SS007BC				
ACETONE	59	34	54\%	J

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
DIBENZOFURAN	19	20	5\%	None
CARBAZOLE	120	140	15\%	None
NAPHTHALENE	56	65	15\%	None
2-METHYLNAPHTHALENE	44	52	17\%	None
ACENAPHTHYLENE	550	640	15\%	None
FLUORENE	ND	42	NC	None
PENTACHLOROPHENOL	480	650	30\%	None
PHENANTHRENE	140	180	25\%	None
ANTHRACENE	1100	1300	17\%	None
FLUORANTHENE	860	1000	15\%	None
PYRENE	1100	1300	17\%	None
CHRYSENE	940	1200	24\%	None
BENZO(A)ANTHRACENE	680	810	17\%	None
BENZO(B)FLUORANTHENE	1800	2100	15\%	None
BENZO(K)FLUORANTHENE	1300	1700	27\%	None
BENZO(A)PYRENE	1000	1300	26\%	None
INDENO(1,2,3-CD)PYRENE	1300	1500	14\%	None
DIBENZO(A,H)ANTHRACENE	310	370	18\%	None
BENZO(G,H,I)PERYLENE	1100	1300	17\%	None
ARSENIC	4.3	5.5	24\%	None
BARIUM	8.1	10	21\%	None
CHROMIUM	6.5	7.1	9\%	None
COPPER	4.7	6.1	26\%	None
LEAD	5.4	6.2	14\%	None
MERCURY	0.072	0.08	11\%	None
SDG J0605810				
Sample SS004BAISS004BB				
DIBENZOFURAN	53	89	51\%	J
CARBAZOLE	43	50	15\%	None
NAPHTHALENE	70	100	35\%	J
2-METHYLNAPHTHALENE	67	99	39\%	J
ACENAPHTHYLENE	460	720	44\%	J
ACENAPHTHENE	39	ND	NC	None
FLUORENE	29	66	78\%	J
PENTACHLOROPHENOL	51	54	6\%	None
PHENANTHRENE	170	260	42\%	J
ANTHRACENE	520	840	47\%	J
FLUORANTHENE	940	1700	58\%	J
PYRENE	1100	1600	37\%	J
CHRYSENE	880	1200	31\%	J
BENZO(A)ANTHRACENE	710	1100	43\%	J
BENZO(B)FLUORANTHENE	1500	2200	38\%	J
BENZO(K)FLUORANTHENE	1100	1700	43\%	J
BENZO(A)PYRENE	930	1400	40\%	J
INDENO(1,2,3-CD)PYRENE	990	1600	47\%	J

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
DIBENZO(A,H)ANTHRACENE	220	350	46\%	J
BENZO(G,H,I)PERYLENE	880	1400	46\%	J
ARSENIC	4.8	5.1	6\%	None
BARIUM	33	31	6\%	None
CHROMIUM	14	15	7\%	None
COPPER	9.1	9.8	7\%	None
LEAD	13	14	7\%	None
MERCURY	0.2	0.27	30\%	None
VANADIUM	7.8	9	14\%	None
Sample SS002AA/SS002AC				
DIBENZOFURAN	20	23	14\%	None
CARBAZOLE	75	80	6\%	None
BIS(2-ETHYLHEXYL) PHTHALATE	ND	20	NC	None
NAPHTHALENE	70	75	7\%	None
2-METHYLNAPHTHALENE	42	44	5\%	None
ACENAPHTHYLENE	350	370	6\%	None
PENTACHLOROPHENOL	150	170	13\%	None
PHENANTHRENE	140	150	7\%	None
ANTHRACENE	780	860	10\%	None
FLUORANTHENE	700	730	4\%	None
PYRENE	1100	1100	0\%	None
CHRYSENE	1000	1100	10\%	None
BENZO(A)ANTHRACENE	680	710	4\%	None
BENZO(B)FLUORANTHENE	1800	1900	5\%	None
BENZO(K)FLUORANTHENE	1300	1400	7\%	None
BENZO(A)PYRENE	1000	1100	10\%	None
INDENO(1,2,3-CD)PYRENE	960	1000	4\%	None
DIBENZO(A,H)ANTHRACENE	230	250	8\%	None
BENZO(G,H,I)PERYLENE	730	770	5\%	None
ANTIMONY	ND	0.39	NC	None
ARSENIC	4.1	5.9	36\%	J
BARIUM	11	15	31\%	J
CHROMIUM	4.5	6.7	39\%	J
COPPER	5.1	7.3	35\%	J
LEAD	18	25	33\%	J
MERCURY	0.41	0.32	25\%	None
VANADIUM	1.6	2.3	36\%	J
Sample SS043BA/SS043BB				
DIBENZOFURAN	37	36	3\%	None
CARBAZOLE	97	110	13\%	None
BIS(2-ETHYLHEXYL) PHTHALATE	280	330	16\%	None
NAPHTHALENE	77	80	4\%	None
2-METHYLNAPHTHALENE	63	69	9\%	None
ACENAPHTHYLENE	720	730	1\%	None
ACENAPHTHENE	61	79	26\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
FLUORENE	92	110	18\%	None
PENTACHLOROPHENOL	580	520	11\%	None
PHENANTHRENE	320	340	6\%	None
ANTHRACENE	2000	1900	5\%	None
FLUORANTHENE	1900	2100	10\%	None
PYRENE	1600	1800	12\%	None
CHRYSENE	1300	1500	14\%	None
BENZO(A)ANTHRACENE	960	1100	14\%	None
BENZO(B)FLUORANTHENE	2300	2500	8\%	None
BENZO(K)FLUORANTHENE	1700	2000	16\%	None
BENZO(A)PYRENE	1100	1200	9\%	None
INDENO(1,2,3-CD)PYRENE	1500	1600	6\%	None
DIBENZO(A,H)ANTHRACENE	380	380	0\%	None
BENZO(G,H,I)PERYLENE	1200	1200	0\%	None
ANTIMONY	ND	0.58	NC	None
ARSENIC	20	16	22\%	None
BARIUM	7.9	7.7	3\%	None
CHROMIUM	28	23	20\%	None
COPPER	16	15	6\%	None
LEAD	6.1	4.7	26\%	None
MERCURY	0.095	0.081	16\%	None
VANADIUM	2.7	3	11\%	None
Sample SS010AA/SS010AB				
DIBENZOFURAN	90	100	11\%	None
CARBAZOLE	72	74	3\%	None
BIS(2-ETHYLHEXYL) PHTHALATE	ND	20	NC	None
NAPHTHALENE	330	290	13\%	None
2-METHYLNAPHTHALENE	180	170	6\%	None
ACENAPHTHYLENE	230	240	4\%	None
PENTACHLOROPHENOL	76	79	4\%	None
PHENANTHRENE	810	700	15\%	None
ANTHRACENE	410	410	0\%	None
FLUORANTHENE	1200	1100	9\%	None
PYRENE	1000	1000	0\%	None
CHRYSENE	960	970	1\%	None
BENZO(A)ANTHRACENE	580	620	7\%	None
BENZO(B)FLUORANTHENE	1100	1200	9\%	None
BENZO(K)FLUORANTHENE	810	840	4\%	None
BENZO(A)PYRENE	620	650	5\%	None
INDENO(1,2,3-CD)PYRENE	590	610	3\%	None
DIBENZO(A,H)ANTHRACENE	160	190	17\%	None
BENZO(G,H,I)PERYLENE	470	480	2\%	None
ANTIMONY	3.4	3.3	3\%	None
ARSENIC	16	12	29\%	None
BARIUM	60	47	24\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
CHROMIUM	21	16	27\%	None
COPPER	43	35	21\%	None
LEAD	170	140	19\%	None
MERCURY	0.36	0.31	15\%	None
VANADIUM	7.9	6.1	26\%	None
SDG J0605839				
Sample SS036AA/SS036AC				
DIBENZOFURAN	31	28	10\%	None
CARBAZOLE	42	50	17\%	None
BIS(2-ETHYLHEXYL) PHTHALATE	33	32	3\%	None
NAPHTHALENE	36	43	18\%	None
2-METHYLNAPHTHALENE	40	46	14\%	None
ACENAPHTHYLENE	190	200	5\%	None
PENTACHLOROPHENOL	190	210	10\%	None
PHENANTHRENE	190	180	5\%	None
ANTHRACENE	270	270	0\%	None
FLUORANTHENE	740	750	1\%	None
PYRENE	760	770	1\%	None
CHRYSENE	620	600	3\%	None
BENZ(A)ANTHRACENE	390	400	3\%	None
BENZO(B)FLUORANTHENE	760	820	8\%	None
BENZO(K)FLUORANTHENE	690	660	4\%	None
BENZO(A)PYRENE	410	440	7\%	None
INDENO(1,2,3-CD)PYRENE	510	520	2\%	None
DIBENZ(A,H)ANTHRACENE	130	130	0\%	None
BENZO(G,H,I)PERYLENE	470	480	2\%	None
ANTIMONY	2.7	3.5	26\%	None
ARSENIC	77	120	44\%	J
BARIUM	14	23	49\%	J
CADMIUM	ND	0.4	NC	None
CHROMIUM	80	120	40\%	J
COPPER	34	57	51\%	J
LEAD	14	15	7\%	None
MERCURY	0.045	0.051	13\%	None
VANADIUM	1.8	3.6	67\%	J
Sample SS048BA/SS048BB				
ACETONE	64	110	53\%	J
CARBAZOLE	ND	27	NC	None
NAPHTHALENE	43	41	5\%	None
2-METHYLNAPHTHALENE	24	23	4\%	None
ACENAPHTHYLENE	150	140	7\%	None
PENTACHLOROPHENOL	110	120	9\%	None
PHENANTHRENE	80	80	0\%	None
ANTHRACENE	170	160	6\%	None
FLUORANTHENE	340	300	13\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
PYRENE	370	330	11\%	None
CHRYSENE	330	320	3\%	None
BENZ(A)ANTHRACENE	240	230	4\%	None
BENZO(B)FLUORANTHENE	480	460	4\%	None
BENZO(K)FLUORANTHENE	390	360	8\%	None
BENZO(A)PYRENE	290	270	7\%	None
INDENO(1,2,3-CD)PYRENE	320	300	6\%	None
DIBENZ(A,H)ANTHRACENE	95	91	4\%	None
BENZO(G,H,I)PERYLENE	280	270	4\%	None
ARSENIC	15	5.9	87\%	J
BARIUM	9.8	9.2	6\%	None
CHROMIUM	19	10	62\%	J
COPPER	12	4.9	84\%	J
LEAD	6.7	4.4	41\%	J
MERCURY	0.031	0.047	41\%	J
VANADIUM	2.1	2.7	25\%	None
Sample SS057CAISS057CB				
ARSENIC	0.66	0.43	42\%	None
BARIUM	13	16	21\%	None
CHROMIUM	6.3	7.2	13\%	None
COPPER	1.1	1.1	0\%	None
LEAD	7.2	8.4	15\%	None
MERCURY	0.012	0.012	0\%	None
VANADIUM	3.9	4.3	10\%	None
Sample SS080BAISS080BB				
NAPHTHALENE	18	ND	NC	None
ACENAPHTHYLENE	180	ND	NC	None
PENTACHLOROPHENOL	ND	98	NC	None
PHENANTHRENE	45	ND	NC	None
ANTHRACENE	86	140	48\%	J
FLUORANTHENE	190	120	45\%	J
PYRENE	230	140	49\%	J
CHRYSENE	240	120	67\%	J
BENZ(A)ANTHRACENE	200	67	100\%	J
BENZO(B)FLUORANTHENE	310	140	76\%	J
BENZO(K)FLUORANTHENE	270	120	77\%	J
BENZO(A)PYRENE	290	84	110\%	J
INDENO(1,2,3-CD)PYRENE	240	69	111\%	J
DIBENZ(A,H)ANTHRACENE	64	17	116\%	J
BENZO(G,H,I)PERYLENE	190	59	105\%	J
ARSENIC	0.95	1.0	5\%	None
BARIUM	10	13	26\%	None
CHROMIUM	3.5	4.3	21\%	None
COPPER	2.0	2.3	14\%	None
LEAD	18	19	5\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
MERCURY	0.043	0.042	2\%	None
VANADIUM	3.1	3.3	6\%	None
SDG J0605876				
Sample SS038DA/ SS038DB				
ACETONE	8.1	11	30\%	None
METHYLENE CHLORIDE	<38	0.48	NC	None
NAPHTHALENE	2.1	2.9	32\%	None
ACENAPHTHYLENE	<8.1	6	NC	None
PENTACHLOROPHENOL	12	13	8\%	None
PHENANTHRENE	<8.1	4	NC	None
ANTHRACENE	2.6	11	124\%	J
FLUORANTHENE	7.2	12	50\%	J
PYRENE	5.7	12	71\%	J
CHRYSENE	4.6	9.4	69\%	J
BENZO(A)ANTHRACENE	3	5.6	60\%	None
BENZO(B)FLUORANTHENE	5.7	21	115\%	J
BENZO(K)FLUORANTHENE	4.5	14	103\%	J
BENZO(A)PYRENE	2	8.5	124\%	J
INDENO(1,2,3-CD)PYRENE	3.6	17	130\%	J
DIBENZ(A,H)ANTHRACENE	0.91	4	126\%	None
BENZO(G,H,I)PERYLENE	3.4	15	126\%	J
ARSENIC	19000	120000	145\%	J
BARIUM	16000	30000	61\%	J
CHROMIUM	33000	59000	57\%	J
COPPER	1200	1600	29\%	None
LEAD	14000	11000	24\%	None
MERCURY	62	60	3\%	None
VANADIUM	30000	22000	31\%	J
Sample SS039BA/SS039BB				
ACETONE	20	14	35\%	None
NAPHTHALENE	1.9	2.2	15\%	None
ACENAPHTHYLENE	3.7	<8.5	NC	None
PENTACHLOROPHENOL	15	14	7\%	None
ANTHRACENE	6.7	3.9	53\%	None
FLUORANTHENE	5.6	4.2	29\%	None
PYRENE	6.1	4.8	24\%	None
CHRYSENE	5	3.6	33\%	None
BENZO(A)ANTHRACENE	3.4	2.6	27\%	None
BENZO(B)FLUORANTHENE	9.4	6	44\%	None
BENZO(K)FLUORANTHENE	7.1	4.7	41\%	None
BENZO(A)PYRENE	4.2	2.8	40\%	None
INDENO(1,2,3-CD)PYRENE	7.2	3.9	59\%	None
DIBENZ(A,H)ANTHRACENE	1.5	<4.3	NC	None
BENZO(G,H,I)PERYLENE	7	3.6	64\%	None
ARSENIC	14000	12000	15\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
BARIUM	3600	3300	9\%	None
CHROMIUM	20000	18000	11\%	None
COPPER	1400	1000	33\%	None
LEAD	2000	1700	16\%	None
MERCURY	21	22	5\%	None
Sample SS028AA/SS028AB				
ACETONE	13	40	102\%	None
CARBAZOLE	700	600	15\%	None
NAPHTHALENE	180	220	20\%	None
ACENAPHTHYLENE	3400	3400	0\%	None
FLUORENE	170	190	11\%	None
PENTACHLOROPHENOL	2600	3200	21\%	None
PHENANTHRENE	970	880	10\%	None
ANTHRACENE	4700	4900	4\%	None
FLUORANTHENE	18000	21000	15\%	None
PYRENE	32000	36000	12\%	None
CHRYSENE	20000	20000	0\%	None
BENZO(A)ANTHRACENE	15000	17000	13\%	None
BENZO(B)FLUORANTHENE	22000	24000	9\%	None
BENZO(K)FLUORANTHENE	20000	19000	5\%	None
BENZO(A)PYRENE	16000	17000	6\%	None
INDENO(1,2,3-CD)PYRENE	8900	8900	0\%	None
DIBENZ(A,H)ANTHRACENE	2600	3100	18\%	None
BENZO(G,H,I)PERYLENE	6500	6300	3\%	None
ARSENIC	5000	4300	15\%	None
BARIUM	7800	6100	24\%	None
CHROMIUM	8200	7700	6\%	None
COPPER	5000	4900	2\%	None
LEAD	10000	9600	4\%	None
MERCURY	140	160	13\%	None
VANADIUM	1600	<1000	NC	None
SDG J0605879				
Sample SS100DA/SS100DB				
ACETONE	140	89	45\%	J
METHYL ETHYL KETONE	15	7.2	70\%	J
BENZENE	1.9	1.7	11\%	None
METHYLCYLOHEXANE	2.1	1.6	27\%	None
METHYLBENZENE	140	120	15\%	None
ETHYLBENZENE	0.47	0.42	11\%	None
M,P-XYLENES	1.1	1	10\%	None
O-XYLENE	0.75	0.64	16\%	None
STYRENE (MONOMER)	230	200	14\%	None
2,4-DIMETHYLPHENOL	3800	2300	49\%	J
BIPHENYL	93000	57000	48\%	J
DIBENZOFURAN	340000	340000	0\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
CARBAZOLE	140000	160000	13\%	None
NAPHTHALENE	770000	570000	30\%	None
2-METHYLNAPHTHALENE	250000	230000	8\%	None
ACENAPHTHYLENE	17000	16000	6\%	None
ACENAPHTHENE	310000	280000	10\%	None
FLUORENE	340000	300000	13\%	None
PHENANTHRENE	1300000	960000	30\%	None
ANTHRACENE	190000	170000	11\%	None
FLUORANTHENE	700000	400000	55\%	J
PYRENE	350000	310000	12\%	None
CHRYSENE	100000	93000	7\%	None
BENZO(A)ANTHRACENE	120000	110000	9\%	None
BENZO(B)FLUORANTHENE	68000	62000	9\%	None
BENZO(K)FLUORANTHENE	47000	40000	16\%	None
BENZO(A)PYRENE	54000	46000	16\%	None
INDENO(1,2,3-CD)PYRENE	17000	15000	13\%	None
DIBENZO(A,H)ANTHRACENE	6800	5600	19\%	None
BENZO(G,H,I)PERYLENE	16000	14000	13\%	None
ARSENIC	0.83	3.2	118\%	J
BARIUM	4.9	5.2	6\%	None
CHROMIUM	2.2	5.9	91\%	J
COPPER	1	3	100\%	J
LEAD	2.1	2.2	5\%	None
MERCURY	0.022	0.018	20\%	None
Sample SS66AAISS066AB				
DIBENZOFURAN	170	180	6\%	None
CARBAZOLE	180	210	15\%	None
BIS(2-ETHYLHEXYL)PHTHALATE	56	ND	NC	None
NAPHTHALENE	86	130	41\%	J
2-METHYLNAPHTHALENE	49	72	38\%	J
ACENAPHTHYLENE	380	450	17\%	None
ACENAPHTHENE	63	86	31\%	J
FLUORENE	110	140	24\%	None
PENTACHLOROPHENOL	350	510	37\%	J
PHENANTHRENE	650	660	2\%	None
ANTHRACENE	640	680	6\%	None
FLUORANTHENE	1200	1500	22\%	None
PYRENE	1300	2200	51\%	J
CHRYSENE	920	1600	54\%	J
BENZO(A)ANTHRACENE	640	1200	61\%	J
BENZO(B)FLUORANTHENE	1600	2000	22\%	None
BENZO(K)FLUORANTHENE	970	1500	43\%	J
BENZO(A)PYRENE	790	1100	33\%	J
INDENO(1,2,3-CD)PYRENE	720	1000	33\%	J
DIBENZO(A,H)ANTHRACENE	280	280	0\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
BENZO(G,H,I)PERYLENE	890	900	1\%	None
ANTIMONY	ND	1.1	NC	None
ARSENIC	81	95	16\%	None
BARIUM	13	19	38\%	J
CHROMIUM	64	85	28\%	None
COPPER	33	53	47\%	J
LEAD	9.6	34	112\%	J
MERCURY	0.12	0.16	29\%	None
VANADIUM	1.1	2	58\%	J
Sample SS066DA/SS066DC				
FLUORENE	2.5	4.4	55\%	J
PHENANTHRENE	15	27	57\%	J
ANTHRACENE	3.1	6.7	73\%	J
FLUORANTHENE	13	25	63\%	J
PYRENE	11	21	63\%	J
CHRYSENE	5.7	8.4	38\%	J
BENZO(A)ANTHRACENE	4.3	7	48\%	J
BENZO(B)FLUORANTHENE	6.6	8.4	24\%	None
BENZO(K)FLUORANTHENE	6.2	8	25\%	None
BENZO(A)PYRENE	2.9	3.9	29\%	None
INDENO(1,2,3-CD)PYRENE	4.2	5.2	21\%	None
DIBENZO(A,H)ANTHRACENE	0.96	1.2	22\%	None
BENZO(G,H,I)PERYLENE	4	4.9	20\%	None
ARSENIC	0.68	0.83	20\%	None
BARIUM	2.4	3.3	32\%	J
CHROMIUM	4.9	5.1	4\%	None
COPPER	0.66	0.55	18\%	None
LEAD	0.88	1.1	22\%	None
MERCURY	ND	0.0046	NC	None
VANADIUM	ND	1.5	NC	None
Sample SS003CAISS003CB				
DIBENZOFURAN	22	24	9\%	None
CARBAZOLE	42	34	21\%	None
NAPHTHALENE	38	42	10\%	None
2-METHYLNAPHTHALENE	38	49	25\%	None
ACENAPHTHYLENE	75	51	38\%	J
FLUORENE	23	ND	NC	None
PHENANTHRENE	200	95	71\%	J
ANTHRACENE	200	110	58\%	J
FLUORANTHENE	940	340	94\%	J
PYRENE	1100	370	99\%	J
CHRYSENE	590	250	81\%	J
BENZO(A)ANTHRACENE	410	150	93\%	J
BENZO(B)FLUORANTHENE	630	360	55\%	J
BENZO(K)FLUORANTHENE	520	250	70\%	J

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
BENZO(A)PYRENE	360	200	57\%	J
INDENO(1,2,3-CD)PYRENE	250	180	33\%	J
DIBENZO(A,H)ANTHRACENE	74	43	53\%	J
BENZO(G,H,I)PERYLENE	210	160	27\%	None
ARSENIC	19	14	30\%	None
BARIUM	12	11	9\%	None
CHROMIUM	3.4	3.6	6\%	None
COPPER	2.1	2.1	0\%	None
LEAD	6.3	5.1	21\%	None
MERCURY	0.024	0.022	9\%	None
VANADIUM	2.4	3.3	32\%	J
Sample SS086BA/SS086BB				
ACETONE	160	63	87\%	J
DIBENZOFURAN	190	250	27\%	None
CARBAZOLE	320	380	17\%	None
NAPHTHALENE	140	130	7\%	None
2-METHYLNAPHTHALENE	110	100	10\%	None
ACENAPHTHYLENE	950	990	4\%	None
ACENAPHTHENE	96	110	14\%	None
FLUORENE	81	100	21\%	None
PENTACHLOROPHENOL	3100	2800	10\%	None
PHENANTHRENE	610	620	2\%	None
ANTHRACENE	1900	1800	5\%	None
FLUORANTHENE	4000	4000	0\%	None
PYRENE	4600	4900	6\%	None
CHRYSENE	2600	4600	56\%	J
BENZO(A)ANTHRACENE	1800	2100	15\%	None
BENZO(B)FLUORANTHENE	7600	8200	8\%	None
BENZO(K)FLUORANTHENE	3500	4300	21\%	None
BENZO(A)PYRENE	2200	2500	13\%	None
INDENO(1,2,3-CD)PYRENE	2000	2100	5\%	None
DIBENZO(A,H)ANTHRACENE	620	600	3\%	None
BENZO(G,H,I)PERYLENE	1800	1800	0\%	None
ANTIMONY	0.43	0.57	28\%	None
ARSENIC	42	41	2\%	None
BARIUM	21	14	40\%	J
CHROMIUM	69	75	8\%	None
COPPER	36	50	33\%	J
LEAD	18	19	5\%	None
MERCURY	0.69	0.57	19\%	None
VANADIUM	2.3	1.6	36\%	J
SDG J0605890				
Sample SS094AA/SS094AB				
ACETONE	5.5	4.9	12\%	None
DIBENZOFURAN	25	26	4\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
CARBAZOLE	74	65	13\%	None
BIS(2-ETHYLHEXYL) PHTHALATE	ND	24	NC	None
NAPHTHALENE	66	38	54\%	J
2-METHYLNAPHTHALENE	40	31	25\%	None
ACENAPHTHYLENE	320	300	6\%	None
ACENAPHTHENE	30	ND	NC	None
FLUORENE	32	27	17\%	None
PENTACHLOROPHENOL	180	170	6\%	None
PHENANTHRENE	150	140	7\%	None
ANTHRACENE	690	650	6\%	None
FLUORANTHENE	1100	970	13\%	None
PYRENE	1300	1000	26\%	None
CHRYSENE	1000	830	19\%	None
BENZO(A)ANTHRACENE	770	620	22\%	None
BENZO(B)FLUORANTHENE	2000	1400	35\%	J
BENZO(K)FLUORANTHENE	920	730	23\%	None
BENZO(A)PYRENE	790	610	26\%	None
INDENO(1,2,3-CD)PYRENE	710	620	14\%	None
DIBENZO(A,H)ANTHRACENE	250	210	17\%	None
BENZO(G,H,I)PERYLENE	730	660	10\%	None
ARSENIC	30	25	18\%	None
BARIUM	8.7	6.3	32\%	J
CHROMIUM	39	35	11\%	None
COPPER	23	20	14\%	None
LEAD	3.7	3.3	11\%	None
MERCURY	0.058	0.058	0\%	None
VANADIUM	2.8	2.3	20\%	None
Sample SS047AA/SS047AC				
ACETONE	3.5	4.4	23\%	None
CARBAZOLE	31	32	3\%	None
NAPHTHALENE	ND	13	NC	None
2-METHYLNAPHTHALENE	5.2	5.4	4\%	None
ACENAPHTHYLENE	83	91	9\%	None
ACENAPHTHENE	4.7	5.3	12\%	None
FLUORENE	5.7	6.2	8\%	None
PENTACHLOROPHENOL	490	320	42\%	J
PHENANTHRENE	22	28	24\%	None
ANTHRACENE	240	280	15\%	None
FLUORANTHENE	130	150	14\%	None
PYRENE	180	200	11\%	None
CHRYSENE	150	170	13\%	None
BENZO(A)ANTHRACENE	130	150	14\%	None
BENZO(B)FLUORANTHENE	340	430	23\%	None
BENZO(K)FLUORANTHENE	150	170	13\%	None
BENZO(A)PYRENE	170	190	11\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
INDENO(1,2,3-CD)PYRENE	120	140	15\%	None
DIBENZO(A,H)ANTHRACENE	46	52	12\%	None
BENZO(G,H,I)PERYLENE	120	140	15\%	None
ARSENIC	6.7	6.1	9\%	None
BARIUM	9.2	9.1	1\%	None
CHROMIUM	5.7	6.2	8\%	None
COPPER	2.2	2.7	20\%	None
LEAD	5.2	5.3	2\%	None
MERCURY	0.069	0.1	37\%	J
VANADIUM	2.9	3.1	7\%	None
Sample SS077DA/SS077DB				
ACETONE	42	39	7\%	None
2-BUTANONE	3.1	39	171\%	J
TOLUENE	ND	0.53	NC	None
ETHYLBENZENE	ND	18	NC	None
M,P-XYLENES	ND	48	NC	None
O-XYLENE	7.9	37	130\%	J
STYRENE	2.2	8.8	120\%	J
ACENAPHTHYLENE	9900	10000	1\%	None
PENTACHLOROPHENOL	89	ND	NC	None
BENZO(K)FLUORANTHENE	29000	26000	11\%	None
INDENO(1,2,3-CD)PYRENE	16000	14000	13\%	None
DIBENZO(A,H)ANTHRACENE	7600	6800	11\%	None
BENZO(G,H,I)PERYLENE	16000	13000	21\%	None
ARSENIC	0.94	0.7	29\%	None
BARIUM	7	4.7	39\%	J
CHROMIUM	7.1	6.3	12\%	None
COPPER	1.3	0.73	56\%	J
LEAD	5.5	5.5	0\%	None
MERCURY	0.018	0.11	144\%	J
VANADIUM	2.4	1.7	34\%	J
NAPHTHALENE	290000	400000	32\%	J
2-METHYLNAPHTHALENE	180000	200000	11\%	None
ACENAPHTHENE	250000	240000	4\%	None
FLUORENE	300000	270000	11\%	None
PHENANTHRENE	850000	680000	22\%	None
ANTHRACENE	140000	120000	15\%	None
FLUORANTHENE	400000	350000	13\%	None
PYRENE	290000	250000	15\%	None
CHRYSENE	90000	75000	18\%	None
BENZO(A)ANTHRACENE	100000	87000	14\%	None
BENZO(B)FLUORANTHENE	68000	55000	21\%	None
BENZO(A)PYRENE	49000	42000	15\%	None
BIPHENYL	35000	39000	11\%	None
DIBENZOFURAN	190000	210000	10\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
CARBAZOLE	57000	61000	7\%	None
SDG J0605919				
Sample SS070AA/SS070AB				
ACETONE	41	25	48\%	J
METHYLENE CHLORIDE	1.5	1.6	6\%	None
TOLUENE	2.4	<0.81	NC	None
DIBENZOFURAN	86	93	8\%	None
CARBAZOLE	1000	1200	18\%	None
BIS(2-ETHYLHEXYL) PHTHALATE	44	<23	NC	None
NAPHTHALENE	170	220	26\%	None
2-METHYLNAPHTHALENE	110	<210	NC	None
ACENAPHTHYLENE	2000	2100	5\%	None
ACENAPHTHENE	95	<380	NC	None
FLUORENE	110	<210	NC	None
PENTACHLOROPHENOL	3700	2700	31\%	J
PHENANTHRENE	820	900	NC	None
ANTHRACENE	4200	4200	0\%	None
FLUORANTHENE	7100	7500	5\%	None
PYRENE	14000	15000	7\%	None
CHRYSENE	8600	8500	1\%	None
BENZO(A)ANTHRACENE	5700	6100	7\%	None
BENZO(B)FLUORANTHENE	12000	16000	29\%	None
BENZO(K)FLUORANTHENE	8100	7700	5\%	None
BENZO(A)PYRENE	6300	7600	19\%	None
INDENO(1,2,3-CD)PYRENE	3900	5100	27\%	None
DIBENZ(A,H)ANTHRACENE	1700	1900	11\%	None
BENZO(G,H,I)PERYLENE	4200	5100	19\%	None
ANTIMONY	0.61	0.68	11\%	None
ARSENIC	48	53	10\%	None
BARIUM	27	29	7\%	None
CHROMIUM	51	57	11\%	None
COPPER	45	50	11\%	None
LEAD	23	26	12\%	None
MERCURY	0.84	0.94	11\%	None
VANADIUM	4.9	5.6	13\%	None
Sample SS031DAISS031DB				
ACETONE	4.5	14	103\%	J
METHYLENE CHLORIDE	6.9	0.74	161\%	J
TOLUENE	0.48	0.95	66\%	J
NAPHTHALENE	5.3	15	96\%	J
2-METHYLNAPHTHALENE	2.3	8.4	114\%	J
ACENAPHTHYLENE	7.2	4.4	48\%	J
ACENAPHTHENE	<2.9	4.5	NC	None
FLUORENE	<1.6	3.3	NC	None
PENTACHLOROPHENOL	4.6	3.6	24\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
PHENANTHRENE	<3.5	6.4	NC	None
ANTHRACENE	16	9.9	47\%	J
FLUORANTHENE	15	11	31\%	J
PYRENE	18	12	40\%	J
CHRYSENE	16	8.1	66\%	J
BENZO(A)ANTHRACENE	13	6.1	72\%	J
BENZO(B)FLUORANTHENE	36	19	62\%	J
BENZO(K)FLUORANTHENE	18	9.8	59\%	J
BENZO(A)PYRENE	14	8.0	55\%	J
INDENO(1,2,3-CD)PYRENE	15	8.8	52\%	J
DIBENZ(A,H)ANTHRACENE	5.2	2.8	NC	None
BENZO(G,H,I)PERYLENE	16	9.7	49\%	J
ARSENIC	1.2	<0.41	NC	None
BARIUM	6.3	8.0	24\%	None
CHROMIUM	4.4	3.0	38\%	J
COPPER	1.1	0.62	56\%	J
LEAD	5.6	5.1	9\%	None
MERCURY	0.024	0.020	18\%	None
VANADIUM	1.4	1.2	15\%	None
Sample SS007DA/SS007DB				
ACETONE	7.5	4.0	61\%	J
METHYLENE CHLORIDE	1.6	1.3	21\%	None
NAPHTHALENE	7.4	15	68\%	J
2-METHYLNAPHTHALENE	4.8	8.5	56\%	J
ACENAPHTHYLENE	3.2	4.5	34\%	J
ACENAPHTHENE	15	8.2	59\%	J
FLUORENE	8.7	5.6	43\%	J
PENTACHLOROPHENOL	1.1	1.5	31\%	J
PHENANTHRENE	8.2	7.6	8\%	None
ANTHRACENE	6.2	7.4	18\%	None
FLUORANTHENE	9.2	9.1	1\%	None
PYRENE	12	13	8\%	None
CHRYSENE	7.8	9.7	22\%	None
BENZO(A)ANTHRACENE	5.8	7.1	20\%	None
BENZO(B)FLUORANTHENE	14	19	30\%	None
BENZO(K)FLUORANTHENE	8.6	10	15\%	None
BENZO(A)PYRENE	7.1	10	34\%	J
INDENO(1,2,3-CD)PYRENE	6.5	8.9	31\%	J
DIBENZ(A,H)ANTHRACENE	2.1	2.8	29\%	None
BENZO(G,H,I)PERYLENE	6.5	8.9	31\%	J
ARSENIC	$<0.42$	0.44	NC	None
BARIUM	8.0	8.9	11\%	None
CHROMIUM	3.1	3.4	9\%	None
COPPER	0.39	0.47	19\%	None
LEAD	4.0	4.0	0\%	None

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
MERCURY	0.016	0.018	12\%	None
VANADIUM	1.3	2.2	NC	None
Sample SS0022AA/SS0022AB				
ACETONE	100	110	10\%	None
METHYLENE CHLORIDE	0.7	1.3	60\%	J
2-BUTANONE	2.2	3.2	37\%	J
TOLUENE	<0.53	0.63	NC	None
DIBENZOFURAN	83	89	7\%	None
NAPHTHALENE	28	27	4\%	None
2-METHYLNAPHTHALENE	22	17	26\%	None
ACENAPHTHYLENE	48	43	11\%	None
ACENAPHTHENE	4.5	4.9	9\%	None
FLUORENE	4.4	4.3	2\%	None
PENTACHLOROPHENOL	31	28	10\%	None
PHENANTHRENE	44	35	23\%	None
ANTHRACENE	110	110	0\%	None
FLUORANTHENE	95	83	13\%	None
PYRENE	110	100	10\%	None
CHRY	100	88	13\%	None
BENZO(A)ANTHRACENE	59	52	13\%	None
BENZO(B)FLUORANTHENE	210	200	5\%	None
BENZO(K)FLUORANTHENE	83	72	14\%	None
BENZO(A)PYRENE	76	72	5\%	None
INDENO(1,2,3-CD)PYRENE	67	59	13\%	None
DIBENZ(A,H)ANTHRACENE	24	21	13\%	None
BENZO(G,H,I)PERYLENE	65	57	13\%	None
ANTIMONY	$<0.36$	0.37	NC	None
ARSENIC	4.2	4.2	0\%	None
BARIUM	8.1	7.9	2\%	None
CHROMIUM	10	9.6	4\%	None
COPPER	6	5.6	7\%	None
LEAD	18	18	0\%	None
MERCURY	0.054	0.054	0\%	None
VANADIUM	1.4	1.1	24\%	None
Sample SD001AA/SD001AB				
ACETONE	<3.1	3.6	NC	None
METHYLENE CHLORIDE	4.6	1.1	123\%	J
TOLUENE	0.88	0.87	1\%	None
CARBAZOLE	550	420	27\%	None
BUTYL BENZYL PHTHALATE	230	<220	NC	None
BIS(2-ETHYLHEXYL) PHTHALATE	680	$<190$	NC	None
PENTACHLOROPHENOL	110	<83	NC	None
PHENANTHRENE	2500	4400	55\%	J
ANTHRACENE	460	690	40\%	J
FLUORANTHENE	6000	9900	49\%	J

TABLE 2
Field Duplicate Detected Results and RPD Koppers Inc. Site

Analyte	Primary Result	Duplicate Result	RPD	Qualifier
PYRENE	5500	9100	49\%	J
CHRYSENE	3600	5600	43\%	J
BENZO(A)ANTHRACENE	2700	4500	50\%	J
BENZO(B)FLUORANTHENE	5200	7800	40\%	J
BENZO(K)FLUORANTHENE	2600	4000	42\%	J
BENZO(A)PYRENE	3500	5300	41\%	J
INDENO(1,2,3-CD)PYRENE	2500	3700	39\%	J
DIBENZ(A,H)ANTHRACENE	880	1300	39\%	J
BENZO(G,H,I)PERYLENE	2500	3600	36\%	J
ANTIMONY	0.43	<0.38	NC	None
ARSENIC	2.1	1.7	21\%	None
BARIUM	110	8.1	173\%	J
CADMIUM	0.42	<0.32	NC	None
CHROMIUM	9.8	8.5	14\%	None
COPPER	18	16	12\%	None
LEAD	62	170	93\%	J
MERCURY	0.032	0.026	21\%	None
VANADIUM	6.4	4.1	44\%	J
SDG J0605944				
Sample SD006AA/SD006AC				
ACETONE	66	15	126\%	J
DIBENZOFURAN	150	150	0\%	None
CARBAZOLE	320	380	17\%	None
BIS(2-ETHYLHEXYL) PHTHALATE	70	95	30\%	None
ACENAPHTHYLENE	1100	1300	17\%	None
PENTACHLOROPHENOL	1400	1800	25\%	None
PHENANTHRENE	680	770	12\%	None
ANTHRACENE	1800	2100	15\%	None
FLUORANTHENE	2700	3000	11\%	None
PYRENE	3500	3900	11\%	None
CHRYSENE	2600	2700	4\%	None
BENZO(A)ANTHRACENE	1600	1900	17\%	None
BENZO(B)FLUORANTHENE	4400	6500	39\%	J
BENZO(K)FLUORANTHENE	2900	3100	7\%	None
BENZO(A)PYRENE	2100	2800	29\%	None
INDENO(1,2,3-CD)PYRENE	2200	3100	34\%	J
DIBENZO(A,H)ANTHRACENE	710	1000	34\%	J
BENZO(G,H,I)PERYLENE	2700	3300	20\%	None
ANTIMONY	4.2	3.6	15\%	None
ARSENIC	280	210	29\%	None
BARIUM	51	39	27\%	None
CADMIUM	0.81	0.63	25\%	None
CHROMIUM	450	340	28\%	None
COPPER	240	180	29\%	None
LEAD	59	51	15\%	None

TABLE 2
Field Duplicate Detected Results and RPD
Koppers Inc. Site

Analyte	Primary Result	Duplicate   Result	RPD	Qualifier
MERCURY	1.4	0.3	$\mathbf{1 2 9 \%}$	J
VANADIUM	13	8.6	$\mathbf{4 1 \%}$	J
TOTAL ORGANIC CARBON	4500	4500	$0 \%$	None

NC=Not Calculable

## Appendix C

Data Validation Reports for the Reanalysis of PCDD/PCDF Samples by Vista and for the Analysis of PCDD/PCDF Samples by CAS

## Data Validation Report for the Reanalysis of PCDD/PCDF Samples by Vista

# DATA VALIDATION REPORT 

Soil Samples
From
Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL

Analyses for PCDDs/PCDFs<br>VISTA 28905

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 1
5.0 DATA VALIDATION FINDINGS ..... 2
5.1 Data completeness and deliverables ..... 2
5.2 Sample Receipt ..... 2
5.3 Chain of Custody (COC) Documentation ..... 2
5.4 Holding Times, Storage and Preservation .....  3
5.5 Mass Calibration and Resolution ..... 3
5.6 Window Defining Mixture and Isomer Specificity Check .....  3
5.7 Initial Calibrations ..... 3
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 4
5.10 Method Blanks ..... 4
5.11 Laboratory Control Samples (LCS) ..... 4
5.12 Identification Criteria ..... 4
5.13 Confirmation Analyses ..... 5
5.14 Detection Limits ..... 5
5.15 Labeled Compound Recoveries ..... 5
5.16 Interferences ..... 5
5.17 Sample Dilutions ..... 6
5.18 Equipment Blank ..... 6
5.19 Field Duplicates ..... 6
5.20 Calculations ..... 6
6.0 REFERENCES ..... 6

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

Samples were initially submitted to Columbia Analytical Services of Houston, TX for analyses of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).

A subset of program samples were subsequently submitted to Vista Analytical Laboratory, El Dorado Hills, CA for analyses for PCDDs and PCDFs. Results of these analyses are valid with limited qualifications.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS037AA	SS082AA
SS037BA	SS082BA
SS038AA	SS082CA
SS038AC	SS084BA
SS081AA	SS086AA
SS081BA	

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for samples with PCDDs/PCDFs are generally valid as reported.
TEQ values for the samples as calculated by VISTA are based on the 1989 International Toxic equivalency factors (ITEFs). TEQs have been recalculated using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Sample receipt
3. Chain of Custody documentation
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Chromatographic resolution
10. Method blank analysis
11. Laboratory Control Samples
12. Identification criteria
13. Second column confirmation analysis
14. Detection Limits
15. Labeled compound recoveries
16. Interferences
17. Dilutions
18. Equipment blanks
19. Field Duplicates
20. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. Raw data were reviewed for samples SS037AA and SS081AA in this set.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

Analyses were conducted as requested and full deliverables as required for validation provided.

### 5.2 Sample Receipt

Samples were received at Vista via FedEx on April 21, 2007 from CAS Houston, TX and on April 26, 2007 from CAS Gainesville, FL. Sample SS038AA had been in a shipment from the Houston laboratory that was delayed in transit. A replacement sample from the remainder of the metals and semivolatile organics sample from this location was subsequently shipped from the Florida facility.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed.

### 5.4 Holding Times, Storage and Preservation

Samples had been stored frozen at CAS prior to the shipment. Sample coolers were $1.6^{\circ} \mathrm{C}-$ $4^{\circ} \mathrm{C}$, within the method recommended range. Method 1613B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence. Final checks for calibration and resolution were performed and reported by Vista; all criteria applicable to the initial checks were satisfied for the final checks as well.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. The window-defining mix was combined with the calibration check standard mix so a single analysis addressed both calibration stability and chromatographic resolution. All congeners in the solution were detected within their respective windows. The height of the valley between the closely eluting isomers $1,2,3,8$-TCDD and $2,3,7,8$-TCDD less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

A six-point calibration was conducted on December 4, 2006 for the instrument used for the DB5 column analyses of all PCDDs and PCDFs. Calibrations included an additional low standard at one-half the low level required by Method 1613B. Demonstration of linearity at the lower level extended the range for reporting of data without qualifications.

The initial calibration was acceptable with percent relative standard deviations (\%RSDs) $\leq 20 \%$ for the relative responses (RR) for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were conducted during the period May 4 through May 6, 2007. All calibration checks demonstrated acceptable response stability, with the percent difference (\%D) of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Calibration checks were analyzed at the end of each analytical sequence of 12 hours or less. All requirements applicable to the initial calibration check were met for the final check.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. Resolution of 123678 - and $123789-H x C D D$ isomers, although not required by Method 1613, was also achieved in standards and in those samples where raw data were reviewed. No qualifications to sample data as a result of chromatographic performance were required.

### 5.10 Method Blanks

One soil method blank was prepared and analyzed with these samples. A trace level of OCDD was present and a trace level peak that failed to meet the ion ratio criterion for identification as $1234678-H p C D D$ was noted. All sample concentrations of these two analytes were 4,000 times or more greater than the blank; no data have been qualified.

### 5.11 Laboratory Control Samples (LCS)

An ongoing precision and recovery sample (OPR) was extracted with each preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Peaks that are present at the expected retention time and have both masses for a target analyte but fail to meet ion ratio criteria are reported as EMPC (estimated maximum possible concentrations). The following PCDFs are reported as EMPCs:

SS037AA 2378-TCDF, 12378-PeCDF
SS081AA 2378-TCDD, 12378-PeCDF
SS081BA 2378-TCDD
SS082AA 2378-TCDF

In all cases, the levels noted as maximum possible concentrations are below instrument calibration. Peak ratios are marginally outside of the limits.

### 5.13 Confirmation Analyses

2,3,6,7-TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. This is generally conducted only for samples where the level noted in the initial analysis is above the calibration range for the confirmatory analysis. All detections of 2378-TCDF in these samples were reported below the calibration range for the confirmation analysis, and no second column analyses were conducted. Positive results for 2378-TCDF in all samples are qualified as estimated.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel for non-detected analytes.

### 5.15 Labeled Compound Recoveries

Recoveries of internal standards for all samples were within method control limits.

### 5.16 Interferences

Cleanup procedures at Vista, which included florisil column cleanup as recommended in Method 1613, were successful in removing most non-PCDD/PCDF constituents in the samples. Polychlorinated diphenylethers (PCDPEs), which are similar in structure and chemical properties to PCDDs/PCDFs cannot be removed, and when present, can interfere with the unequivocal identification and accurate quantitation of PCDFs. They create the same fragments as PCDFs with the same mass ratio and can result in false positives or high bias to PCDF results. PCDPEs were present in several of the samples in this set, but no target PCDFs were affected.

Some peaks detected during the analysis of PCDFs are potentially attributable to these ethers. Vista includes peaks in the totals for each group (Total TCDFs, etc) that are possibly attributable to PCDPEs. Vista also reports results for the estimated maximum possible concentrations
(EMPCs) of totals for each group; this result includes the concentrations of peaks that failed to meet ion ratio criteria for positive identification as a PCDD or PCDF. Results for Totals are qualified as estimated when raw data indicate that ethers are present.

### 5.17 Sample Dilutions

Vista reduced the amount of sample extracted and increased the final extract volume for these samples in order to minimize the number of analytes measured above instrument calibration. No samples in this set required further dilutions.

### 5.18 Equipment Blank

No equipment blanks were included in the sets submitted to Vista. Significant contamination of these blanks was not noted in the analyses conducted at CAS.

### 5.19 Field Duplicates

Samples SS038AA and SS038AC are field duplicates. Results demonstrated acceptable agreement with all relative percent differences (RPDs) below $50 \%$ as shown in Table 1.

### 5.20 Calculations

Calculations for toxic equivalencies as provided were calculated using 1989 International Toxic Equivalency Factors (TEF) and one-half the detection limit for non-detected analytes. Values have been recalculated for program usage using the revised 2006 WHO TEF values and onehalf the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

## amec ${ }^{\text {® }}$

Table 1: PCDDs/PCDFs in Field Duplicate Samples

chemical_name	$\begin{gathered} \text { SS038AA } \\ \text { E1668 pg/g } \\ \hline \end{gathered}$	VQ	$\begin{gathered} \text { SS038AC } \\ \text { E1668 pg/g } \\ \hline \end{gathered}$	VQ	RPD
	VISTA		VISTA		
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	11	J	9.47	J	15\%
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	187		177		5\%
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	606		577		5\%
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	2110		1860		13\%
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	1160		1060		9\%
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	70700		59900		17\%
OCTACHLORODIBENZO-P-DIOXIN	689000		568000		19\%
2,3,7,8-TETRACHLORODIBENZOFURAN	13.6		13	J	5\%
1,2,3,7,8-PENTACHLORODIBENZOFURAN	16.5	J	18.6	J	12\%
2,3,4,7,8-PENTACHLORODIBENZOFURAN	82.7		79.2		4\%
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	319		277		14\%
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	175		161		8\%
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	359		336		7\%
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	87.6		74.9		16\%
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	10400		9360		11\%
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	600		545		10\%
OCTACHLORODIBENZOFURAN	37700		33500		12\%
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	122		120		2\%
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	1110		950		16\%
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	16600		14600		13\%
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	187000		151000		21\%
TOTAL TETRACHLORINATED DIBENZOFURANS	236		208		13\%
TOTAL PENTACHLORINATED DIBENZOFURANS	1020		1000		2\%
TOTAL HEXACHLORINATED DIBENZOFURANS	11100		9650	J	14\%
TOTAL HEPTACHLORINATED DIBENZOFURANS	41200		37000		11\%

# DATA VALIDATION REPORT 

Soil Samples
From
Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL

Analyses for PCDDs/PCDFs<br>VISTA 28906

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 1
5.0 DATA VALIDATION FINDINGS ..... 2
5.1 Data completeness and deliverables ..... 2
5.2 Sample Receipt ..... 2
5.3 Chain of Custody (COC) Documentation ..... 3
5.4 Holding Times, Storage and Preservation ..... 3
5.5 Mass Calibration and Resolution ..... 3
5.6 Window Defining Mixture and Isomer Specificity Check .....  3
5.7 Initial Calibrations ..... 3
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 4
5.10 Method Blanks ..... 4
5.11 Laboratory Control Samples ..... 4
5.12 Identification Criteria ..... 5
5.13 Confirmation Analyses ..... 5
5.14 Detection Limits ..... 5
5.15 Labeled Compound Recoveries ..... 5
5.16 Interferences ..... 5
5.17 Sample Dilutions ..... 6
5.18 Equipment Blank ..... 6
5.19 Field Duplicates ..... 6
5.20 Calculations ..... 6
6.0 REFERENCES ..... 6

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.

J The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

Samples were initially submitted to Columbia Analytical Services of Houston, TX for analyses of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). A subset of the samples were subsequently submitted to Vista Analytical Laboratory, El Dorado Hills, CA for analyses for PCDDs and PCDFs. Results of these analyses are valid with limited qualifications.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS086BA	SS094CA
SS086CA	SS094DA
SS088AA	SS041BA
SS093AA	SS044AA
SS093BA	SS044BA
SS094BA	

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for samples with PCDDs/PCDFs are generally valid as reported. Method modifications implemented to accommodate the high levels of PCDDs and PCDFs included extraction of a smaller amount of some samples, the addition of more internal standards to allow for a larger final extract volume and dilutions performed without additional internal standards introduced into the extracts. Qualifications applied are with limited exceptions due to measurements below the instrument calibration range.

TEQ values for the samples as calculated by VISTA are based on 1989 International Toxic equivalency factors (ITEFs). TEQs have been recalculated using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the

Functional Guidelines are based, the requirements and criteria of the cited method were applied.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Sample receipt
3. Chain of Custody documentation
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Chromatographic resolution
10. Method blank analysis
11. Laboratory Control Samples
12. Identification criteria
13. Second column confirmation analysis
14. Detection Limits
15. Labeled compound recoveries
16. Interferences
17. Dilutions
18. Equipment blanks
19. Field Duplicates
20. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. Raw data were reviewed for all sample and quality control analyses associated with samples in this set.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

Analyses were conducted as requested and full deliverables for data validation were provided.

### 5.2 Sample Receipt

Samples were received from CAS Houston at Vista via FedEx on April 21 and April 26, 2007 from the CAS laboratory in Gainesville, FL. Samples received on April 26, 2007, including SS094CA and SS094DA, were listed on the COC from CAS Houston for the April 21, 2007 set but were not in the cooler. Subsequently, the CAS laboratory in Gainesville, FL provided samples from the bottles submitted to them for metals and semivolatile organics analyses.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed. As noted above, two samples listed on the CAS Houston COC were not included in the cooler.

### 5.4 Holding Times, Storage and Preservation

Samples had been stored frozen at CAS prior to the shipment. Sample coolers were within $1.6^{\circ} \mathrm{C}-4^{\circ} \mathrm{C}$, within the method recommended range. Method 1613 B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence. Final checks for calibration and resolution were performed and reported by Vista; all criteria applicable to the initial checks were satisfied in these final checks.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. The window-defining mix was combined with the calibration check standard mix so a single analysis addressed both calibration stability and chromatographic resolution. All congeners in the solution were detected within their respective windows. The height of the valley between the closely eluting isomers $1,2,3,8$-TCDD and $2,3,7,8$-TCDD less than $25 \%$. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9-TCDF, 2,3,4,7TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

A six-point calibration was conducted on October 24, 2006 for the instrument used for initial analyses of all PCDDs and PCDFs. Calibrations included an additional low standard at 0.25 $\mathrm{ng} / \mathrm{ml}$, one-half the low level required by Method 1613B. Demonstration of linearity at the lower level extended the calibration range and allowed reporting of data without qualifications at lower concentrations.

A five-point calibration for $2,3,7,8$-TCDF confirmation on the DB-225 column was conducted on November 1, 2006. The initial calibrations were acceptable with percent relative standard deviations (\%RSDs) $\leq 20 \%$ for the relative response factors (RRF) for unlabeled compounds and $\leq 35 \%$ for the RRFs for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were conducted on May 8, 9 and 10, 2007 and on the DB225 column on May 8 and 10, 2007. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Calibration checks were also analyzed at the end of each analytical sequence of 12 hours or less. All requirements applicable to the initial calibration check were met for the final check.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. Resolution of 123678 - and 123789-HxCDD isomers, although not required by Method 1613, was also achieved in standards and in all samples. No qualifications to sample data as a result of chromatographic performance were required.

### 5.10 Method Blanks

Two soil method blanks were associated with the initial extractions of samples in this set. The method blank associated with SS086CA, SS093BA, SS094BA, SS094CA, SS094DA and SS041BA contained a trace level of OCDD. All reported sample concentrations of OCDD were greater than 25,000 times the blank and were not qualified.

### 5.11 Laboratory Control Samples

An ongoing precision and recovery sample (OPR) was extracted with each preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

All target PCDDs and PCDFs were detected in all samples in this set. All peaks met the identification criteria.

### 5.13 Confirmation Analyses

2,3,6,7-TCDF may not be separated completely from other TCDF isomers on the primary DB5 chromatographic column, so if it is detected on the initial analysis, a second-column analysis is required by the method to confirm its presence. Confirmation analyses were conducted on all samples with potential detections of $2,3,7,8-$ TCDF above the calibration range of the DB-225 second column analysis. Since the calibration range for the DB5 analysis extended below that of the DB225 analysis, there were low level detections reported without qualification by Vista from the initial analysis that were not confirmed. 2378-TCDF results are qualified as estimated (J) for SS086BA, SS044BA, SS086CA and SS094DA, although data for other samples with confirmation data would indicate that the DB5 results are accurate and do not include other 2378-TCDF isomers. Final validated data and the TEQ includes the lower of the two results for this analyte where the confirmation analysis was conducted.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel. Detection limits were not reported for samples since all analytes were confirmed present in all samples.

### 5.15 Labeled Compound Recoveries

With limited exceptions, all recoveries of internal standards were within Method 1613 limits. The internal standard for OCDD in SS094BA and SS094DA had apparent recoveries of 179\% and $168 \%$ respectively, above the method limit of 157\%. OCDD was present at elevated levels in both samples and the sample extract was diluted for analysis for this analyte. OCDD is qualified as estimated in these samples.

### 5.16 Interferences

Cleanup procedures at Vista, which included florisil column cleanup as recommended in Method 1613, were successful in removing most non-PCDD/PCDF constituents in the samples. Polychlorinated diphenylethers (PCDPEs), which are similar in structure and chemical properties to PCDDs/PCDFs cannot be removed, and when present, can interfere with the
unequivocal identification and accurate quantitation of PCDFs. They create the same fragments as PCDFs with the same mass ratio and can result in false positives or high bias to PCDF results. PCDPEs were present in several of the samples in this set, but 123678-HxCDF in SS088AA and SS094CA was the only target PCDF potentially biased high by the presence of an ether. Results for this analyte in these samples are qualified as estimated.

PCDPEs were detected in other samples and peaks with the masses for PCDFs in several samples are potentially attributable to these ethers. Vista includes peaks in the totals for each group (Total TCDFs, etc) that are possibly attributable to PCDPEs. Vista also reports results for the estimated maximum possible concentrations (EMPCs) of totals for each group; this result includes the concentrations of peaks that failed to meet ion ratio criteria for positive identification as a PCDD or PCDF. Results for Totals are qualified as estimated when raw data indicate that ethers are present.

### 5.17 Sample Dilutions

Vista reduced the amount of sample extracted and increased the final extract volume for samples SS086BA, SS088AA, SS093AA, SS044AA and SS044BA in order to minimize the number of analytes measured above instrument calibration. OCDD in SS094BA, SS094CA, SS094DA, and SS041BA were analyzed at a dilution of 1:10 of the initial extract. No additional internal standards were added prior to the dilution analysis.

### 5.18 Equipment Blank

No equipment blanks were included in the sets submitted to Vista. Significant contamination of these blanks was not noted in the analyses conducted at CAS.

### 5.19 Field Duplicates

No field duplicate samples were included in this set of samples.

### 5.20 Calculations

Calculations for toxic equivalencies as provided were calculated using 1989 International Toxic Equivalency Factors (TEF) and one-half the detection limit for non-detected analytes. Values have been recalculated for program usage using the revised 2006 WHO TEF values and onehalf the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

# DATA VALIDATION REPORT 

# Soil Samples <br> From <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

## Analyses for PCDDs/PCDFs VISTA 28907

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 1
5.0 DATA VALIDATION FINDINGS ..... 2
5.1 Data completeness and deliverables ..... 2
5.2 Sample Receipt ..... 2
5.3 Chain of Custody (COC) Documentation ..... 2
5.4 Holding Times, Storage and Preservation .....  3
5.5 Mass Calibration and Resolution ..... 3
5.6 Window Defining Mixture and Isomer Specificity Check .....  3
5.7 Initial Calibrations ..... 3
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 4
5.10 Method Blanks ..... 4
5.11 Laboratory Control Samples (LCS) ..... 4
5.12 Identification Criteria ..... 5
5.13 Confirmation Analyses ..... 5
5.14 Detection Limits ..... 5
5.15 Labeled Compound Recoveries .....  5
5.16 Interferences ..... 5
5.17 Sample Dilutions ..... 6
5.18 Equipment Blank ..... 6
5.19 Field Duplicates ..... 6
5.20 Calculations ..... 6
6.0 REFERENCES ..... 7

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples during December 2006 at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

Samples were initially submitted to Columbia Analytical Services of Houston, TX for analyses of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). A subset of the samples were subsequently submitted to Vista Analytical Laboratory, El Dorado Hills, CA for analyses for PCDDs and PCDFs. Results as reported by Vista are valid with a limited number of qualifications.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS046BA	SS066AA
SS057DA	SS068BA
SS058AA	SS070AA
SS058BA	SS070BA
SS062AA	SS070AB
	SS076AA

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for samples as reported by Vista are valid as reported with a limited number of qualifications. Method modifications implemented to accommodate the high levels of PCDDs and PCDFs included extraction of a smaller amount of all samples except SS057DA, the addition of more internal standards to allow for a larger final extract volume and dilutions performed without additional internal standards introduced into the extracts.

TEQ values for the samples as calculated by VISTA are based on 1989 International T toxic equivalency factors (ITEFs). TEQs have been recalculated using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US

EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Sample receipt
3. Chain of Custody documentation
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Chromatographic resolution
10. Method blank analysis
11. Laboratory Control Samples
12. Identification criteria
13. Second column confirmation analysis
14. Detection Limits
15. Labeled compound recoveries
16. Interferences
17. Dilutions
18. Equipment blanks
19. Field Duplicates
20. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. Raw data were reviewed for sample SS058BA.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

### 5.2 Sample Receipt

Samples were received at Vista via FedEx on April 21, 2007 from the CAS Houston, TX laboratory and on April 26, 2007 from the CAS Gainesville, FL facility.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed. Samples SS046BA, SS070AA, SS070AB, and SS070BA were listed on the COC from Houston, TX but were not in the cooler. The portions
remaining from the metals and SVOC submittals for these samples were subsequently shipped from the Gainesville, FL laboratory to Vista.

### 5.4 Holding Times, Storage and Preservation

Samples had been stored frozen at CAS prior to the shipment. Sample coolers were received at temperatures within $1.6^{\circ} \mathrm{C}-2.4^{\circ} \mathrm{C}$, within the method recommended range. Method 1613B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence. Final checks for calibration and resolution were performed and reported by Vista; all criteria applicable to the initial checks were satisfied for the final checks as well.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. The window-defining mix was combined with the calibration check standard mix so a single analysis addressed both calibration stability and chromatographic resolution. All congeners in the solution were detected within their respective windows. The height of the valley between the closely eluting isomers $1,2,3,8$-TCDD and $2,3,7,8$-TCDD less than $25 \%$. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9-TCDF, 2,3,4,7TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

Six-point calibrations were conducted on October 24, 2006 and December 4, 2007 for the two instruments used for initial analyses of all PCDDs and PCDFs. Calibrations included an additional low standard at $0.25 \mathrm{ng} / \mathrm{ml}$, one-half the lowest level required by Method 1613B. Demonstration of linearity at the lower level extended the calibration range and allowed reporting of data without qualifications at lower concentrations.

A five-point calibration for 2,3,7,8-TCDF confirmation on the DB-225 column was conducted on November 1, 2006.

The initial calibrations were acceptable with percent relative standard deviations (\%RSDs) $\leq 20 \%$ for the relative response factors (RRF) for unlabeled compounds and $\leq 35 \%$ for the RRFs for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were conducted on May 5, 6 and 8, 2007 and on the DB225 column on May 8 and 9, 2007. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Calibration checks were also analyzed at the end of each analytical sequence of 12 hours or less. All requirements applicable to the initial calibration check were met for the final check.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. Resolution of 123678 - and 123789-HxCDD isomers, although not required by Method 1613, was also achieved in standards and in all samples. No qualifications to sample data as a result of chromatographic performance were required.

### 5.10 Method Blanks

Two method blanks were prepared and analyzed with this set. OCDD was detected at a trace level in one blank and OCDD, OCDF and1234678-HpCDD were present the other. All samples had concentrations 200 times or more higher than the blank. No data have been qualified.

### 5.11 Laboratory Control Samples (LCS)

An ongoing precision and recovery sample (OPR) was extracted with each preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Peaks that are present at the expected retention time and have both masses for a target analyte but fail to meet ion ratio criteria are reported as EMPC (estimated maximum possible concentrations). 12378-PeCDD in SS046BA, 2378-TCDF in SS062AA and SS076AA, and 2378-TCDD in SS070BA are reported at trace levels as EMPC. The levels noted are below instrument calibration and the peak ratios are marginally outside of the limits.

### 5.13 Confirmation Analyses

$2,3,6,7$-TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of $2,3,7,8$-TCDF within the confirmation column calibration range from the DB-5 column analysis. In general, results for 2378-TCDF from the DB5 and DB225 analyses of the samples were comparable. For samples with confirmation data, the final validated data and the TEQ includes the lower of the results from the two analyses for 2378-TCDF.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.15 Labeled Compound Recoveries

All internal standards were recovered within method limits for all samples. However, the OCDD internal standard in SS058AA and SS058BA did not meet the method criterion for ion ratio due to interferences. Both samples had high levels of OCDD and were analyzed at dilution, with the ion ratio outside of limits at both the initial and dilution analysis. Results for OCDD are qualified as estimated in both samples.

### 5.16 Interferences

Cleanup procedures at Vista, which included florisil column cleanup as recommended in Method 1613, were successful in removing most non-PCDD/PCDF constituents in the samples. Polychlorinated diphenylethers (PCDPEs), which are similar in structure and chemical properties to PCDDs/PCDFs cannot be removed, and when present, can interfere with the unequivocal identification and accurate quantitation of PCDFs. They create the same fragments as PCDFs with the same mass ratio and can result in false positives or high bias to PCDF
results. PCDPEs were present in several of the samples in this set. Results for these analytes are qualified as estimated based on the review. Results for 123678-HxCDF and 1234678HpCDF in SS058AA and SS058BA, 1234678-HpCDF in SS066AA and SS070AA, and 123678HxCDF in SS070BA have been qualified as estimated due to potential bias from ethers.

PCDPEs were detected in other samples and peaks with the masses for PCDFs in several samples are potentially attributable to these ethers. Vista includes peaks in the totals for each group (Total TCDFs, etc) that are possibly attributable to PCDPEs. Vista also reports results for the estimated maximum possible concentrations (EMPCs) of totals for each group; this result includes the concentrations of peaks that failed to meet ion ratio criteria for positive identification as a PCDD or PCDF. Results for Totals are qualified as estimated when raw data indicate that ethers are present.

### 5.17 Sample Dilutions

Vista reduced the amount of sample extracted and increased the final extract volume for all samples in this set except SS057DA in order to minimize the number of analytes measured above instrument calibration. Dilutions were still required to place one or more analytes within the calibration range in SS058AA, SS058BA, SS068BA and SS070BA. No additional internal standards were added prior to the dilution analyses.

Data are not qualified for the dilutions since no additional internal standards were added and sensitivity after dilution was acceptable.

### 5.18 Equipment Blank

No equipment blanks were included in the subset of samples submitted to Vista. Results from their analyses at CAS indicated that field contamination was not a concern for sample results.

### 5.19 Field Duplicates

Samples SS070AA and SS070AB are field duplicate samples. Precision was acceptable with relative percent differences for all target analytes below $50 \%$ except for 2378-TCDD. The ion ratio between the peaks for this analyte was slightly outside of the method limits in SS070AB and it was reported as an estimated maximum possible concentration of $20 \mathrm{pg} / \mathrm{g}$. Results are summarized in Table 1 below.

### 5.20 Calculations

Calculations for toxic equivalencies as provided were calculated using 1989 International Toxic Equivalency Factors (TEF) and one-half the detection limit for non-detected analytes. Values have been recalculated for program usage using the revised 2006 WHO TEF values and onehalf the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.
6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

Table 1: PCDDs/PCDFs in Field Duplicate Samples

chemical_name	$\begin{gathered} \text { SS070AA } \\ \mathrm{pg} / \mathrm{g} \end{gathered}$	VQ	$\begin{gathered} \text { SS070AB } \\ \mathrm{pg} / \mathrm{g} \end{gathered}$	VQ	RPD
	VISTA		VISTA		
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	24.2		NA	U	200\%
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	430		293		38\%
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	1540		1050		38\%
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	4640		3300		34\%
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	2620		1800		37\%
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	162000		115000		34\%
OCTACHLORODIBENZO-P-DIOXIN	1490000		1040000		36\%
2,3,7,8-TETRACHLORODIBENZOFURAN	11.6	J	7.62	J	41\%
1,2,3,7,8-PENTACHLORODIBENZOFURAN	59.6	J	42.5	J	33\%
2,3,4,7,8-PENTACHLORODIBENZOFURAN	180		128		34\%
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	693		470		38\%
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	571		381		40\%
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	987		700		34\%
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	185		127		37\%
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	26900	J	18700		36\%
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	1750		1220		36\%
OCTACHLORODIBENZOFURAN	108000		78200		32\%
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	263		123		73\%
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	3100		2180		35\%
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	54100		38800		33\%
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	590000		424000		33\%
TOTAL TETRACHLORINATED DIBENZOFURANS	440	J	319		32\%
TOTAL PENTACHLORINATED DIBENZOFURANS	3090	J	2180	J	35\%
TOTAL HEXACHLORINATED DIBENZOFURANS	25800	J	17800	J	37\%
TOTAL HEPTACHLORINATED DIBENZOFURANS	98300	J	69000		35\%

* 2378-TCDD in SS070BA reported as an EMPC of $20 \mathrm{pg} / \mathrm{g}$.


# DATA VALIDATION REPORT 

# Soil Samples <br> From <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

## Analyses for PCDDs/PCDFs <br> VISTA 28908

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 1
5.0 DATA VALIDATION FINDINGS ..... 2
5.1 Data completeness and deliverables ..... 2
5.2 Sample Receipt ..... 2
5.3 Chain of Custody (COC) Documentation ..... 2
5.4 Holding Times, Storage and Preservation .....  3
5.5 Mass Calibration and Resolution ..... 3
5.6 Window Defining Mixture and Isomer Specificity Check .....  3
5.7 Initial Calibrations ..... 3
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 4
5.10 Method Blanks ..... 4
5.11 Laboratory Control Samples (LCS) ..... 4
5.12 Matrix Spike ..... 4
5.13 Identification Criteria ..... 5
5.14 Confirmation Analyses ..... 5
5.15 Detection Limits ..... 5
5.16 Labeled Compound Recoveries ..... 5
5.17 Interferences ..... 5
5.18 Sample Dilutions ..... 6
5.19 Equipment Blank ..... 6
5.20 Field Duplicates ..... 6
5.21 Calculations ..... 6
6.0 REFERENCES ..... 6

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples during December 2006 at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

Samples were initially submitted to Columbia Analytical Services of Houston, TX for analyses of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). A subset of the samples were subsequently submitted to Vista Analytical Laboratory, El Dorado Hills, CA for analyses for PCDDs and PCDFs. Results as reported by Vista are valid with a limited number of qualifications.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS076BA	SS100DA
SS095AA	SS100DB
SS095BA	SS101AA
SS096AA	SS101BA
SS099BA	SS101CA
SS099CA	SD004AA
SS100AA	SD004BA
SS100BA	
SS100CA	

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for samples as reported by Vista are valid as reported with a limited number of qualifications.

TEQ values for the samples as calculated by VISTA are based on 1989 International T toxic equivalency factors (ITEFs). TEQs have been recalculated using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the

Functional Guidelines are based, the requirements and criteria of the cited method were applied.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Sample receipt
3. Chain of Custody documentation
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Chromatographic resolution
10. Method blank analysis
11. Laboratory Control Samples
12. Matrix Spike
13. Identification criteria
14. Second column confirmation analysis
15. Detection Limits
16. Labeled compound recoveries
17. Interferences
18. Dilutions
19. Equipment blanks
20. Field Duplicates
21. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. Raw data were reviewed for sample SS101AA.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

### 5.2 Sample Receipt

Samples were received at Vista via FedEx on April 21, 2007 from the CAS Houston, TX laboratory and on April 26, 2007 from the CAS Gainesville, FL facility.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed. Samples SS099CA, SS100BA, SD004AA were listed on the COC from Houston, TX but were not in the cooler. The portions remaining from the
metals and SVOC submittals for these samples as well as SD004BA were subsequently shipped from the Gainesville, FL laboratory to Vista.

### 5.4 Holding Times, Storage and Preservation

Samples had been stored frozen at CAS prior to the shipment. Sample coolers were received at temperatures within $1.6^{\circ} \mathrm{C}-2.4^{\circ} \mathrm{C}$, within the method recommended range. Method 1613B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence. Final checks for calibration and resolution were performed and reported by Vista; all criteria applicable to the initial checks were satisfied for the final checks as well.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. The window-defining mix was combined with the calibration check standard mix so a single analysis addressed both calibration stability and chromatographic resolution. All congeners in the solution were detected within their respective windows. The height of the valley between the closely eluting isomers $1,2,3,8$-TCDD and $2,3,7,8$-TCDD less than $25 \%$. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9-TCDF, 2,3,4,7TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

A six-point calibration was conducted on October 24, 2006 for the instrument used for initial analyses of all PCDDs and PCDFs. Calibrations included an additional low standard at 0.25 $\mathrm{ng} / \mathrm{ml}$, one-half the low level required by Method 1613B. Demonstration of linearity at the lower level extended the calibration range and allowed reporting of data without qualifications at lower concentrations.

A five-point calibration for 2,3,7,8-TCDF confirmation on the DB-225 column was conducted on November 1, 2006. The initial calibrations were acceptable with percent relative standard
deviations (\%RSDs) $\leq 20 \%$ for the relative response factors (RRF) for unlabeled compounds and $\leq 35 \%$ for the RRFs for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were conducted during the period May 7 through May 11 and on May 15, 2007 and on the DB225 column on May 9 and 11, 2007. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Calibration checks were also analyzed at the end of each analytical sequence of 12 hours or less. All requirements applicable to the initial calibration check were met for the final check.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. Resolution of 123678- and 123789-HxCDD isomers, although not required by Method 1613, was also achieved in standards and in all samples. No qualifications to sample data as a result of chromatographic performance were required.

### 5.10 Method Blanks

Three method blanks were prepared and analyzed with this set. OCDD was detected at a trace level in two of these blanks; the other had no detectable target analytes. OCDD was present in all samples at concentrations 1000 times or more higher than the blank. No data have been qualified.

### 5.11 Laboratory Control Samples (LCS)

An ongoing precision and recovery sample (OPR) was extracted with each preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs.
Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Matrix Spike

Matrix spike and matrix spike duplicate samples were prepared from sample SS100DA. Recoveries of all analytes were within control limits except for 1234678-HpCDD and OCDD.

These PCDDs were present in the sample at levels significantly above the amounts spiked and recovery criteria are not applicable.

### 5.13 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Peaks that are present at the expected retention time and have both masses for a target analyte but fail to meet ion ratio criteria are reported as EMPC (estimated maximum possible concentrations). 2378 -TCDD in SS101AA is reported at a trace level as an EMPC. The peak ratio is marginally outside of the limits.

### 5.14 Confirmation Analyses

2,3,6,7-TCDF may not be separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of 2,3,7,8TCDF within the confirmation column calibration range from the DB-5 column analysis. 2378TCDF was detected in the initial analyses of SS100AA, SS100BA, SS110AA and SS101CA, but since the levels were below the calibration range of the second column analysis, confirmation was not performed. The reported concentrations in these samples are qualified as estimated. In general, results for 2378 -TCDF from the DB5 and DB225 analyses of the samples were comparable. For samples with confirmation data, the final validated data and the TEQ includes the lower of the results from the two analyses for 2378-TCDF.

### 5.15 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.16 Labeled Compound Recoveries

All internal standards were recovered within method limits for all samples.

### 5.17 Interferences

Cleanup procedures at Vista, which included florisil column cleanup as recommended in Method 1613, were successful in removing most non-PCDD/PCDF constituents in the samples. Polychlorinated diphenylethers (PCDPEs), which are similar in structure and chemical properties to PCDDs/PCDFs cannot be removed, and when present, can interfere with the unequivocal identification and accurate quantitation of PCDFs. They create the same fragments
as PCDFs with the same mass ratio and can result in false positives or high bias to PCDF results. PCDPEs were present in several of the samples in this set, 1234678-HpCDF in SD004AA was the only target PCDF flagged by Vista as potentially biased high by the presence of an ether. The result for this analyte in this sample is qualified as estimated.

PCDPEs were detected in other samples and peaks with the masses for PCDFs in several samples are potentially attributable to these ethers. Vista includes peaks in the totals for each group (Total TCDFs, etc) that are possibly attributable to PCDPEs but flags the result. Results for totals are qualified as estimated if data are potentially biased high by the inclusion of ethers. Vista also reports results for the estimated maximum possible concentrations (EMPCs) of totals for each group; this includes concentrations for peaks that failed to meet ion ratio criteria for positive identification as a PCDD or PCDF. Results for totals are not used for TEQ calculations.

### 5.18 Sample Dilutions

Sample SS101CA was diluted by a factor of 20 for reanalyses for OCDD. This dilution was made without the addition of more internal standards. Data are not qualified for the dilution.

### 5.19 Equipment Blank

No equipment blanks were included in the subset of samples submitted to Vista. Results from their analyses at CAS indicated that field contamination was not a concern for sample results.

### 5.20 Field Duplicates

Samples SS100DA and SS100DB are field duplicate samples. Although precision exceeded the relative percent difference data quality objective of $50 \%$, concentrations are low and these differences are similar to what was noted for the analyses of these field duplicate samples at CAS. Results are summarized in Table 1 below.

### 5.21 Calculations

Calculations for toxic equivalencies as provided were calculated using 1989 International Toxic Equivalency Factors (TEF) and one-half the detection limit for non-detected analytes. Values have been recalculated for program usage using the revised 2006 WHO TEF values and onehalf the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

Table 1: PCDDs/PCDFs in Field Duplicate Samples

chemical_name	$\begin{gathered} \text { SS100DA } \\ \mathrm{pg} / \mathrm{g} \\ \hline \end{gathered}$	VQ	$\begin{gathered} \text { SS100D } \\ \text { B pg/g } \\ \hline \end{gathered}$	VQ	RPD
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	0	U	0.546	J	NA
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	2.58	J	5.9		78\%
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	10.3		20.8		68\%
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	24.3		53.2		75\%
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	14.9		28.5		63\%
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	1150		2140		60\%
OCTACHLORODIBENZO-P-DIOXIN	12000		21400		56\%
2,3,7,8-TETRACHLORODIBENZOFURAN	0	U	0	U	NA
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.477	J	0	U	NA
2,3,4,7,8-PENTACHLORODIBENZOFURAN	1.04	J	2.24	J	73\%
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	2.77	J	5.94		73\%
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	2.22	J	5.42		84\%
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	4.89		10.8		75\%
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	1.11	J	2.16	J	64\%
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	98.1		216		75\%
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	6.49		14.9		79\%
OCTACHLORODIBENZOFURAN	447		963		73\%
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	3.63		5.11		34\%
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	28.4		63.9		77\%
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	416		943		78\%
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	5100		8750		53\%
TOTAL TETRACHLORINATED DIBENZOFURANS	3.32		4.71		35\%
TOTAL PENTACHLORINATED DIBENZOFURANS	18		43.3		83\%
TOTAL HEXACHLORINATED DIBENZOFURANS	97.4		229		81\%
TOTAL HEPTACHLORINATED DIBENZOFURANS	380		812		72\%

# DATA VALIDATION REPORT 

# Soil Samples <br> From <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

## Analyses for PCDDs/PCDFs <br> VISTA 28909

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 1
5.0 DATA VALIDATION FINDINGS ..... 2
5.1 Data completeness and deliverables ..... 2
5.2 Sample Receipt ..... 2
5.3 Chain of Custody (COC) Documentation ..... 2
5.4 Holding Times, Storage and Preservation .....  3
5.5 Mass Calibration and Resolution ..... 3
5.6 Window Defining Mixture and Isomer Specificity Check .....  3
5.7 Initial Calibrations ..... 3
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 4
5.10 Method Blanks ..... 4
5.11 Laboratory Control Samples (LCS) ..... 4
5.12 Matrix Spike ..... 4
5.13 Identification Criteria ..... 5
5.14 Confirmation Analyses ..... 5
5.15 Detection Limits ..... 5
5.16 Labeled Compound Recoveries ..... 5
5.17 Interferences ..... 5
5.18 Sample Dilutions ..... 6
5.19 Equipment Blank ..... 6
5.20 Field Duplicates ..... 6
5.21 Calculations ..... 6
6.0 REFERENCES ..... 6

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples during December 2006 at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

Samples were initially submitted to Columbia Analytical Services of Houston, TX for analyses of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). A subset of the samples were subsequently submitted to Vista Analytical Laboratory, El Dorado Hills, CA for analyses for PCDDs and PCDFs. Results as reported by Vista are valid with a limited number of qualifications.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS002AA	SS020AA
SS002CA	SS024CA
SS003BA	SS026AA
SS005BA	SS026BA
SS006AA	SS035AA
SS006BA	

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for samples as reported by Vista are valid as reported with a limited number of qualifications.

TEQ values for the samples as calculated by VISTA are based on 1989 International T toxic equivalency factors (ITEFs). TEQs have been recalculated using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Sample receipt
3. Chain of Custody documentation
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Chromatographic resolution
10. Method blank analysis
11. Laboratory Control Samples
12. Matrix Spike
13. Identification criteria
14. Second column confirmation analysis
15. Detection Limits
16. Labeled compound recoveries
17. Interferences
18. Dilutions
19. Equipment blanks
20. Field Duplicates
21. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. Raw data were reviewed for samples SS026AA, SS024CA and SS005BA.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

### 5.2 Sample Receipt

Samples were received at Vista via FedEx on April 21, 2007 from the CAS Houston, TX laboratory and on April 26, 2007 from the CAS Gainesville, FL facility.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed. Samples SS005BA, SS020AA, SS024CA, SS026AA and SS026BA were listed on the COC from Houston, TX but were not in the cooler. The portions remaining from the metals and SVOC submittals for these samples were subsequently shipped from the Gainesville, FL laboratory to Vista.

### 5.4 Holding Times, Storage and Preservation

Samples had been stored frozen at CAS prior to the shipment. Sample coolers were received at temperatures within $1.6^{\circ} \mathrm{C}-2.4^{\circ} \mathrm{C}$, within the method recommended range. Method 1613B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence. Final checks for calibration and resolution were performed and reported by Vista; all criteria applicable to the initial checks were satisfied for the final checks as well.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. The window-defining mix was combined with the calibration check standard mix so a single analysis addressed both calibration stability and chromatographic resolution. All congeners in the solution were detected within their respective windows. The height of the valley between the closely eluting isomers $1,2,3,8$-TCDD and $2,3,7,8$-TCDD was less than $25 \%$. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9-TCDF, 2,3,4,7TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

A six-point calibration was conducted on October 24, 2006 for the instrument used for initial analyses of all PCDDs and PCDFs. Calibrations included an additional low standard at 0.25 $\mathrm{ng} / \mathrm{ml}$, one-half the low level required by Method 1613B. Demonstration of linearity at the lower level extended the calibration range and allowed reporting of data without qualifications at lower concentrations.

A five-point calibration for 2,3,7,8-TCDF confirmation on the DB-225 column was conducted on November 1, 2006. The initial calibrations were acceptable with percent relative standard deviations (\%RSDs) $\leq 20 \%$ for the relative response factors (RRF) for unlabeled compounds and $\leq 35 \%$ for the RRFs for labeled compounds. The relative retention times and ion abundance ratios
were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were conducted on May 8 and 9, 2007 and on the DB225 column on May 9, 2007. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Calibration checks were also analyzed at the end of each analytical sequence of 12 hours or less. All requirements applicable to the initial calibration check were met for the final check.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. Resolution of 123678 - and $123789-H x C D D$ isomers, although not required by Method 1613, was also achieved in standards and in all samples. No qualifications to sample data as a result of chromatographic performance were required.

### 5.10 Method Blanks

One method blank was prepared and analyzed with this set. OCDD was detected at a trace level in this blank. OCDD was present in all samples at concentrations 1000 or more higher than the blank. No data have been qualified.

### 5.11 Laboratory Control Samples (LCS)

An ongoing precision and recovery sample (OPR) was extracted with each preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs.
Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Matrix Spike

Matrix spike and matrix spike duplicate samples were prepared from sample SS002AC. Recoveries of all tetra-, penta- and hexachlorinated PCDDs and PCDFs were within control limits. Levels of $1234678-H p C D D$, OCDD, $1234678-H p C D F$ and OCDF were present in the sample at levels significantly above the amounts spiked and recovery criteria are not applicable.

### 5.13 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Peaks that are present at the expected retention time and have both masses for a target analyte but fail to meet ion ratio criteria are reported as EMPC (estimated maximum possible concentrations). 2378-TCDD in SS003BA is reported at a trace level as an EMPC. The level noted is below instrument calibration and the peak ratio is marginally outside of the limits.

### 5.14 Confirmation Analyses

$2,3,6,7$-TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of $2,3,7,8$-TCDF within the confirmation column calibration range from the DB-5 column analysis. 2378-TCDF was detected in the initial analysis of SS035AA, but since the level was below the calibration range of the second column analysis, confirmation was not performed. The reported concentration in this sample is qualified as estimated. In general, results for 2378 -TCDF from the DB5 and DB225 analyses of the samples were comparable. For samples with confirmation data, the final validated data and the TEQ includes the lower of the results from the two analyses for 2378TCDF.

### 5.15 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.16 Labeled Compound Recoveries

All internal standards were recovered within method limits for all samples.

### 5.17 Interferences

Cleanup procedures at Vista, which included florisil column cleanup as recommended in Method 1613, were successful in removing most non-PCDD/PCDF constituents in the samples. Polychlorinated diphenylethers (PCDPEs), which are similar in structure and chemical properties to PCDDs/PCDFs cannot be removed, and when present, can interfere with the unequivocal identification and accurate quantitation of PCDFs. They create the same fragments as PCDFs with the same mass ratio and can result in false positives or high bias to PCDF results. PCDPEs were present in several of the samples in this set, 1234678-HpCDF in SS005BA and 123678-HxCDF in SS020AA were the only target PCDFs flagged by Vista as

## amed ${ }^{0}$

potentially biased high by the presence of an ether. Results for these analytes in these samples are qualified as estimated. Review of raw data for SS026AA also identified the presence of PDPEs at the retention time of $123678-H x C D F, 1234678-H p C D F$ and $1234789-H p C D F$ that may have biased data high for the target PCDFs. Results for these analytes are qualified as estimated based on the review.

PCDPEs were detected in other samples and peaks with the masses for PCDFs in several samples are potentially attributable to these ethers. Vista includes peaks in the totals for each group (Total TCDFs, etc) that are possibly attributable to PCDPEs. Vista also reports results for the estimated maximum possible concentrations (EMPCs) of totals for each group; this result includes the concentrations of peaks that failed to meet ion ratio criteria for positive identification as a PCDD or PCDF. Results for Totals are qualified as estimated when raw data indicate that ethers are present.

### 5.18 Sample Dilutions

Sample SS020AA was diluted by a factor of 10 and samples SS005AA, SS006AA, SS006BA were diluted by a factor of 20 for reanalyses for OCDD. Sample SS026AA was diluted by a factor of 100 for reanalysis for 1234678 -HpCDD, OCDD and OCDF. All dilutions were made without the addition of more internal standards. Data are not qualified for the dilutions.

### 5.19 Equipment Blank

No equipment blanks were included in the subset of samples submitted to Vista. Results from their analyses at CAS indicated that field contamination was not a concern for sample results.

### 5.20 Field Duplicates

Samples SS002AA and SS002AC are field duplicate samples. Precision was acceptable with relative percent differences for all analytes below 50\%. Results are summarized in Table 1 below.

### 5.21 Calculations

Calculations for toxic equivalencies as provided were calculated using 1989 International Toxic Equivalency Factors (TEF) and one-half the detection limit for non-detected analytes. Values have been recalculated for program usage using the revised 2006 WHO TEF values and onehalf the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

Table 1: PCDDs/PCDFs in Field Duplicate Samples

chemical_name	$\begin{gathered} \text { SS002AA } \\ \mathrm{pg} / \mathrm{g} \end{gathered}$	VQ	$\begin{gathered} \text { SS002AC } \\ \mathrm{pg} / \mathrm{g} \end{gathered}$	VQ	RPD
	VISTA		VISTA		
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	1.08		1.11		3\%
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	8.01		7.92		1\%
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	26		25.5		2\%
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	94.7		96.2		2\%
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	44.3		41.9		6\%
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	5550		5330		4\%
OCTACHLORODIBENZO-P-DIOXIN	53000		51900		2\%
2,3,7,8-TETRACHLORODIBENZOFURAN	1.3		1.35		4\%
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.925	J	0.82	J	12\%
2,3,4,7,8-PENTACHLORODIBENZOFURAN	2.76		2.65		4\%
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	11.2		10.5		6\%
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	6.97		5.93		16\%
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	11.6		10.8		7\%
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	2.59		2.33	J	11\%
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	552		516		7\%
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	33.3		32		4\%
OCTACHLORODIBENZOFURAN	3210		3070		4\%
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	19		21.2		11\%
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	105		103		2\%
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	2310		2250		3\%
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	33700		33800		0\%
TOTAL TETRACHLORINATED DIBENZOFURANS	24.8		24.6		1\%
TOTAL PENTACHLORINATED DIBENZOFURANS	59.2		56.3	J	5\%
TOTAL HEXACHLORINATED DIBENZOFURANS	432		390	J	10\%
TOTAL HEPTACHLORINATED DIBENZOFURANS	2480		2320		7\%

## Data Validation Report for the Analysis of PCDD/PCDF Samples by CAS

# DATA VALIDATION AND REVIEW 

Soil and Sediment Samples
from

## Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL

Analyses for PCDDs/PCDFs
CAS Reports J0605735, J0605789, J0605780, J0605810, J0605839, J0605876, J0605879, J0605890, J0605919, J0605944

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## SUMMARY

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil and sediment samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the site.

A total of 152 soil samples, 13 sediment samples and two aqueous field blanks were collected during the period of December 1 through December 12, 2006 for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL and subsequently transferred to the CAS laboratory in Houston, TX for analysis for PCDDs and PCDFs in accordance with EPA Method 1613. These samples were analyzed at CAS under Service Request Numbers J0605735, J0605789, J0605780, J0605810, J0605839, J0605876, J0605879, J0605890, J0605919, J0605944

Method requirements for instrument tuning and initial and continuing calibration were satisfied for the analyses. Method blanks and equipment blanks were free of significant contamination and laboratory control samples demonstrated acceptable accuracy and precision. Results for analytes within the range of the instrument calibration during the initial analyses of samples are generally valid as reported. Results below the calibration range are qualified as estimated. Results for analytes measured after dilution, however, should in many cases be considered as gross estimates. Calculation protocols followed by CAS for dilution analyses are poorly documented and likely introduce significant bias.

Interferences from non-PCDD/PCDF organics in the samples were present in many samples, especially those with elevated concentrations of dioxins and furans. These unidentifiable organics were not successfully removed during sample preparation and as a result the apparent recoveries of the internal standards for the hexa-, hepta- and octachlorinated PCDDs and PCDFs were well above method limits in affected samples. No reliable data on recoveries of these standards could be obtained. The laboratory subsequently adjusted the results from dilutions of these samples in a manner that is considered likely to introduce significant low bias to their final reported results.

While it is evident that PCDDs and PCDFs are present in these affected samples, the interferences preclude accurate quantitations. As detailed in the attached validation reports for each sample grouping, AMEC has identified those measurements that should be considered as gross estimates. While exact values for the toxicity equivalents (TEQs) for affected samples cannot be determined with confidence, conservative estimates of potential bias can be made.

The major contributors to the TEQs at this site are $1234678-\mathrm{HpCDD}$ and OCDD. In most cases, the laboratory assumed that the recoveries of the affected hexa-, hepta and octachlorinated internal standards had been comparable to recoveries of the tetra- and pentachlorinated internal standards which were not affected by the interferences and were near $100 \%$ in most samples. However, in blanks, laboratory control samples and relatively clean field samples not affected by the interference, recoveries of the HpCDD internal standard were typically $60 \%$, while the OCDD internal standard frequently recovered near $20-30 \%$. As a conservative approach,

AMEC recalculated TEQs for the affected samples using the assumption that the HpCDD recovery could have been as low as 33\% and that the OCDD recovery could be as low as 10\%.
Results for these samples should be reviewed by the project manager to evaluate the margin between their toxic equivalencies (TEQs) and site action limits. Although no samples have been rejected in their entirety based on the validation, they may not all be suitable to support project decisions.

## LIMITATIONS

This report was prepared exclusively for Beazer East by AMEC Earth \& Environmental, Inc. The quality of information, and conclusions contained herein is consistent with the level of effort involved in AMEC services and based on: i) information available at the time of preparation; ii) data supplied by outside sources; and iii) the assumptions, conditions and qualifications set forth in this report. This report is intended to be used by Beazer East only, subject to the terms and conditions of its contract with AMEC. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

# DATA VALIDATION REPORT 

# Soil Samples <br> from <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

## Analyses for PCDDs/PCDFs

CAS Report J0605735

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 2
5.0 DATA VALIDATION FINDINGS ..... 3
5.1 Data completeness and deliverables ..... 3
5.2 Sample Receipt ..... 3
5.3 Chain of Custody (COC) Documentation ..... 3
5.4 Holding Times, Storage and Preservation ..... 3
5.5 Mass Calibration and Resolution ..... 3
5.6 Window Defining Mixture and Isomer Specificity Check ..... 4
5.7 Initial Calibrations ..... 4
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 5
5.10 Method Blanks ..... 5
5.11 Laboratory Control Samples (LCS) .....  5
5.12 Identification Criteria ..... 5
5.13 Confirmation Analyses ..... 6
5.14 Detection Limits ..... 6
5.15 Labeled Compound Recoveries ..... 6
5.16 Interferences ..... 6
5.17 Sample Dilutions ..... 7
5.18 Data Consistency ..... 7
5.19 Equipment Blank ..... 8
5.20 Field Duplicates ..... 8
5.21 Calculations ..... 8
6.0 REFERENCES ..... 8

## List of Attachments

Attachment A: Data Summary
Attachment B: Reason Codes for Data Qualification

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

This report provides an evaluation of data for six samples collected on December 1, 2006 and submitted for analysis for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in accordance with EPA Method 1613. Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL on December 5, 2006 and subsequently transferred to the CAS laboratory in Houston, TX for analysis. These samples were analyzed at CAS under Service Request Number J0605735.

### 2.0 SAMPLES

Samples included in this set are listed below.
SS093AA
SS093BA
SS081AA
SS081BA
SS071AA
SS071BA

Samples from the locations noted below represent site perimeter samples:
SS071 - Southern border near SE corner
SS081 - Eastern border near SE corner

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for samples with PCDDs/PCDFs within the range of the instrument calibration upon initial analysis are generally valid as reported. Results below the calibration range are qualified as estimated. Results for analytes initially above the calibration range and then reported from dilution analyses are qualified as estimated with a wide window of uncertainty.

Matrix interferences were not successfully removed during the extract cleanup steps for samples from locations SS081 and SS093. These interferences resulted in internal standard recoveries that were outside control limits and required qualification of associated target analyte results. The absence of valid internal standard recoveries then precluded accurate quantitation of analyte concentrations from dilution analyses. CAS further compounded the uncertainty by
adjusting data by factors that are not considered applicable or reliable. Results for these samples should be reviewed by the project manager to evaluate the margin between their toxic equivalencies (TEQs) and site action limits. Although no samples have been rejected based on the validation, they may not all be suitable to support project decisions.

Toxicity equivalency (TEQ) values for the samples as calculated by CAS are based on the 1998 WHO toxic equivalency factors (TEFs) and include measurements for peaks that failed to meet method criteria for positive identification. TEQs have been recalculated in accordance with EPA Region 4 guidance and using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

Raw data were reviewed for all sample and quality control analyses associated with the analyses of the site border samples.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Chain of Custody documentation
3. Sample receipt
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Identification criteria
10. Method blank analysis
11. Laboratory Control Samples
12. Second column confirmation analysis
13. Detection Limits
14. Labeled compound recoveries
15. Field blanks
16. Field Duplicates
17. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. All reported results on the final summary forms were verified from the raw data instrument printouts for sample concentrations and chromatograms were reviewed for all samples in this set.

Results for the total congener class PCDDs and PCDFs have not been validated and should be considered as estimated in all samples. These data are not included in the TEQ calculations. These are quantified based on the assumption that their response factors are the same as the 2378 -substitued isomers. All data reported are from the initial analyses and may include congeners above instrument calibration. Any factors affecting the accuracy of results for the 2378 -isomers apply to the entire congener group and interferences in addition to those noted for the 2378 -isomers may significantly bias data for these groupings of PCDDs and PCDFs.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

The submitted data packages contained raw data and instrument records required for full validation. However, the subsequent data adjustments made by CAS for dilution analyses were not documented.

It should be noted that data for the required QA/QC analyses including the mass calibration and resolution checks, window-defining mix and continuing calibration standards were not in chronological order in the package.

### 5.2 Sample Receipt

Samples were received at CAS Houston via FedEx on December 5, 2006.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed.

### 5.4 Holding Times, Storage and Preservation

Samples were received with a cooler temperature of $1^{\circ} \mathrm{C}$, within the method recommended range. Method 1613 B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. All congeners in the solution were detected at expected times. The height of the valley between the closely eluting isomers 1,2,3,8-TCDD and 2,3,7,8-TCDD less than 25\%. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with separate analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9TCDF, $2,3,4,7-$ TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

Two instruments were used for the DB-5 column analysis for all PCDDs and PCDFs except 2,3,7,8-TCDF. Five-point calibrations were conducted on October 25 and November 7, 2006. Calibration for $2,3,7,8$-TCDF confirmation on the DB-225 column was conducted on November 9 , 2006. The initial calibrations were acceptable with $\%$ RSDs $\leq 20 \%$ for the relative responses (RR) for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

No second-source standard was analyzed to verify the calibration.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were initially conducted on December 8, 2006 with analyses of samples at dilution on December 11, 2007. Analyses for 2,3,7,8-TCDF on the DB225 column were conducted on December 11, 2006. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Although run logs indicate that calibration check standards were analyzed at the end of each sequence, no data for these checks were included in the package. Method 1613 does not specifically require these.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. However, resolution of 123478- and 123678-HxCDD isomers was not achieved in some standards or in several samples. Since the TEF of these isomers is the same, this does not affect the TEQ for the sample. In several instances, apparent matrix interferences resulted in poor chromatographic separations for target analytes from nontarget PCDDs and PCDFs. Results for affected measurements are qualified as estimated.

```
SS093AA 2378-TCDD
SS081AA 123789-HxCDF, 12378-PeCDF, 23478-PeCDF, 123789-HxCDF, 123678-HxCDD
SS071AA 123478-HxCDD, 234678-HxCDF
```


### 5.10 Method Blanks

One method blank was prepared with the initial extraction and this was analyzed twice. The method blank contained trace levels of several target PCDDs and PCDFs, including. OCDD, $123678-H x C D D, 1234678-H p C D D$, OCDF and $1234678-H p C D F$. Since the duplicate analyses of the one method blank demonstrated variability in the levels detected, the maximum concentration from the two analyses of the method blank were used for data qualifications. All reported sample concentrations of these analytes were greater than 5 times the blanks and were not qualified.

### 5.11 Laboratory Control Samples (LCS)

Laboratory control sample and a duplicate were extracted with the preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Samples in this set contained a variety of interferents resulting in peaks that failed criteria for identification. These interferents may be non-PCDD/PCDFs with one or both of the mass fragments of a target analyte. Review of the raw data confirmed that the majority of these results, reported by CAS as estimated maximum possible concentrations (EMPC) with the "K" qualifier, represented peaks with ratios close to that expected for the respective PCDD of PCDF. In accordance with Region 4 guidance and the USEPA Functional Guidelines, results for these analytes in the affected samples have been qualified as non-detected with the reporting
limit set at the amount calculated. This provides a high bias to the reporting limit since the actual maximum possible amount in the sample would be include only that fraction of the area of one peak that would satisfy the ratio requirement. Based on review of the data, it is considered likely that the target analyte is present at a concentration below the reported value in all instances.

234678-HxCDF failed to meet identification criteria in sample SSO93AA on its initial analysis. The peak did meet the ion ratio criterion upon dilution. Although CAS reported the sample with the initial EMPC result, this has been replaced by the results upon dilution for calculation of the TEQ. CAS included all EPMC peaks as detections in the TEQ calculation. TEQs have been corrected to treat these peaks as non-detected analytes with elevated reporting limits.

### 5.13 Confirmation Analyses

$2,3,6,7-$ TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of $2,3,7,8$-TCDF from the DB-5 column analysis. Final validated data and the TEQ includes the confirmation result for this analyte.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.15 Labeled Compound Recoveries

Recoveries of internal standards for some or all HxCDDs, HpCDD, HxCDF and HpCDDs were above control limits for the initial analysis of SS093AA, SS093BA, SS081AA and SS081BA

Review of the raw data for the above samples indicates that the extract cleanup procedures used did not remove significant matrix interferences, and these apparently affected the measurement of the 123789-HxCDD recovery standard used for calculation of the HxCDD, HxCDF, HpCDD, HpCDF and OCDD internal standards. Since the measurement of the $123789-H x C D D$ recovery standard is biased low by these interferences, the apparent recoveries of the related internal standards are biased high. No reliable data on the recovery of the internal standards spiked into the sample and used for quantitation of target PCDDs and PCDFs can be obtained when this occurs. All reported data for target dioxins and furans with internal standard recoveries outside of the limits are qualified as estimated. In addition, the calculated recoveries of the OCDD internal standard, while within the method control limits, must also be biased high since these recoveries are also calculated against the 123789-HxCDD recovery standard.

### 5.16 Interferences

As noted above, matrix interferences affected the quantitation of the recovery standard used to determine internal standard recoveries for hexa-, hepta- and octachlorinated dioxins and furans.

Matrix interferences were also noted to affect the analyses of other PCDDs/PCDFs. Polychlorinated ethers were present in most samples and affected the identification of totals for each congener level. Ethers that interfered with target PCDFs were noted in SS071BA at the retention times for 12378-PeCDF and 123478-HxCDF and in SS093A at the retention time of $123478-H x C D F$. Reported results for these analytes are qualified to be estimated at the level reported.

### 5.17 Sample Dilutions

Samples SS093AA, SS093BA, SS081AA and SS081BA, contained levels of PCDDs and PCDFs above the instrument calibration. The primary corrective action for this in Method 1613 is to extract a smaller portion of the sample. Dilution by a factor of 10 is an alternative if it is determined that a smaller sample size will not be representative. Although these samples are characterized as sandy soils where representativeness would not be expected to be problematic, no reeextractions were performed. Samples were diluted by factors up to 100 by adding more internal standards to the extract.

Dilution with internal standards introduces uncertainty into the analysis since measurement by isotope dilution is no longer possible. In the cases where apparent recoveries of internal standards on the initial analysis were greater than $100 \%$, results for the dilution analysis were calculated and then adjusted for recoveries of one or more tetra- and pentachlorinated internal standards in the initial analysis. It should be noted however, that CAS recoveries of tetra and pentachlorinated internal standards from their blanks, quality assurance samples and relatively clean soils typically are significantly higher than their recoveries of hepta- and octachlorinated internal standards. This secondary adjustment introduces significant uncertainty into the reported results and leads to a low bias in the sample results for hexa- through octachlorinated PCDDs and PCDFs from dilution analyses. Results for affected analytes, including 1234678HpCDD, OCDD, and OCDF in samples SS093AA, SS093BA, SS081AA and SS081BA and additionally $1234678-H p C D F$ in SS093AA should be considered as gross estimates.

The combined effects of the dilution and subsequent data manipulation cannot be quantified. It was noted, however, that while OCDD typically was reported at higher levels from the dilution analysis, 1234678 -HpCDD, OCDF and 1234678 -HpCDF were significantly lower after dilution.

CAS does not reanalyze samples where OCDD and/or OCDF are the only analytes above the calibration range. The reported results for OCDD in SS071AA and SS071BA were above calibration and are qualified as estimated.

### 5.18 Data Consistency

Results obtained on dilution for the samples were compared to the initial analyses. Results for all analytes above the calibration range in the initial analysis except OCDD are lower upon dilution, with OCDF generally less than half the initial result. Results for these are already qualified as estimated based on the internal standard and dilution issues noted above; the significantly lower concentrations reported from a dilution analysis reflect the uncertainty as well.

SS081AA OCDF
SS081BA 1234678-HpCDD, OCDF
SS093AA 1234678-HpCDF, OCDF
SS093BA 1234678-HpCDD, OCDF

### 5.19 Equipment Blank

No equipment blank was collected with this sample set.

### 5.20 Field Duplicates

No field duplicate samples were submitted with this set of samples.

### 5.21 Calculations

Calculations for measurements within the instrument calibration range were verified for the initial analyses of perimeter samples. As noted above, calculations from dilutions for hexa, hepta and octa-chlorinated dioxins and furans were adjusted for the initial recoveries of tetra or tetra and pentachlorinated internal standards. CAS calculations of the adjustment factors for each sample were not documented and in some cases the exact value used could not be verified. All data affected by this procedure are qualified as estimated with a wide window of uncertainty.

Calculations for toxic equivalencies as provided were calculated using 1998 WHO toxic equivalency factors (TEF) and one-half the detection limit for non-detected analytes. Peaks reported that did not meet identification criteria were included. Values have been recalculated using the revised 2006 WHO TEF values and one-half the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-00

ATTACHMENT A

## DATA SUMMARY

Chemical Name	SS071AA			SS071BA			SS081AA			SS081BA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	0.24	J	OC		U	EM	1.46			2.21		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	4.43	J	OC	3.29	J	OC	45.09			44.03		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	12.15	J	CR	9.10			110.49	J	I	93.26	J	1
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	39.77			27.32			284.43	J	I,CR	240.27	J	I
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	37.69			27.00			186.14	J	I,CR	229.79	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	1,688.64			1,202.93			8,247.90	J	I,LE	7,169.17	J	LE,SE
OCTACHLORODIBENZO-P-DIOXIN	15,534.01	J	E	10,958.78	J	E	51,015.14	J	LE	40,712.44	J	LE
2,3,7,8-TETRACHLORODIBENZOFURAN		U	EM		U		1.06			0.82	J	OC
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.55	J	OC	0.43	J	DP,OC	3.09	J	CR,OC	2.19	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.82	J	OC	0.78	J	OC	4.56	J	CR,OC	3.54	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	5.20			4.12	J	DP,OC	33.97	J	1	27.03		1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	4.10	J	OC	3.18	J	OC	22.81	J	1		UJ	EM,
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U		0.98	J	I,OC,CR	0.82	J	I,OC
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	4.07	J	OC,CR	2.89	J	OC	21.72	J	1	10.11	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	223.71			156.28			1,035.21	J	1	670.87		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	11.71			8.10			64.50	J	1	42.72	J	1
OCTACHLORODIBENZOFURAN	1,204.69			774.55			2,875.66	J	LE,SE	2,098.47	J	LE,SE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	3.92			6.63			54.08			96.86		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	57.60			42.78			554.40			740.02		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	572.69			394.65			5,575.50			4,438.79		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	6,088.93			4,303.93			28,117.79			24,272.71		
TOTAL TETRACHLORINATED DIBENZOFURANS	11.33			8.50			41.36			32.94		
TOTAL PENTACHLORINATED DIBENZOFURANS	31.84			25.26			219.01			121.56		
TOTAL HEXACHLORINATED DIBENZOFURANS	168.12			118.58			1,179.11			347.64		
TOTAL HEPTACHLORINATED DIBENZOFURANS	766.54			535.26			4,181.86			2,964.63		


Chemical Name	SS093AA			SS093BA		
	Result	ValQual	Reason	Result	ValQual	Reason
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	12.65	J	CR	0.64	J	OC
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	152.80			17.90		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	347.61	J	I	43.23	J	I
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	1,196.91	J	1	194.27	J	I
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	555.25	J	1	92.42	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	29,721.93	J	E,LE	4,686.96	J	LE,SE,E
OCTACHLORODIBENZO-P-DIOXIN	223,648.85	J	E,LE	37,940.03	J	LE,E
2,3,7,8-TETRACHLORODIBENZOFURAN	3.54			1.33		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	22.24			3.11	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	26.21			9.07		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	196.06	J	I,DP	49.87	J	I
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	146.72	J	1	28.53	J	1
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	7.31	J	1	1.29	J	1
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	119.00	J	DD	17.95	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	3,248.51	J	I,LE,SE	1,054.45		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	483.84	J	M	92.02	J	1
OCTACHLORODIBENZOFURAN	14,000.30	J	LE,SE	2,924.59	J	LE,SE,E
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	34.97			8.05		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	651.69			95.15		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	16,866.13			1,650.24		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	19,326.99			21,439.40		
TOTAL TETRACHLORINATED DIBENZOFURANS	87.44			36.44		
TOTAL PENTACHLORINATED DIBENZOFURANS	856.01			191.14		
TOTAL HEXACHLORINATED DIBENZOFURANS	7,345.67			644.82		
TOTAL HEPTACHLORINATED DIBENZOFURANS	17,156.40			4,120.70		

ATTACHMENT BREASON CODES FOR DATA QUALILFICATION

## Reason Codes for Data Qualification - Dioxins and Furans

MB Contaminated blank
DD Result is from dilution where ion ratio criterion not met on initial analysis
OC Measurement below calibration
I Internal standard recovery outside of control limits
MI Matrix interference
EM Estimated maximum possible concentration (ion ratio criterion not satisfied))
DMI Result from dilution analysis; internal standard recovery from initial analysis within limits but biased by matrix interference
E Exceeded calibration range
CR Chromatographic resolution poor
DP Diphenyl ether interference
SE Excessive difference in results between analyses of samples. Significantly lower (>25\%) result after dilution for analyte above calibration or at saturation in initial analysis.
CS Cleanup standard recovery unacceptable
LE Result from dilution calculated assuming recovery of internal standard equal to tetra or tetra and penta chlorinated internal standards
FD Variability noted between field duplicates.

# DATA VALIDATION REPORT 

# Soil Samples <br> from <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

Analyses for PCDDs/PCDFs
CAS Report J0605780

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 1
5.0 DATA VALIDATION FINDINGS ..... 2
5.1 Data completeness and deliverables ..... 2
5.2 Sample Receipt ..... 3
5.3 Chain of Custody (COC) Documentation ..... 3
5.4 Holding Times, Storage and Preservation ..... 3
5.5 Mass Calibration and Resolution ..... 3
5.6 Window Defining Mixture and Isomer Specificity Check ..... 3
5.7 Initial Calibrations ..... 3
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 4
5.10 Method Blanks ..... 4
5.11 Laboratory Control Samples (LCS) ..... 4
5.12 Identification Criteria ..... 5
5.13 Confirmation Analyses ..... 5
5.14 Detection Limits ..... 5
5.15 Labeled Compound Recoveries ..... 5
5.16 Interferences ..... 5
5.17 Sample Dilutions ..... 5
5.18 Data Consistency ..... 6
5.19 Equipment Blank ..... 6
5.20 Field Duplicates ..... 6
5.21 Calculations ..... 6
6.0 REFERENCES ..... 6

## List of Attachments

Attachment A: Data Summary
Attachment B: Reason Codes for Data Qualification

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.
This report provides an evaluation of data for three samples collected on December 4, 2006 and submitted for analysis for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in accordance with EPA Method 1613. Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL on December 5, 2006 and subsequently transferred to the CAS laboratory in Houston, TX for analysis. These samples were analyzed at CAS under Service Request Number J0605780.

### 2.0 SAMPLES

Samples included in this set are listed below.
SS007AA
SS007BA
SS007BC
These samples are site perimeter samples on the western boundary.

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for these samples are generally valid as reported. Results below the calibration range are qualified as estimated. Results for OCDD are reported from measurements above the calibration range and are qualified as estimated.

Toxicity equivalency (TEQ) values for the samples as calculated by CAS are based on the 1998 WHO toxic equivalency factors (TEFs) and include measurements for peaks that failed to meet method criteria for positive identification. TEQs have been recalculated in accordance with EPA Region 4 guidance and using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the

Functional Guidelines are based, the requirements and criteria of the cited method were applied.

Raw data were reviewed for all sample and quality control analyses associated with the analyses of these site border samples.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Chain of Custody documentation
3. Sample receipt
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Identification criteria
10. Method blank analysis
11. Laboratory Control Samples
12. Second column confirmation analysis
13. Detection Limits
14. Labeled compound recoveries
15. Field blanks
16. Field Duplicates
17. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. All reported results on the final summary forms were verified from the raw data instrument printouts for sample concentrations and chromatograms were reviewed for all samples in this set.

Results for the total congener class PCDDs and PCDFs have not been validated and should be considered as estimated in all samples. These data are not included in the TEQ calculations. These are quantified based on the assumption that their response factors are the same as the 2378 -substitued isomers. All data reported are from the initial analyses and may include congeners above instrument calibration. Any factors affecting the accuracy of results for the 2378-isomers apply to the entire congener group and interferences in addition to those noted for the 2378 -isomers may significantly bias data for these groupings of PCDDs and PCDFs.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

The submitted data packages contained raw data and instrument records required for full validation.

It should be noted that data for the required QA/QC analyses including the mass calibration and resolution checks, window-defining mix and continuing calibration standards were not in chronological order in the package.

### 5.2 Sample Receipt

Samples were received at CAS Houston via FedEx on December 7, 2006.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed.

### 5.4 Holding Times, Storage and Preservation

Samples were received with a cooler temperature of $1^{\circ} \mathrm{C}$, within the method recommended range. Method 1613B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. All congeners in the solution were detected at expected times. The height of the valley between the closely eluting isomers $1,2,3,8$-TCDD and $2,3,7,8$-TCDD less than $25 \%$. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with separate analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9TCDF, $2,3,4,7-$ TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

One instrument was used for the DB-5 column analysis for all PCDDs and PCDFs except 2,3,7,8-TCDF. A five-point calibration was conducted on November 7, 2006. Calibration for
$2,3,7,8$-TCDF confirmation on the DB-225 column was conducted on November 9, 2006. The initial calibrations were acceptable with $\%$ RSDs $\leq 20 \%$ for the relative responses (RR) for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

No second-source standard was analyzed to verify the calibration.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were initially conducted on December 12, 2006 and January 5, 2007 with analyses of samples at dilution on December 22, 2006 and January 6, 2007. Analyses for $2,3,7,8$-TCDF on the DB225 column were conducted on December 13, 2006 and January 9, 2007. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Although run logs indicate that calibration check standards were analyzed at the end of each sequence, no data for these checks were included in the package. Method 1613 does not specifically require these.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied.

### 5.10 Method Blanks

One method blank was prepared with the initial extraction and a second with the reextraction of SS007BC. The first method blank contained trace levels of 123678-HxCDD, OCDD and $1234678-H p C D F ;$ the second contained $123678-H x C D D$, OCDD and OCDF. All reported sample concentrations of these analytes were greater than 5 times the blanks and were not qualified.

### 5.11 Laboratory Control Samples (LCS)

Laboratory control sample and a duplicate were extracted with the preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met. No instances were noted for these samples where a peak at the expected retention time for a target analyte failed to satisfy the ratio requirement for identification.

### 5.13 Confirmation Analyses

$2,3,6,7$-TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of $2,3,7,8$-TCDF from the DB-5 column analysis. Final validated data and the TEQ includes the confirmation result for this analyte.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.15 Labeled Compound Recoveries

Recoveries of internal standards were within control limits for all initial analyses. Additional internal standards were added for analyses at dilution, and apparent recoveries of the pentachlorinated internal standards in SS007AA and SS007BA were elevated. Results for the associated target analytes are reported from the initial analysis and data have not been qualified.

### 5.16 Interferences

Matrix interferences were noted that would potentially bias results for non-target PCDDs and PCDFs, but no significant interferences to the target analytes were noted.

### 5.17 Sample Dilutions

All three samples contained OCDD above the instrument calibration range, with 1234678HpCDD also above calibration in SS007BA. Samples were diluted by factors up to 100 by adding more internal standards to the extract.

CAS does not reanalyze samples where OCDD and/or OCDF are the only analytes above the calibration range. The reported results for OCDD in all three samples remained above calibration after the dilution and are qualified as estimated.

### 5.18 Data Consistency

Results obtained on dilution for the samples were compared to the initial analyses. Reasonable agreement was noted for analytes present within the calibration range for both analyses.

### 5.19 Equipment Blank

No equipment blank was collected with this sample set.

### 5.20 Field Duplicates

No field duplicate samples were submitted with this set of samples.

### 5.21 Calculations

Calculations for measurements within the instrument calibration range were verified.
Calculations for toxic equivalencies as provided were calculated using 1998 WHO toxic equivalency factors (TEF) and one-half the detection limit for non-detected analytes. Peaks reported that did not meet identification criteria were included. Values have been recalculated using the revised 2006 WHO TEF values and one-half the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-00

ATTACHMENT A

## DATA SUMMARY

Chemical Name	SS007AA			SS007BA			SS007BC		
	Result	ValQual	Reason	Result	ValQual	Reason	Result	ValQual	Reason
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	2.09			2.61			2.26	J	OC
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	29.11			39.59			40.54		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	81.23			108.69			121.15		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	253.99			336.56			462.90		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	246.88			338.73			356.93		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	11,911.19			14,276.19			16,845.94		
OCTACHLORODIBENZO-P-DIOXIN	93,948.36	J	E	114,044.05	J	E	144,856.58		
2,3,7,8-TETRACHLORODIBENZOFURAN	0.76	J	OC	1.08	J	OC	1.62	J	OC
1,2,3,7,8-PENTACHLORODIBENZOFURAN	3.92	J	OC	5.26	J	OC	9.52	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	7.60			10.16			14.77		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	67.73			93.01			139.07		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	34.04			46.08			77.31		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	1.25	J	OC	1.73	J	OC		U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	19.48			27.58			71.63		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	1,382.00			1,898.06			2,704.31		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	84.49			115.07			176.20		
OCTACHLORODIBENZOFURAN	6,975.37			9,426.47			11,901.89		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	13.00			11.33			7.29		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	212.70			292.32			274.80		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	3,814.34			5,155.31			6,758.84		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	39,697.86			49,924.61			62,918.05		
TOTAL TETRACHLORINATED DIBENZOFURANS	24.11			31.28			34.84		
TOTAL PENTACHLORINATED DIBENZOFURANS	238.12			321.07			444.56		
TOTAL HEXACHLORINATED DIBENZOFURANS	1,789.13			2,487.42			3,251.61		
TOTAL HEPTACHLORINATED DIBENZOFURANS	5,565.63			7,652.56			11,496.57		

ATTACHMENT B
REASON CODES FOR DATA QUALILFICATION

## Reason Codes for Data Qualification - Dioxins and Furans

MB Contaminated blank
DD Result is from dilution where ion ratio criterion not met on initial analysis
OC Measurement below calibration
I Internal standard recovery outside of control limits
MI Matrix interference
EM Estimated maximum possible concentration (ion ratio criterion not satisfied))
DMI Result from dilution analysis; internal standard recovery from initial analysis within limits but biased by matrix interference
E Exceeded calibration range
CR Chromatographic resolution poor
DP Diphenyl ether interference
SE Excessive difference in results between analyses of samples. Significantly lower (>25\%) result after dilution for analyte above calibration or at saturation in initial analysis.
CS Cleanup standard recovery unacceptable
LE Result from dilution calculated assuming recovery of internal standard equal to tetra or tetra and penta chlorinated internal standards
FD Variability noted between field duplicates.

# DATA VALIDATION REPORT 

# Soil Samples <br> from <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

## Analyses for PCDDs/PCDFs

## CAS Report J0605810

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 2
5.0 DATA VALIDATION FINDINGS ..... 3
5.1 Data completeness and deliverables ..... 3
5.2 Sample Receipt ..... 3
5.3 Chain of Custody (COC) Documentation ..... 3
5.4 Holding Times, Storage and Preservation ..... 3
5.5 Mass Calibration and Resolution ..... 3
5.6 Window Defining Mixture and Isomer Specificity Check ..... 4
5.7 Initial Calibrations ..... 4
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 5
5.10 Method Blanks ..... 5
5.11 Laboratory Control Samples (LCS) ..... 5
5.12 Identification Criteria ..... 5
5.13 Confirmation Analyses ..... 6
5.14 Detection Limits ..... 6
5.15 Labeled Compound Recoveries ..... 6
5.16 Interferences ..... 7
5.17 Sample Dilutions ..... 7
5.18 Data Consistency ..... 7
5.19 Equipment Blank ..... 8
5.20 Field Duplicates ..... 8
5.21 TEQ Calculations ..... 8
6.0 REFERENCES ..... 9

## List of Attachments

Attachment A: Data Summary
Attachment B: Reason Codes for Data Qualification

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

This report provides an evaluation of data for sixteen samples collected on December 5, 2006 and submitted for analysis for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in accordance with EPA Method 1613. Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL on December 8, 2006 and subsequently transferred to the CAS laboratory in Houston, TX for analysis. These samples were analyzed at CAS under Service Request Number J0605839.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS006AA	SS043AA
SS006BA	SS043BA
SS002AA	SS043BB
SS002AC	SS044AA
SS002BA	SS044BA
SS058AA	SS076AA
SS058BA	SS076BA
SS037AA	
SS037BA	

Samples from the locations noted below represent site perimeter samples:

SS006	West boundary
SS002	Southwest boundary

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results PCDDs/PCDFs within the range of the instrument calibration upon initial analysis are generally valid as reported. Results below the calibration range are qualified as estimated. The majority of data points for samples from SS002, SS006, SS037, SS0044, SS058 and SS076 are qualified as estimated, and all measurements made from sample dilutions must be considered as gross estimates.

The minimal cleanup procedures implemented did not remove matrix interferences in samples from these above locations. These interferences resulted in internal standard recoveries that were outside control limits and required qualification of associated target analyte results. The absence of valid internal standard recoveries then compromised the quantitation of analyte concentrations from dilution analyses. CAS further compounded the uncertainty by adjusting data by factors that are not considered applicable. Results for these samples should be reviewed by the project manager to evaluate the margin between their toxic equivalencies (TEQs) and site action limits. Although no samples have been rejected based on the validation, they may not all be suitable to support project decisions.

Toxicity equivalency (TEQ) values for the samples as calculated by CAS are based on the 1998 WHO toxic equivalency factors (TEFs) and include measurements for peaks that failed to meet method criteria for positive identification. TEQs have been recalculated in accordance with EPA Region 4 guidance and using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

Raw data were reviewed for all sample and quality control analyses associated with perimeter samples in this set.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Chain of Custody documentation
3. Sample receipt
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Identification criteria
10. Method blank analysis
11. Laboratory Control Samples
12. Second column confirmation analysis
13. Detection Limits
14. Labeled compound recoveries
15. Field blanks
16. Field Duplicates
17. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. All reported results on the final summary forms were verified from the raw data instrument printouts for sample concentrations and chromatograms were reviewed for perimeter samples in this set.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

The submitted data packages contained raw data and instrument records required for full validation. However, the subsequent data adjustments made by CAS for dilution analyses were not documented and could not in all cases be traced. An amended report for SS058BA was provided after errors were noted during validation; this provides documentation for representative data calculations.

It should be noted that data for the required QA/QC analyses including the mass calibration and resolution checks, window-defining mix and continuing calibration standards were not in chronological order in the package.

### 5.2 Sample Receipt

Samples were received at CAS Houston via FedEx on December 8, 2006.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed.

### 5.4 Holding Times, Storage and Preservation

Samples were received with a cooler temperature of $1^{\circ} \mathrm{C}$. Method 1613 B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. All congeners in the solution were detected at expected times. The height of the valley between the closely eluting isomers 1,2,3,8-TCDD and 2,3,7,8-TCDD less than 25\%. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with separate analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9TCDF, $2,3,4,7-$ TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

Two instruments were used for the DB-5 column analysis for all PCDDs and PCDFs except 2,3,7,8-TCDF. Five-point calibrations were conducted on October 25 and November 7, 2006. Calibration for $2,3,7,8$-TCDF confirmation on the DB-225 column was conducted on November 9 , 2006. The initial calibrations were acceptable with $\%$ RSDs $\leq 20 \%$ for the relative responses (RR) for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

No second-source standard was analyzed to verify the calibration.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were initially conducted on December 23 and 24, 2006 with analyses of samples at dilution on January 3, 2007. Analyses for 2,3,7,8-TCDF on the DB225 column were conducted on December 28 and 29, 2006. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Although run logs indicate that calibration check standards were analyzed at the end of each sequence, no data for these checks were included in the package. Method 1613 does not specifically require these.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. However, resolution of 123678- and 123789-HxCDD isomers was not achieved in some standards or in the perimeter samples for which raw data were reviewed. Results for affected measurements in these samples are already qualified as estimated based on internal standard recoveries.

### 5.10 Method Blanks

One method blank was prepared with the initial extraction. The method blank contained trace levels of OCDD and 1234678-HpCDD. A separate method blank accompanied the reextraction of SS058BA. This contained low levels of OCDD, OCDF and 1234678 -HpCDD. All reported sample concentrations of these analytes were greater than 5 times the blanks and were not qualified.

### 5.11 Laboratory Control Samples (LCS)

Laboratory control samples and a duplicate were extracted with the preparation batches. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits with the exception of OCDD, which recovered at 194\% from the LCS. Results for OCDD in all samples are already qualified as above calibration or as a result of matrix interferences that precluded accurate determination of the internal standard recovery subsequently used to calculate results upon dilution.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Samples in this set contained a variety of interferents resulting in peaks that failed criteria for identification. These interferents may be non-PCDD/PCDFs with one or both of the mass fragments of a target analyte. Review of the raw data confirmed that the majority of these results, reported by CAS as estimated maximum possible concentrations (EMPC) with the "K" qualifier, represented peaks with ratios close to that expected for the respective PCDD of PCDF. In accordance with Region 4 guidance and the USEPA Functional Guidelines, results for these analytes in the affected samples have been qualified as non-detected with the reporting limit set at the amount calculated. This provides a high bias to the reporting limit since the actual maximum possible amount in the sample would be include only that fraction of the area of one peak that would satisfy the ratio requirement. Based on review of the data, it is
considered likely that the target analyte is present at a concentration below the reported value in all instances.

OCDF did not meet the criteria for positive identification in the initial analysis of SS002AA and $12378-\mathrm{PeCDF}$ and $1234678-\mathrm{HpCDF}$ failed to meet the ion ratio criteria for positive identification in the initial analysis of SSO58AA. Both peaks met criteria in the dilution analyses of the extracts. Results from the dilutions are reported for these analytes in these samples.

### 5.13 Confirmation Analyses

2,3,6,7-TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of 2,3,7,8-TCDF from the DB-5 column analysis. Final validated data and the TEQ includes the confirmation result for this analyte.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.15 Labeled Compound Recoveries

Recoveries of internal standards for some or all of the hexa- through octachlorinated PCDD and PCDF internal standards were above control limits for 12 of the 16 samples:

SS006AA, SS006BA,
SS002AA, SS002AC
SS058AA, SS058BA
SS037AA, SS037BA
SS044AA, SS044BA
SS076AA, SS076BA
Method 1613 specifies gel permeation chromatography cleanup for soil samples. CAS did not perform this step, and review of the raw data for the above samples indicates that the minimal extract cleanup procedures used did not remove significant matrix interferences. These interferences suppressed the response of the 123789-HxCDD recovery standard used for calculation of the HxCDD, HxCDF, HpCDD, HpCDF and OCDD internal standards in the above samples. Internal standards were reported with apparent recoveries up to 300\%. No reliable data on the recovery of the internal standards spiked into the sample and used for quantitation of target PCDDs and PCDFs can be obtained when this occurs. All reported data for target dioxins and furans with internal standard recoveries outside of the limits are qualified as estimated.

### 5.16 Interferences

As noted above, matrix interferences affected the quantitation of the recovery standard used to determine internal standard recoveries. Matrix interferences were also noted to affect the analyses of other PCDDs/PCDFs. In some cases, polychlorinated ethers were present. These can result in false positives for PCDFs, but while several interfered with the quantitation of total PCDF congeners, no instances were noted where 2,3,7,8-subsituted target PCDF were affected.

### 5.17 Sample Dilutions

Except for SS002BA, all samples in this set contained levels of PCDDs and PCDFs above the instrument calibration. The primary corrective action for this in Method 1613 is to extract a smaller portion of the sample. Dilution by a factor of 10 is an alternative if it is determined that a smaller sample size will not be representative. Although these samples are characterized as sandy soils where representativeness would not be expected to be problematic, no reeextractions were performed. Samples were diluted by factors up to 200 by adding more internal standards to the extract.

As noted above, the 123789-HxCDD recovery standard used for calculation of the HxCDD, HxCDF, HpCDD, HpCDF and OCDD internal standards was affected by severe interferences and the apparent recoveries of the related internal standards are biased high. CAS data reduction protocol for diluted samples where recoveries were elevated in the initial analysis is to correct the recovery in the diluted analysis by recoveries of tetra- or tetra and penta-chlorinated internal standards. Review of data for samples unaffected by interferences and apparent high recoveries does not support the use of this average; tetra- and penta-chlorinated internal standards consistently recover at significantly higher levels than the hexa- through octachlorinated internal standards. This data reduction practice likely leads to a significant low bias to results in affected samples. All measurements of hexa, hepta and octachlorinated dioxins and furans reported from dilutions where their quantitation was adjusted for tetra- and pentachlorinated standard recoveries have been qualified as estimated with potential significant bias.

### 5.18 Data Consistency

Results obtained on dilution for the samples were compared to the initial analyses. Results for analytes above calibration on the initial analyses are expected on dilution to be comparable to or greater than the initial result. In several cases, results after dilution are significantly lower. This is likely attributable to the bias introduced by the CAS data adjustment protocol as detailed above for sample dilutions.

The results for the following samples demonstrate significantly lower concentrations reported from the dilution analysis for analytes that exceeded the calibration curve on the initial analysis:

SS006AA OCDF

SS006BA	$123789-H x C D D$, OCDF
SS002AA	$1234678-H p C D D$, OCDD
SS002AC	OCDD
SS058AA	$234678-H x C D F$
SS037AA	OCDF
SS037BA	OCDF
SS044AA	OCDF
SS044BA	OCDF
SS076AA	$1234678-H p C D F$, OCDF
SS076BA	$1234678-H p C D F$, OCDF

Results for most analytes within the calibration range on the initial analysis for SS058BA were approximately two times higher upon dilution. Measurements from the dilution were also within the calibration range and no apparent explanation could be determined from the raw data. Laboratory dilution or spiking error is suspected. Results from the initial analysis are reported for all analytes within the calibration range.

### 5.19 Equipment Blank

No equipment blank was collected with this sample set.

### 5.20 Field Duplicates

Field duplicate samples were collected at SS002A and SS043B. Precision for SS043BA and SS043BB was acceptable with relative percent differences for all analytes and the CAS TEQ below 50\%. The variability between the duplicates from SSOO2A is slightly greater on a percentage basis, but the levels at this location are relatively low and the absolute differences in concentration are not significant.

### 5.21 Calculations

Calculations for measurements within the instrument calibration range were verified for the initial analyses of perimeter samples. As noted above, calculations from dilutions for hexa, hepta and octa-chlorinated dioxins and furans were adjusted for the initial recoveries of tetra or tetra and pentachlorinated internal standards. CAS calculations of the adjustment factors for each sample were not documented and in some cases the exact value used could not be replicated. All data affected by this procedure are qualified as estimated with a wide window of uncertainty.

Calculations for toxic equivalencies as provided were calculated using 1998 WHO toxic equivalency factors (TEF) and one-half the detection limit for non-detected analytes. Peaks reported that did not meet identification criteria were included. Values have been recalculated using the revised 2006 WHO TEF values and one-half the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

SDG J0605810: PCDDs/PCDFs in Field Duplicate Samples

Analyte	SS043BA	SS043BB	RPD	SS002AA	SS002AC	RPD
2,3,7,8-TCDD	1.59	1.77	11\%	1.09	0.74	38\%
1,2,3,7,8-PeCDD	18.9	25.4	29\%	8.82	5.36	49\%
1,2,3,4,7,8-HxCDD	58.8	76.6	26\%	24.9	14.7	52\%
1,2,3,6,7,8-HxCDD	185	232	23\%	94.5	56.4	50\%
1,2,3,7,8,9-HxCDD	159	196	21\%	ND	14	NA
1,2,3,4,6,7,8-						
HpCDD	9280	12900	33\%	4007	2770	37\%
OCDD	106000	163000	42\%	29400	19800	39\%
2,3,7,8-TCDF	0.66	1.08	48\%	1.16	ND	NA
1,2,3,7,8-PeCDF	2.11	2.76	27\%	0.9	0.48	61\%
2,3,4,7,8-PECDF	2.87	3.72	26\%	1.39	0.75	60\%
1,2,3,4,7,8-HxCDF	26.1	33.6	25\%	8.54	4.75	57\%
1,2,3,6,7,8-HxCDF	17.3	22.9	28\%	5.09	3.09	49\%
1,2,3,7,8,9-HxCDF	0.48	0.88	59\%	ND	ND	NA
2,3,4,6,7,8-HxCDF	12.6	17.3	31\%	7.82	6.42	20\%
1,2,3,4,6,7,8-						
HpCDF	819	1070	27\%	474	286	49\%
1,2,3,4,7,8,9-						
HpCDF	58.8	68.8	16\%	42.5	50.6	17\%
OCDF	5510	8340	41\%	2091	2200	5\%
TEQ, ng/kg	1.81E+02	$2.45 \mathrm{E}+02$	30\%	7.34E+01	$4.98 \mathrm{E}+01$	38\%

* Value reported as estimated maximum possible concentration


## ATTACHMENT A

## DATA SUMMARY

Chemical Name	SS002AA			SS002AC			SS002BA			SS006AA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	1.09	J		0.74	J	OC		U	EM	5.74		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	8.82			5.36	J	OC	4.29	J	OC	104.06		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	24.88	J	1	14.70			10.01			252.58		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	94.48	J	1	56.40	J	1	51.22			738.89	J	1
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN		UJ	1	13.98			12.27			222.28	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	4,007.38	J	SE,LE	2,770.79	J	LE	2,877.37	J	E	23,020.51	J	LE
OCTACHLORODIBENZO-P-DIOXIN	29,352.99	J	I,SE,LE	19,764.35	J	LE,SE	28,365.19	J	E	105,208.11	J	LE
2,3,7,8-TETRACHLORODIBENZOFURAN	1.16	J	OC		U			U		1.63		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.90	J	OC		U	EM	0.55	J	OC	8.07		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	1.39	J	OC	0.75	J	OC	0.81	J	OC	10.96		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	8.54	J	1	4.75	J	OC	5.38	J	OC	86.66	J	1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	5.09	J	I, OC	3.09	J	OC	2.67	J	OC	86.10	J	1
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		UJ	1		U			U			UJ	1
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	7.82	J	1	6.42			2.36	J	OC	65.97	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	473.51	J	1	286.42			251.55			2,845.39	J	LE
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	42.51	J	1	50.63			18.08			223.38	J	1
OCTACHLORODIBENZOFURAN	2,091.00	J	DD,I,LE	2,202.67			1,968.87			10,110.42	J	LE,SE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	17.85			7.68			5.63			34.19		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	111.31			59.44			52.81			744.90		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	2,101.35			1,235.52			1,271.88			12,041.88		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	28,310.51			17,037.69			17,099.91			76,980.58		
TOTAL TETRACHLORINATED DIBENZOFURANS	25.17			12.54			8.85			93.44		
TOTAL PENTACHLORINATED DIBENZOFURANS	44.88			29.81			26.70			621.14		
TOTAL HEXACHLORINATED DIBENZOFURANS	443.94			280.66			219.93			2,222.77		
TOTAL HEPTACHLORINATED DIBENZOFURANS	2,291.04			1,393.57			1,297.65			12,818.88		


Chemical Name	SS006BA			SS037AA			SS037BA			SS043AA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	2.93				U	EM	1.97			2.66		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	67.93			89.04			39.70			22.76		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	185.11	J	1	176.03	J	1	118.06	J	1	64.92		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	613.50	J	1	501.01	J	1	436.08	J	1	197.24		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	149.10	J	I,CR, SE,	222.00	J	1	157.89	J	1	186.27		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	23,317.23	J	LE	17,146.32	J	I,LE	17,784.13	J	I,LE	9,564.90		
OCTACHLORODIBENZO-P-DIOXIN	132,774.99	J	E,LE	137,535.42	J	E,LE	154,061.38	J	E	93,290.89	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN	1.10	J	OC	3.24			3.71			1.15	J	OC
1,2,3,7,8-PENTACHLORODIBENZOFURAN	5.10	J	OC	7.19			4.84	J	OC	3.73	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	7.20			11.25			6.70			5.07	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	65.90	J	1	56.29	J	1	46.12	J	1	28.97		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	58.73	J	1	76.95	J	1	35.09	J	1	21.46		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		UJ	1	1.46	J	1		UJ	EM, I	2.04	J	OC
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	47.68	J	1	80.87	J	1	23.16	J	1	15.64		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	2,451.86	J	1	2,306.08	J	1	2,142.71	J	1	821.06		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	191.73	J	1	121.41	J	1	125.30	J	1	58.90		
OCTACHLORODIBENZOFURAN	10,722.27	J	SE,LE	10,034.65	J	LE,SE	11,107.00	J	LE,SE	3,759.50		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	39.08			119.16			36.65			13.45		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	504.78			812.01			265.99			194.09		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	10,627.93			7,437.54			3,950.86			3,241.92		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	78,470.29			46,649.39			41,671.40			37,329.92		
TOTAL TETRACHLORINATED DIBENZOFURANS	73.24			208.16			49.24			23.33		
TOTAL PENTACHLORINATED DIBENZOFURANS	451.42			559.94			230.69			169.16		
TOTAL HEXACHLORINATED DIBENZOFURANS	3,174.29			2,569.30			2,070.03			999.99		
TOTAL HEPTACHLORINATED DIBENZOFURANS	12,173.14			9,449.49			2,289.89			3,216.21		


Chemical Name	SS043BA			SS043BB			SS044AA			SS044BA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	1.59			1.77			4.31				U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	18.88			25.37			56.36			87.46		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	58.83			76.56			236.25			665.76		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	185.07			231.77			1,437.86			2,412.60		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	159.25			196.35			944.22	J	1	1,920.22		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	9,279.74			12,879.19			87,450.22	J	LE	103,372.69	J	LE
OCTACHLORODIBENZO-P-DIOXIN	106,045.60	J	E	163,147.30	J	E	737,243.45	J	E,LE	887,531.90	J	E,LE
2,3,7,8-TETRACHLORODIBENZOFURAN	0.66	J	OC	1.08	J	OC	3.76			5.43		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	2.12	J	OC	2.76	J	OC	14.47			34.08		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	2.87	J	OC	3.72	J	OC	19.09			11.60		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	26.05			33.59			153.69	J	I	284.63	J	I
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	17.26			22.95			85.43	J	1	218.58	J	1
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	0.48	J	OC	0.88	J	OC	5.95	J	OC	13.25	J	1
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	12.59			17.33			66.29			152.47	J	I
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	818.60			1,069.46			6,142.55	J	I,LE	8,668.86	J	1
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	58.81			68.77			509.68	J	1	948.22	J	1
OCTACHLORODIBENZOFURAN	5,508.11			8,340.79			32,811.39	J	I,SE,LE	47,289.03	J	SE,LE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	8.27			14.68			78.84			96.26		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	174.98			226.36			954.96			1,496.29		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	3,030.16			3,782.51			54,487.97			109,518.72		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	35,730.73			34,776.17			109,674.65			64,873.86		
TOTAL TETRACHLORINATED DIBENZOFURANS	15.63			27.78			92.78			163.39		
TOTAL PENTACHLORINATED DIBENZOFURANS	146.70			193.27			653.05			1,438.42		
TOTAL HEXACHLORINATED DIBENZOFURANS	923.95			1,272.96			2,304.89			6,374.32		
TOTAL HEPTACHLORINATED DIBENZOFURANS	3,358.56			4,487.99			24,739.41			10,563.11		


Chemical Name	SS058AA			SS058BA			SS076AA			SS076BA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	120.48				U	EM	10.46			7.45		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	2,103.96			905.52	J	SE	117.07			107.35		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	7,500.68			3,182.87	J	SE	236.66	J	1	521.24		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	28,526.82			35,058.94			975.01			1,060.51		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	18,757.94	J	MI	7,206.58	J	SE	573.45			921.81		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	976,963.14	J	I,LE, E	1,190,336.30	J	I,LE	19,075.51			26,170.57	J	I,LE
OCTACHLORODIBENZO-P-DIOXIN	2,488,408.20	J	I,LE, E	10,380,583.00	J	E,LE	144,447.64	J	E	184,600.47	J	I,E,LE
2,3,7,8-TETRACHLORODIBENZOFURAN	81.81			38.62			4.39			4.12		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	505.00	J	DD	234.92	J	SE	14.71			16.37		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	207.93			278.10	J	SE	16.19			49.84		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	4,864.51	J	I,LE	2,885.30	J	I,SE	137.91	J	1	187.88	J	1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	3,289.93	J	I,LE	1,960.62	J	I,SE	122.93	J	1	156.03	J	I
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	242.53	J	I,LE		UJ	1	3.35	J	OC,	7.09	J	1
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	1,902.70	J	SE,LE	4,965.75	J	I,SE	71.12	J	1	89.75	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	122,492.17	J	I,LE	188,531.78	J	I,LE	2,418.14	J	LE,SE	3,462.24	J	SE,LE
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	12,504.39	J	I,LE	11,115.67	J	1	335.41	J	1	437.89	J	1
OCTACHLORODIBENZOFURAN	535,827.27	J	I,LE, E	1,069,174.20	J	I,LE	11,059.96	J	SE,LE	13,958.82	J	SE,LE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	721.42			1,277.83			70.65			62.92		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	7,767.50			3,531.24			760.07			592.35		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	437,400.02			176,878.51			13,104.30			28,925.58		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	187,786.09			291,503.72			49,075.53			52,464.23		
TOTAL TETRACHLORINATED DIBENZOFURANS	1,495.06			969.52			64.17			73.39		
TOTAL PENTACHLORINATED DIBENZOFURANS	3,719.67			8,999.34			553.83			705.26		
TOTAL HEXACHLORINATED DIBENZOFURANS	22,164.43			56,756.27			3,821.59			5,282.74		
TOTAL HEPTACHLORINATED DIBENZOFURANS	120,005.18			130,921.57			12,637.00			15,703.74		

ATTACHMENT B
REASON CODES FOR DATA QUALILFICATION

## Reason Codes for Data Qualification - Dioxins and Furans

MB Contaminated blank
DD Result is from dilution where ion ratio criterion not met on initial analysis
OC Measurement below calibration
I Internal standard recovery outside of control limits
MI Matrix interference
EM Estimated maximum possible concentration (ion ratio criterion not satisfied))
DMI Result from dilution analysis; internal standard recovery from initial analysis within limits but biased by matrix interference
E Exceeded calibration range
CR Chromatographic resolution poor
DP Diphenyl ether interference
SE Excessive difference in results between analyses of samples. Significantly lower (>25\%) result after dilution for analyte above calibration or at saturation in initial analysis.
CS Cleanup standard recovery unacceptable
LE Result from dilution calculated assuming recovery of internal standard equal to tetra or tetra and penta chlorinated internal standards
FD Variability noted between field duplicates.

## ATTACHMENT C

CAS REPORT AMENDMENT

March 8, 2007
Mandy Sullivan
Columbia Analytical Services, Inc
8540 Baycenter Road
Jacksonville, FL 32256
$\begin{array}{ll}\text { Subject: } & \text { Amendment to J0605810-016 RE DL } \\ & \text { AMEC/Beazer East, Inc }\end{array}$ AMEC/Beazer East, Inc

Dear Mandy,
Our response to Marilyn Hoyt's validation email is enclosed. Replace pages 83 and 515 of the original report with the attached pages.

Please call if you have any questions. My extension is 23. You may also contact me via email at jfreemyer@houston.caslab.com.

Respectfully submitted,
Columbia Analytical Services, Inc
Fane fuengh
Project Manager

## Jane Freemyer

From: Hoyt, Marilyn P [marilyn.hoyt@amec.com]
Sent: Tuesday, March 06, 2007 3:37 PM
To: Jane Freemyer
Cc: Tom Kissinger
Subject: RE: SDG J0605810
Please provide documentation for the internal standard concentrations and calculations for the results from the dilution analysis of SS058BA (J0605810-016RE).

Thank you -

Marilyn Hoyt
Senior Associate
AMEC Earth and Environmental
2 Robbins Road
Westford, MA 01886
(978)-692-9090
(978)-692-6633 (FAX)

The information contained in this e-mail is intended only for the individual or entity to whom it is addressed.

Its contents (íncluding any attachments) may contain confidential and/or privileged information. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents.
If you receive this e-mail in error, please notify the sender by reply e-mail and delete and destroy the message.

## RESPONSE FOR PROJECT J0605810-016REDL

(1). Page 83 of the original report was incorrect. Please use the attached page 83 when validating the data. The concentrations of labeled standard spiked were 2000 pg for 13 C TCDF/TCDD, 13C-PeCDF/PeCDD, 13C-HxCDF/HxCDD and 13C-HpCDF/HpCDD, 4000pg for $13 \mathrm{C}-\mathrm{OCDD}$.
(2). When calculating the concentration of the analytes on a diluted standard, the internal standard recovery from the original extract is used to correct the results for losses during isolation and cleanup. The entry $54.59 \%(0.5459)$ is from 13C-2,3,7,8-TCDD on pg. 80. This value was used in calculating all the concentrations of the analytes, since it was the only concentration not affected by the sample matrix. All other internal standard recoveries were inflated due to the matrix interference.

The concentrations for the following analytes, which were over the MRL, were manually calculated:

## 1,2,3,6,7,8-HxCDD:

$\frac{(3.205 e 3+2.607 e 3) \times 2000 \times 200}{(7.644 e 4+6.064) \times 1.035 \times 0.8963 \times 0.94 \times 0.5459}=35626.8 \mathrm{pg} / \mathrm{g}(\mathrm{ng} / \mathrm{Kg})$

## 1,2,3,4,6,7,8-HpCDD

$$
\frac{(8.337 e 4+7.964 e 4) \times 2000 \times 200}{(5.778 e 4+5.531 e 4) \times 1.035 \times 0.8963 \times 0.94 \times 0.5459}=1211124.2 \mathrm{pg} / \mathrm{g}(\mathrm{ng} / \mathrm{Kg})
$$

## 1,2,3,4,6,7,8-HpCDF

$$
\frac{(1.926 e 4+1.922 e 4) \times 2000 \times 200}{(3.386 e 4+7.706 e 4) \times 1.035 \times 0.8963 \times 1.43 \times 0.5459}=191620.7 \mathrm{pg} / \mathrm{g}(\mathrm{ng} / \mathrm{Kg})
$$

## OCDD

$$
\frac{(7.283 e 5+8.233 e 5) \times 4000 \times 200}{(1.062 e 5+1.189 e 5) \times 1.035 \times 0.8963 \times 1.035 \times 0.5459}=10520759 \mathrm{pg} / \mathrm{g}(\mathrm{ng} / \mathrm{Kg})
$$

## OCDF

$$
\frac{(7.991 e 4+8.951 e 4) \times 4000 \times 200}{(1.062 e 5+1.189 e 5) \times 1.035 \times 0.8963 \times 1.10 \times 0.5459}=1080885.4 \mathrm{pg} / \mathrm{g}(\mathrm{ng} / \mathrm{Kg})
$$

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES
$\frac{\text { CLIENT ID. }}{\frac{\text { SS058BA DL }}{\text { SDG NO: }}}$

Lab ID:J0605810-016RED

Client Name: AMEC

Matrix (Solid/Aqueous/Waste/Ash): Solid
Sample Receipt Date: 12/08/06
Ext. Date: 12/28/06
Analysis Date: 9-JAN-07 Time: 14:16:22
Ext.Vol(ul):20.0 Inj.Vol(ul):1.0
Contract:

Client No:
Sample Wt/Vol: $1.035 \quad g$ or mL: $g$
Initial Calibration Date: 11/07/06
Instrument ID: Autospec-Ultima
GC Column ID: DB-5

Sample Data Filename: U18705\#1
Blank Data Filename: U18619\#1

Cal. Ver. Data Filename: U18699\#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg \% Solid/Lipids: 89.63

		ION			
SPIKE	CONC.	R(\%)	QC	ABUND.	RRT
CONC. FOUND	$(1)$	Limite (1)	RATIO	$(2)$	$(2)$

LABELED COMPOUNDS
$13 \mathrm{C}-2,3,7,8-\mathrm{TCDD}$
$13 \mathrm{C}-1,2,3,7,8-\mathrm{PeCDD}$
$13 \mathrm{C}-1,2,3,4,7,8-\mathrm{HxCDD}$
$13 \mathrm{C}-1,2,3,6,7,8-\mathrm{HxCDD}$
$13 \mathrm{C}-1,2,3,4,6,7,8-\mathrm{HPCDD}$
$13 \mathrm{C}-\mathrm{OCDD}$

2000	2354.53	64.27	$25-164$	0.78	1.013
2000	2695.97	73.59	$25-181$	1.59	1.225
2000	1862.79	50.85	$32-141$	1.28	0.989
2000	1966.90	53.69	$28-130$	1.26	0.992
2000	1741.37	47.53	$23-140$	1.04	1.069
4000	3472.93	47.40	$17-157$	0.89	1.138
2000	2346.65	64.05	$24-169$	0.76	0.972
2000	2598.52	70.93	$24-185$	1.56	1.176
2000	2614.77	71.37	$21-178$	1.60	1.209
2000	1932.91	52.76	$26-152$	0.52	0.968
2000	1683.77	45.96	$26-123$	0.52	0.971
2000	2299.21	62.76	$29-147$	0.53	1.005
2000	1973.47	53.87	$28-136$	0.53	0.986
2000	1678.28	45.81	$28-143$	0.44	1.047
2000	1931.45	52.72	$26-138$	0.45	1.079

CLEANUP STANDARD

$37 \mathrm{Cl}-2,3,7,8-T C D D$	800	6.88	171.89	$35-197$	1.015

(1) Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.
(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for $37 \mathrm{Cl} 4-2378-\operatorname{TCDD}$ (cleanup standard).

Columbia Analytical Services, Inc.
Sample Response Summary

CLIENT ID.
SS058BA DI

Run \#11 Filename U18705\#1 Tamp: 1 In: 1 Acquired: 9-JAN-07 14:16:22 Processed: 11-JAN-07 12:14:37 Sample ID: J0605810-016RED

$(7.283 e+05+8.233 e+05) \times 4000 \mathrm{pg} \times 200$
$\begin{aligned} \mathrm{OCDD}= & (1.062 e+05+1.189 e+05) \times 1.035 \text { g } \times 89.63 / 100 \times 1.035 \times(0.5459\end{aligned}$

# DATA VALIDATION REPORT 

# Soil Samples <br> from <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

## Analyses for PCDDs/PCDFs

## CAS Report J0605839

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 2
5.0 DATA VALIDATION FINDINGS ..... 3
5.1 Data completeness and deliverables ..... 3
5.2 Sample Receipt ..... 3
5.3 Chain of Custody (COC) Documentation ..... 3
5.4 Holding Times, Storage and Preservation ..... 3
5.5 Mass Calibration and Resolution ..... 4
5.6 Window Defining Mixture and Isomer Specificity Check ..... 4
5.7 Initial Calibrations ..... 4
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 5
5.10 Method Blanks ..... 5
5.11 Laboratory Control Samples (LCS) ..... 5
5.12 Identification Criteria ..... 5
5.13 Confirmation Analyses ..... 6
5.14 Detection Limits ..... 6
5.15 Labeled Compound Recoveries ..... 6
5.16 Interferences ..... 7
5.17 Sample Dilutions ..... 7
5.18 Data Consistency ..... 8
5.19 Equipment Blank ..... 8
5.20 Field Duplicates ..... 8
5.21 Calculations ..... 8
6.0 REFERENCES ..... 9

## List of Attachments

Attachment A Data Summary
Attachment B Reason Codes for Data Qualification

## DATA QUALIFIER DEFINITIONS

U The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.

N The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected th the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

This report provides an evaluation of data for eighteen samples collected on December 6, 2006 and submitted for analysis for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in accordance with EPA Method 1613. Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL on December 7, 2006 and subsequently transferred to the CAS laboratory in Houston, TX for analysis. These samples were analyzed at CAS under Service Request Number J0605839.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS095AA	SS080AA
SS095BA	SS080BA
SS095CA	SS080BB
SS095DA	SS080CA
SS057AA	SS080DA
SS057BA	SS035AA
SS057CA	SS035BA
SS057CB	SS035CA
SS057DA	SS035DA

Samples from the locations noted below represent site perimeter samples:
SS057 - Southern border
SS080 - Southeast corner
SS035 - Southern border

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results PCDDs/PCDFs within the range of the instrument calibration upon initial analysis are generally valid as reported. Results below the calibration range are qualified as estimated.

Cleanup procedures implemented did not remove matrix interferences. These interferences resulted in internal standard recoveries that were outside control limits in SSO35AA and SS095AA and affected target analyte results and the absence of valid internal standard
recoveries compromised the quantitation of analyte concentrations from dilution analyses in SS035AA and SS095AA. Interferences additionally affected some data in SS095BA and SS057DA. CAS has further compounded the uncertainty by adjusting data by factors that are not considered applicable. Results for these samples should be reviewed by the project manager to evaluate the margin between their toxic equivalencies (TEQs) and site action limits. Although no samples have been rejected based on the validation, they may not all be suitable to support project decisions.

Toxicity equivalency (TEQ) values for the samples as calculated by CAS are based on the 1998 WHO toxic equivalency factors (TEFs) and include measurements for peaks that failed to meet method criteria for positive identification. TEQs have been recalculated in accordance with EPA Region 4 guidance and using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

Raw data were reviewed for all sample and quality control analyses associated with all samples in this set.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Chain of Custody documentation
3. Sample receipt
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Identification criteria
10. Method blank analysis
11. Laboratory Control Samples
12. Second column confirmation analysis
13. Detection Limits
14. Labeled compound recoveries
15. Field blanks

# amed ${ }^{\circ}$ 

16. Field Duplicates
17. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. All reported results on the final summary forms were verified from the raw data instrument printouts for sample concentrations and chromatograms were reviewed for all samples in this set.

Results for the total congener class PCDDs and PCDFs have not been validated and should be considered as estimated in all samples. These data are not included in the TEQ calculations. These are quantified based on the assumption that their response factors are the same as the 2378 -substitued isomers. All data reported are from the initial analyses and many include congeners above instrument calibration. Any factors affecting the accuracy of results for the 2378-isomers apply to the entire congener group and interferences in addition to those noted for the 2378-isomers may significantly bias data for these groupings of PCDDs and PCDFs.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

The submitted data packages contained instrumental documentation elements required for full validation. However, documentation of data calculations involving adjustments of measured results were not included as part of the reporting package. Upon request, CAS provided explanations of selected individual sample calculations for other sample delivery groups, but the approach taken was sample-specific.

It should be noted that data for the required QA/QC analyses including the mass calibration and resolution checks, window-defining mix and continuing calibration standards were not in chronological order in the package.

### 5.2 Sample Receipt

Samples were received at CAS Houston via FedEx on December 11, 2006.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed.

### 5.4 Holding Times, Storage and Preservation

Samples were received with a cooler temperature of $2^{\circ} \mathrm{C}$, within the method recommended range. Method 1613 B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. All congeners in the solution were detected at expected times. The height of the valley between the closely eluting isomers $1,2,3,8$-TCDD and $2,3,7,8$-TCDD less than $25 \%$. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with separate analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9TCDF, $2,3,4,7$-TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

Two instruments were used for the DB-5 column analysis for all PCDDs and PCDFs except 2,3,7,8-TCDF. Five-point calibrations were conducted on October 25 and November 7, 2006. Calibration for 2,3,7,8-TCDF confirmation on the DB-225 column was conducted on November 9,2006 . The initial calibrations were acceptable with $\%$ RSDs $\leq 20 \%$ for the relative responses (RR) for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

No second-source standard was analyzed to verify the calibration.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were initially conducted on December 23 and 24, 2006 with analyses of samples at dilution on January 3, 2007. Analyses for $2,3,7,8$-TCDF on the DB225 column were conducted on December 28 and 29, 2006. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds
$<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Although run logs indicate that calibration check standards were analyzed at the end of each sequence, no data for these checks were included in the package. Method 1613 does not specifically require these.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. However, resolution of 123678- and 123789-HxCDD isomers was not achieved in some standards or in several samples and in several instances, apparent matrix interferences resulted in poor chromatographic separations for other analytes as well. 123678-HxCDD and 123789-HxCDD have the same toxic equivalency factor (TEF) so incomplete resolution of these from each other does not impact final TEQ calculations. Results for other affected measurements are qualified as estimated.

SS095AA: 2,3,7,8-TCDD peak poorly resolved; likely high bias from other isomers;
SS095BA: 2378-TCDD peak poorly resolved; likely high bias from other isomers
SS080BA 123789-HxCDD not resolved from non-2,3,7,8-substituted isomer

### 5.10 Method Blanks

One method blank was prepared with the initial extraction and this was analyzed twice. The method blank contained trace levels of several target PCDDs and PCDFs. OCDD, 1234678HpCDD, OCDF and $1234678-H p C D F$ were detected in the blank analyses. Since the duplicate analyses of the one method blank demonstrated variability in the levels detected, the maximum concentration from the two analyses of the method blank were used for data qualifications. All reported sample concentrations of these analytes were greater than 5 times the blank and were not qualified.

### 5.11 Laboratory Control Samples (LCS)

Laboratory control sample and a duplicate were extracted with the preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored

# amec ${ }^{0}$ 

for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Samples in this set contained a variety of interferents resulting in peaks that failed criteria for identification. These interferents may be non-PCDD/PCDFs with one or both of the mass fragments of a target analyte. Review of the raw data confirmed that the majority of these results, reported by CAS as estimated maximum possible concentrations (EMPC) with the "K" qualifier, represented peaks with ratios close to that expected for the respective PCDD of PCDF. In accordance with Region 4 guidance and the USEPA Functional Guidelines, results for these analytes in the affected samples have been qualified as non-detected with the reporting limit set at the amount calculated. This provides a high bias to the reporting limit since the actual maximum possible amount in the sample would be include only that fraction of the area of one peak that would satisfy the ratio requirement. Based on review of the data, it is considered likely that the target analyte is present at a concentration below the reported value in all instances.

### 5.13 Confirmation Analyses

2,3,6,7-TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of 2,3,7,8-TCDF from the DB-5 column analysis. Final validated data and the TEQ includes the confirmation result for this analyte.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.15 Labeled Compound Recoveries

Recoveries of internal standards for all HxCDDs and two HxCDFs were above of control limits for the initial analysis of SS035AA and for 123478-HxCDD, 1234678-HpCDD, all HpCDDs, and all HxCDFs and HpCDFs for SS095AA. Apparent recoveries ranged up to 300\%.

Method 1613 specifies gel permeation chromatography cleanup for soil samples. CAS did not perform this step, and review of the raw data for the above samples indicates that the minimal extract cleanup procedures used did not remove significant matrix interferences. These affected the response of the $123789-H x C D D$ recovery standard used for calculation of the HxCDD, HxCDF, HpCDD, HpCDF and OCDD internal standards in the above samples. No reliable data on the recovery of the internal standards spiked into the sample and used for quantitation of target PCDDs and PCDFs can be obtained when this occurs. All reported data for target dioxins and furans with internal standard recoveries outside of the limits are qualified as estimated.

In addition to the above samples, these matrix interferences to the quantitation of internal standard recoveries were noted in samples SS095BA and SS035BA. Although the internal standard recoveries for these samples fell within the relatively wide limits of Method 1613, it is likely that there is bias to the results reported for OCDD and 1234789-HpCDD in SS095BA from the dilution analysis. While the internal standard recoveries for SS035BA may be biased, results are reported for all target analytes from the undiluted analysis and should not be affected.

### 5.16 Interferences

As noted above, matrix interferences affected the quantitation of the recovery standard used to determine internal standard recoveries. Matrix interferences were also noted to affect the analyses of other PCDDs/PCDFs. In some cases, polychlorinated ethers were present. These can result in false positives for PCDFs, but while several interfered with the quantitation of total PCDF congeners, no instances were noted where $2,3,7,8$-subsituted target PCDF were affected. Unidentifiable matrix interferences can also result in poor chromatographic separation of PCDDs and PCDFs or suppression of the signal.

Matrix interferences were evident that likely affected the quantitation of target analytes even through internal standard recoveries were within control limits :

```
SS035AA 123789-HxCDF, 234678-HxCDF
SS057DA 1234678-HpCDD
SS095AA all HxCDDs, 1234678-HpCDD, OCDD, OCDF
SS095BA 1234678-HpCDD, OCDD, OCDF
```


### 5.17 Sample Dilutions

Several samples in this set, including including SS095AA, SS095BA, SS080AA, SS035AA, contained levels of PCDDs and PCDFs above the instrument calibration. The primary corrective action for this in Method 1613 is to extract a smaller portion of the sample. Dilution by a factor of 10 is an alternative if it is determined that a smaller sample size will not be representative. Although these samples are characterized as sandy soils where representativeness would not be expected to be problematic, no reeextractions were performed. Samples were diluted by factors up to 50 by adding more internal standards to the extract.

Review of the raw data for the above samples indicates that except for SS080AA, the extract cleanup procedures used did not remove significant matrix interferences, and these affected the measurement of the 123789-HxCDD recovery standard used for calculation of the HxCDD, HxCDF, HpCDD, HpCDF and OCDD internal standards. Since the measurement of the $123789-H x C D D$ is biased low by these interferences, the apparent recoveries of the related internal standards are biased high. No reliable data on the recovery of the internal standards spiked into the sample and used for quantitation of target PCDDs and PCDFs can be obtained when this occurs.

CAS data reduction protocol for diluted samples where recoveries were elevated in the initial analysis is to correct the recovery in the diluted analysis by recoveries of tetra- and penta-
chlorinated internal standards. Review of data for samples unaffected by interferences and apparent high recoveries does not support the use of this average; tetra- and penta-chlorinated internal standards consistently recover at significantly higher levels than the hexa- through octachlorinated internal standards. This data reduction practice likely leads to a significant low bias to results in affected samples. All measurements of hexa, hepta and octachlorinated dioxins and furans reported from dilutions where their quantitation was adjusted for tetra- and pentachlorinated standard recoveries have been qualified as estimated with potential significant bias.

CAS states that they do not reanalyze samples where OCDD and/or OCDF are the only analytes above the calibration range. They also did not reanalyze when HpCDD and OCDD in SS057AA were above calibration. All data from above calibration measurements are qualified as estimated.

### 5.18 Data Consistency

Results obtained on dilution for the samples were compared to the initial analyses. Results for 123678 -HxCDD and OCDF in SS095AA were significantly lower in the dilution analysis. Results for OCDF were significantly lower after dilution of SS035AA. These inconsistencies are likely attributable to the CAS data adjustment protocol as detailed above for sample dilutions.

In sample SS095BA, 123789-HxCDF was detected in the analysis of the diluted extract at 50 $\mathrm{ng} / \mathrm{kg}$, while this analyte was reported as non-detected, less than $0.342 \mathrm{ng} / \mathrm{kg}$ in the initial analysis. No peak was detectable at the retention time of this analyte in the initial analysis, but in the dilution analysis, a poorly resolved peak was present. This may represent carryover contamination during analysis and may indicate the potential for false positives in other samples.

### 5.19 Equipment Blank

No equipment blank was collected with this sample set.

### 5.20 Field Duplicates

Field duplicate samples were collected at SS057B and SS080C. Precision for SS080C was acceptable with relative percent differences for most analytes and the CAS TEQ below 50\%. The variability between the duplicates from SS057B is greater on a percentage basis, but the levels at this location are relatively low and the absolute differences in concentration are not significant.

### 5.21 Calculations

Calculations for measurements within the instrument calibration range were verified for the initial analyses of perimeter samples. As noted above, calculations from dilutions for hexa, hepta and
octa-chlorinated dioxins and furans were adjusted for the initial recoveries of tetra or tetra and pentachlorinated internal standards. CAS calculations of the adjustment factors for each sample were not documented and in some instances it could not be determined exactly which tetra or penta recovery standards were used for this manipulation. All data from this procedure are qualified with as estimates with wide uncertainty.

Calculations for toxic equivalencies as provided were calculated using 1998 WHO toxic equivalency factors (TEF) and one-half the detection limit for non-detected analytes. Peaks reported that did not meet identification criteria were included. Values have been recalculated using the revised 2006 WHO TEF values and one-half the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

J0605839: PCDDs/PCDFs in Field Duplicate Samples

	SS057CA	SS057CB	RPD	SS080BA	SS080BB	RPD
2,3,7,8-TCDD	ND	ND		ND	ND	
1,2,3,7,8-PeCDD	0.464	0.256	58\%	0.639	0.481	28\%
1,2,3,4,7,8-HxCDD	1.2	0.669	57\%	1.96	1.6	20\%
1,2,3,6,7,8-HxCDD	4.2	2.48	51\%	5.4	3.84	34\%
1,2,3,7,8,9-HxCDD	3.35	1.85	58\%	3.73	2.71*	32\%
1,2,3,4,6,7,8-HpCDD	182	104	55\%	297	234	24\%
OCDD	1694	983	53\%	2520	1890	29\%
2,3,7,8-TCDF	ND	ND		ND	ND	
1,2,3,7,8-PeCDF	ND	ND		0.095	ND	
2,3,4,7,8-PECDF	ND	ND		0.151	0.138	9\%
1,2,3,4,7,8-HxCDF	0.604	0.331	58\%	0.826	0.657	23\%
1,2,3,6,7,8-HxCDF	0.517	0.289	57\%	0.605	0.442	31\%
1,2,3,7,8,9-HxCDF	ND	ND		ND	ND	
2,3,4,6,7,8-HxCDF	0.596	0.251	81\%	0.614	0.534	14\%
1,2,3,4,6,7,8-HpCDF	33.1	18.3	58\%	35.5	27.8	24\%
1,2,3,4,7,8,9-HpCDF	1.3	0.762	52\%	1.7	1.23	32\%
OCDF	85	51.5	49\%	160	115	33\%
TEQ (CAS), ng/kg	3.88	2.2	55\%	5.66	4.27	28\%

* Value reported as estimated maximum possible concentration


## ATTACHMENT A

## DATA SUMMARY

Chemical Name	SS035AA			SS035BA			SS035CA			SS035DA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U			U			U			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	5.54			0.58	J	OC	0.13	J	OC		U	
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	19.60	J	1	1.49	J	OC	0.22	J	OC	0.28	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	66.24	J	1	4.96	J	OC	0.77	J	OC	0.85	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	40.95	J	1	4.86	J	OC	0.62	J	OC	0.86	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	1,682.20	J	SE,LE	219.20			28.91			37.34		
OCTACHLORODIBENZO-P-DIOXIN	16,971.47	J	LE	1,785.30			243.97			331.02		
2,3,7,8-TETRACHLORODIBENZOFURAN	0.61	J	OC	0.43	J	OC		U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	1.16	J	OC	0.34	J	OC		U			U	
2,3,4,7,8-PENTACHLORODIBENZOFURAN	1.90	J	OC		U	EM		U			U	
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	11.00			2.62	J	OC	0.17	J	OC	0.17	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	6.88			1.48	J	OC	0.12	J	OC		U	EM
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	0.27	J	MI,OC	1.68	J	OC		U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	6.18	J	Mı,	1.41	J	OC		U		0.13	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	358.00			38.20			4.47	J	OC	5.91		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	23.14			1.74	J	OC		U		0.32	J	OC
OCTACHLORODIBENZOFURAN	1,894.18			118.70			14.78			18.86		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	10.63			1.94			0.10				U	
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	71.99			7.18			0.63			0.55		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	1,038.23			82.25			10.56			13.90		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	13,261.19			1,043.37			118.26			164.06		
TOTAL TETRACHLORINATED DIBENZOFURANS	21.40			5.81			0.14				U	
TOTAL PENTACHLORINATED DIBENZOFURANS	50.30			10.96			0.18			0.39		
TOTAL HEXACHLORINATED DIBENZOFURANS	310.58			35.25			3.47			4.32		
TOTAL HEPTACHLORINATED DIBENZOFURANS	1,388.24			118.60			14.20			18.58		


Chemical Name	SS057AA			SS057BA			SS057CA			SS057CB		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	0.43	J	OC		U			U			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	5.16	J	OC	0.39	J	OC	0.46	J	OC	0.26	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	14.33			0.91	J	OC	1.20	J	OC	0.67	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	55.41			3.25	J	OC	4.20	J	OC	2.48	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	42.33			2.49	J	OC	3.35	J	OC	1.85	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	2,255.34	J	E	138.07			181.88			104.33		
OCTACHLORODIBENZO-P-DIOXIN	20,890.34	J	E	1,247.43			1,694.10			982.55		
2,3,7,8-TETRACHLORODIBENZOFURAN		U	EM		U			U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.55	J	OC	0.04	J	OC		U			U	
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.76	J	OC		U			U			U	
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	7.03			0.48	J	OC	0.60	J	OC	0.33	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	5.12	J	OC	0.41	J	OC	0.52	J	OC	0.29	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	0.18	J	OC		U			U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	5.11	J	OC	0.48	J	OC	0.60	J	OC		U	EM
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	315.04			23.09			33.13			18.32		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	16.10			1.02	J	OC	1.30	J	OC	0.76	J	OC
OCTACHLORODIBENZOFURAN	1,284.94			65.40			85.02			51.54		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	9.48			0.74			0.13				U	
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	56.22			3.46			4.08			1.80		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	615.41			37.56			50.81			28.89		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	6,870.79			426.34			545.02			325.36		
TOTAL TETRACHLORINATED DIBENZOFURANS	9.19			0.77			0.45			0.19		
TOTAL PENTACHLORINATED DIBENZOFURANS	30.08			1.79			2.76			1.34		
TOTAL HEXACHLORINATED DIBENZOFURANS	241.48			16.93			24.08			13.35		
TOTAL HEPTACHLORINATED DIBENZOFURANS	1,103.86			72.25			98.59			55.89		


Chemical Name	SS057DA			SS080AA			SS080BA			SS080BB		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U			U	EM		U			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN		U		8.07			0.64	J	OC	0.48	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	0.19	J	OC	25.34	J	CR	1.96	J	OC	1.60	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	0.71	J	OC	75.97	J	CR	5.40			3.84	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	0.55	J	OC	43.48			3.73	J	OC,CR		U	EM
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	29.31	J	MI	4,081.93			296.83			223.56		
OCTACHLORODIBENZO-P-DIOXIN	325.53			39,638.91			2,519.65			1,886.57		
2,3,7,8-TETRACHLORODIBENZOFURAN	0.32	J	OC	0.65	J	OC		U			U	OC
1,2,3,7,8-PENTACHLORODIBENZOFURAN		U	EM	1.02	J	OC,DP	0.10	J	OC		U	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.06	J	OC	1.80	J	OC	0.15	J	OC		U	EM
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.17	J	OC	10.36			0.83	J	OC	0.66	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN		U	EM	6.88			0.61	J	OC	0.44	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U			U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.07	J	OC	6.52			0.61	J	OC	0.53	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	4.79	J	OC	403.42			35.54			27.85		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0.67	J	OC	21.20			1.70	J	OC	1.23	J	OC
OCTACHLORODIBENZOFURAN	22.53			2,308.29			160.47			114.55		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	0.17			22.39			1.64			1.76		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	0.14			138.83			9.91			7.08		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	7.22			1,486.95			116.28			83.34		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	121.58			17,867.04			1,525.70			1,108.41		
TOTAL TETRACHLORINATED DIBENZOFURANS	0.45			32.09			3.86			2.44		
TOTAL PENTACHLORINATED DIBENZOFURANS	0.65			83.37			6.61			5.04		
TOTAL HEXACHLORINATED DIBENZOFURANS	3.19			355.74			29.04			22.32		
TOTAL HEPTACHLORINATED DIBENZOFURANS	17.77			1,584.14			129.22			97.75		


Chemical Name	SS080CA			SS080DA			SS095AA			SS095BA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U			U		27.97	J	CR	2.98		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN		U			U			U	EM	30.60		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	0.52	J	OC	0.14	J	OC	966.25	J	I,MI,LE,CR	75.04	J	CR
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	1.46	J	OC	0.39	J	OC	4,176.54	J	MI,LE,SE,CR	305.01	J	CR
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	1.75	J	OC	0.48	J	OC	2,218.82	J	MI,LE,	186.26		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	72.80			18.87			131,874.43	J	MI,LE	11,831.78	J	DMI
OCTACHLORODIBENZO-P-DIOXIN	622.73			148.12			986,660.25	J	MI,LE	124,961.74	J	E,DMI
2,3,7,8-TETRACHLORODIBENZOFURAN		U			U		45.41			2.27		
1,2,3,7,8-PENTACHLORODIBENZOFURAN		U			U		59.15			2.95	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN		U			U		89.95			4.66	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.21	J	OC		U		971.08	J	1	57.47		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.16	J	OC		U		440.13	J	1	24.89		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U		15.94	J	I,CR		UJ	SE
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.13	J	OC		U		690.93	J	1	19.94		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	10.16			2.30	J	OC	17,934.56	J	I,LE	1,556.63		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0.49	J	OC	0.18	J	OC	1,802.58	J	1	81.70		
OCTACHLORODIBENZOFURAN	36.07			8.71			78,151.15	J	MI,LE,SE	9,033.12	J	DMI
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS		U			U		193.49			19.17		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	1.83			0.34			1,104.03			200.11		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	29.63			7.38			65,159.29			2,182.08		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	352.49			90.97			123,366.79			27,186.77		
TOTAL TETRACHLORINATED DIBENZOFURANS	0.16				U		505.63			37.09		
TOTAL PENTACHLORINATED DIBENZOFURANS	1.12			0.35			2,831.51			175.98		
TOTAL HEXACHLORINATED DIBENZOFURANS	8.06			1.99			5,507.40			871.66		
TOTAL HEPTACHLORINATED DIBENZOFURANS	33.38			7.85			19,997.65			1,638.32		


Chemical Name	SS095CA			SS095DA		
	Result	ValQual	Reason	Result	ValQual	Reason
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U			U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN		U	EM	1.74	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	3.38	J	OC	3.95	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	10.56			12.59		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	8.66			10.15		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	355.88			438.31		
OCTACHLORODIBENZO-P-DIOXIN	2,961.45			3,851.93		
2,3,7,8-TETRACHLORODIBENZOFURAN		U			U	EM
1,2,3,7,8-PENTACHLORODIBENZOFURAN		U		0.14	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN		U	EM	0.26	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	2.26	J	OC	1.98	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.78	J	OC	1.24	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.80	J	OC	0.93	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	48.41			62.12		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN		U	EM	3.31	J	OC
OCTACHLORODIBENZOFURAN	173.37			261.12		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS		U		0.35		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	5.44			8.80		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	81.46			96.13		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	933.30			1,070.56		
TOTAL TETRACHLORINATED DIBENZOFURANS	0.79			0.75		
TOTAL PENTACHLORINATED DIBENZOFURANS	4.33			8.18		
TOTAL HEXACHLORINATED DIBENZOFURANS	67.39			60.11		
TOTAL HEPTACHLORINATED DIBENZOFURANS	173.18			234.23		

ATTACHMENT B
REASON CODES FOR DATA QUALILFICATION

## Reason Codes for Data Qualification - Dioxins and Furans

MB Contaminated blank
DD Result is from dilution where ion ratio criterion not met on initial analysis
OC Measurement below calibration
I Internal standard recovery outside of control limits
MI Matrix interference
EM Estimated maximum possible concentration (ion ratio criterion not satisfied))
DMI Result from dilution analysis; internal standard recovery from initial analysis within limits but biased by matrix interference
E Exceeded calibration range
CR Chromatographic resolution poor
DP Diphenyl ether interference
SE Excessive difference in results between analyses of samples. Significantly lower (>25\%) result after dilution for analyte above calibration or at saturation in initial analysis.
CS Cleanup standard recovery unacceptable
LE Result from dilution calculated assuming recovery of internal standard equal to tetra or tetra and penta chlorinated internal standards
FD Variability noted between field duplicates.

# DATA VALIDATION REPORT 

# Soil Samples <br> from <br> Koppers Portion of Cabot/Koppers Superfund Site <br> Gainesville, FL 

Analyses for PCDDs/PCDFs
CAS Report J0605876

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 2
4.0 DATA VALIDATION METHODOLOGY ..... 2
5.0 DATA VALIDATION FINDINGS ..... 3
5.1 Data completeness and deliverables ..... 3
5.2 Sample Receipt ..... 3
5.3 Holding Times, Storage and Preservation ..... 4
5.4 Mass Calibration and Resolution ..... 4
5.5 Window Defining Mixture and Isomer Specificity Check ..... 4
5.6 Initial Calibrations ..... 4
5.7 Continuing Calibrations ..... 5
5.8 Chromatographic Resolution ..... 5
5.9 Method Blanks ..... 5
5.10 Laboratory Control Samples (LCS) ..... 6
5.11 Identification Criteria ..... 6
5.12 Confirmation Analyses ..... 6
5.13 Detection Limits ..... 7
5.14 Labeled Compound Recoveries ..... 7
5.15 Sample Dilutions ..... 7
5.16 Equipment Blank ..... 8
5.17 Field Duplicates ..... 8
5.18 Data Consistency ..... 9
5.19 TEQ Calculations ..... 9
6.0 REFERENCES ..... 9

## List of Attachments

Attachment A Data Summary

Attachment B Reason Codes for Data Qualification

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

This report provides an evaluation of data for 37 samples collected on December 7 and 8, 2006 and submitted for analysis for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in accordance with EPA Method 1613. Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL on December 8, 2006 and subsequently transferred to the CAS laboratory in Houston, TX for analysis. These samples were analyzed at CAS under Service Request Number J0605876.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS097AA	SS096AA	SS099AA
SS097BA	SS096BA	SS099BA
SS097CA	SS096CA	SS099CA
SS097DA	SS096DA	SS099DA
SS001AA	SS082AA	SS084AA
SS001BA	SS082BA	SS084BA
SS001CA	SS082CA	SS062AA
SS001DA	SS082DA	SS062BA
SS038AA	SS098AA	SS062CA
SS038AC	SS098BA	SS062CC
SS038BA	SS098CA	SS062DA
SS038CA	SS098DA	
SS038DA		
SS038DB		

Samples from the site perimeter include those from locations listed below:
SS097 (South border)
SS001 (Southwest corner)
SS082 (Southeast border, inside source area)
SS084 (Southeast border)

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for samples with PCDDs/PCDFs within the range of the instrument calibration upon initial analysis are generally valid as reported. Results below the calibration range are qualified as estimated. Results for samples initially above the calibration range and then reported from dilution analyses are qualified as estimated with a wide window of uncertainty.

Cleanup procedures implemented did not remove matrix interferences in several samples. These interferences resulted in apparent internal standard recoveries that were above control limits and required qualification of associated target analyte results. The absence of valid internal standard recoveries then compromised the quantitation of analyte concentrations from dilution analyses. CAS further compounded the uncertainty by adjusting data by factors that are not considered applicable. Samples where results for some analytes should be considered as gross estimates include SS038AA, SS038AC, SS062AA, SS082AA, SS82BA, SS082CA, SS096AA, SS096BA, SS096CA, SS099BA, SS099CA and SS084BA. Results for these samples should be reviewed by the project manager to evaluate the margin between their toxic equivalencies (TEQs) and site action limits. Although no samples have been rejected in their entirety based on the validation, they may not all be suitable to support project decisions.

Toxicity equivalency (TEQ) values for the samples as calculated by CAS are based on the 1998 WHO toxic equivalency factors (TEFs) and include measurements for peaks that failed to meet method criteria for positive identification. TEQs have been recalculated in accordance with EPA Region 4 guidance and using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Chain of Custody documentation
3. Sample receipt
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Identification criteria
10. Method blank analysis
11. Laboratory Control Samples
12. Second column confirmation analysis
13. Detection Limits
14. Labeled compound recoveries
15. Field blanks
16. Field Duplicates
17. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. Chromatograms and raw data were reviewed for those samples collected on the site perimeter, and reported results on the final summary forms for these samples were verified from the raw data instrument print-outs for sample concentrations.

Results for the total congener class PCDDs and PCDFs have not been validated and should be considered as estimated in all samples. These data are not included in the TEQ calculations. These are quantified based on the assumption that their response factors are the same as the 2378-substitued isomers. All data reported are from the initial analyses and many include congeners above instrument calibration. Any factors affecting the accuracy of results for the 2378-isomers apply to the entire congener group and interferences in addition to those noted for the 2378-isomers may significantly bias data for these groupings of PCDDs and PCDFs.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

The submitted data packages contained instrumental documentation elements required for full validation. However, documentation of data calculations involving adjustments of measured results were not included as part of the reporting package. Upon request, CAS provided explanations of selected individual sample calculations, but the approach taken was samplespecific.

It should be noted that data for the required QA/QC analyses including the mass calibration and resolution checks, window-defining mix and continuing calibration standards were not in chronological order in the package.

### 5.2 Sample Receipt

Samples were received at CAS Houston via FedEx on December 12, 2006. Chain of Custody (COC) Documentation

COCs were legible and properly completed. Samples from SS096 (all depths) and SS038DB were not checked on the COC for dioxin analysis. The Jacksonville laboratory noted that extra
bottles for dioxin analysis were submitted, but no documentation that client approval for the analysis had been obtained was provided.

### 5.3 Holding Times, Storage and Preservation

Samples were received with a cooler temperature of $4^{\circ} \mathrm{C}$, within the method recommended range. Method 1613B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.4 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence.

### 5.5 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. All congeners in the solution were detected at expected times. The height of the valley between the closely eluting isomers 1,2,3,8-TCDD and 2,3,7,8-TCDD less than $25 \%$. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with separate analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers $1,2,3,9-$ TCDF, $2,3,4,7$-TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.6 Initial Calibrations

Two instruments were used for the DB-5 column analysis for all PCDDs and PCDFs except 2,3,7,8-TCDF. Five-point calibrations were conducted on October 25 and November 7, 2006. Calibration for $2,3,7,8$-TCDF confirmation on the DB- 225 column was conducted on November 9,2006 . The initial calibrations were acceptable with $\%$ RSDs $\leq 20 \%$ for the relative responses (RR) for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

No second-source standard was analyzed to verify the calibration.

### 5.7 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were initially conducted on December 26, 27 and 28, 2006 with analyses of samples at dilution on January 6, 2007. Analyses for 2,3,7,8-TCDF on the DB225 column were conducted on December 28 and 29, 2006 and January 4,5 and 31, 2007. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Although run logs indicate that calibration check standards were analyzed at the end of each sequence, no data for these checks were included in the package. Method 1613 does not specifically require these.

### 5.8 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. Resolution of 123678- and 123789-HxCDD isomers was not achieved in some standards or in several samples. Since these isomers have the same TEFs, this does not significantly impact sample results.

### 5.9 Method Blanks

Two method blanks were prepared with the initial extraction and one of these was analyzed twice. The method blanks contained trace levels of several target PCDDs and PCDFs. OCDD, $1234678-H p C D D$, OCDF and $123478-H x C D F$ and $234678-H p C D F$ were detected in one or more of the blank analyses. Since the duplicate analyses of the one method blank demonstrated variability in the analytes and levels detected, the maximum concentration from the three analyses of method blanks were used for data qualifications. Results for these analytes in samples at concentrations comparable to or less than 2 times blank have been qualified to be reported as non-detected with the reporting limit set at the amount initially reported. Results within a factor of 5 of the blank have been qualified to be estimated with potential high bias. Detections affected by method blank levels are summarized below:

SS097CA	$1234679-H p C D D, 123478-H x C D F$
SS097DA	$123678-H x C D D, 1234679-H p C D D, 123478-H x C D F, 1234678-H p C D F$, OCDD,
SS001CA	$123478-H x C D F$, OCDF
SS001DA	$123478-H x C D F, 1234789-H p C D F$
SS038CA	$123478-H x C D F$
SS062DA	$123478-H x C D F$

### 5.10 Laboratory Control Samples (LCS)

Laboratory control samples and duplicates were extracted with each preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.11 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Samples in this set contained a variety of interferents resulting in peaks that failed criteria for identification. These interferents may be non-PCDD/PCDFs with one or both of the mass fragments of a target analyte. Review of the raw data confirmed that the majority of these results, reported by CAS as estimated maximum possible concentrations (EMPC) with the "K" qualifier, represented peaks with ratios close to that expected for the respective PCDD of PCDF. In accordance with Region 4 guidance and the USEPA Functional Guidelines, results for these analytes in the affected samples have been qualified as non-detected with the reporting limit set at the amount calculated. This provides a high bias to the reporting limit since the actual maximum possible amount in the sample would be include only that fraction of the area of one peak that would satisfy the ratio requirement. Based on review of the data, it is considered likely that the target analyte is present at a concentration below the reported value in all instances.
$12378-\mathrm{PeCDD}$ and $123478-\mathrm{HxCDF}$ failed to meet the ion ratio criteria in the initial analysis of SS038AC and were reported as estimated maximum possible concentrations (EMPC). However, the peaks at dilution did meet the criterion for positive identification; results from this analysis are estimated and have been used by AMEC for revised TEQ calculations.

The internal standard ${ }_{13} \mathrm{C}$-OCDD failed to meet the ion ratio requirement for the analyses of SS099BA and SS099CA. The recoveries noted for this internal standard are not valid and their use for calculation of OCDD and OCDF concentrations introduces additional uncertainty. Results for OCDD and OCDF are qualified as estimated in these samples for this and additional reasons as noted below.

### 5.12 Confirmation Analyses

2,3,6,7-TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of 2,3,7,8-TCDF from
the DB-5 column analysis. Final validated data and the TEQ includes the confirmation result for this analyte.

### 5.13 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.14 Labeled Compound Recoveries

Recoveries of internal standards fell outside of control limits for the initial analysis of several samples. Recoveries of the labeled internal standards for some or all HxCDDs, HpCDD, HxCDFs, HpCDFs, OCDD and OCDF were above control limits in samples as listed below:

```
SS038AA, SS038AC
SS096AA,SS096BA, SS096CA,
SS082AA, SS082BA, SS082CA
SS099BA, SS099CA,
SS084BA
SS062AA
```

Method 1613 specifies gel permeation chromatography cleanup for soil samples. CAS did not perform this step, and review of the raw data for the above samples indicates that the extract cleanup procedures used did not remove significant matrix interferences. These interferences affected the measurement of the $123789-$ HxCDD recovery standard used for calculation of the HxCDD, HxCDF, HpCDD, HpCDF and OCDD internal standards. As a result of the suppression of the instrument response to the recovery standard, calculations for recoveries of the listed internal standards gave apparent recoveries of up to $600 \%$. No reliable data on the recovery of the affected internal standards spiked into the sample and used for quantitation of target PCDDs and PCDFs could be obtained. All reported data for target dioxins and furans with internal standard recoveries outside of the limits are qualified as estimated.

### 5.15 Sample Dilutions

Several samples in this set, as listed below, contained levels of PCDDs and PCDFs above the instrument calibration.

SS038AA, SS038AC, SS038BA
SS096AA, SS096BA, SS096CA, SS096DA
SS082AA, SS082BA, SS082CA
SS098AA
SS099AA, SS099BA, SS099CA
SS084BA
SS062AA, SS062BA

The primary corrective action for this in Method 1613 is to extract a smaller portion of the sample. Dilution by a factor of 10 is an alternative if it is determined that a smaller sample size will not be representative. Although these samples are characterized as sandy soils where representativeness would not be expected to be problematic, no reeextractions were performed. Samples were diluted by factors up to 100 by adding more internal standards to the extract.

CAS data reduction protocol for diluted samples where internal standard recoveries were elevated in the initial analysis is to correct the recovery in the diluted analysis by the recoveries of tetra- or tetra and penta-chlorinated internal standards. Review of data for samples unaffected by interferences and apparent high recoveries does not support the use of this average; tetra- and penta-chlorinated internal standards consistently recover at significantly higher levels than the hexa- through octa-chlorinated internal standards. This data reduction practice likely leads to a significant low bias to results in affected samples. All measurements of hexa, hepta and octachlorinated dioxins and furans reported from dilutions where their quantitation was adjusted for tetra- and pentachlorinated standard recoveries have been qualified as estimated with potential significant bias.

Although internal standard recoveries for 1234678 -HpCDD and OCDD/OCDF in SS062AA, SS062BA SS096DA and SS099AA fell within the relatively wide limits of Method 1613, the same matrix interference was evident in their analysis and the internal standards are likely biased high. The results for HpCDD, OCDD and OCDF from the dilution analyses of these samples are qualified for low bias.

CAS stated that they do not reanalyze samples where OCDD and/or OCDF are the only analytes above the calibration range. In practice, they sometimes but not always reanalyze samples where HpCDD is above calibration. HpCDD and OCDD in SS097AA and SS084AA and OCDD in SS001AA, SS098BA, and SS098CA were above the calibration range from the initial analysis and are qualified as estimated. In addition, many of the measurements for OCDD and HpCDD in the diluted samples were also measured above the calibration range.

### 5.16 Equipment Blank

No equipment blank was collected with this sample set.

### 5.17 Field Duplicates

Field duplicate samples were collected at SS038D, SS038A and SS062C. Results as summarized below demonstrate acceptable precision for SS038A and SSO62C with relative percent differences for most analytes and the TEQs below $50 \%$. The variability between the duplicates from SS038D is greater on a percentage basis, but the levels at this location are relatively low and the absolute differences in concentration are not significant.

### 5.18 Data Consistency

Results obtained on dilution for the samples were compared to the initial analyses. Results for several analytes were significantly lower in the dilution analyses although the analyte was present above the calibration curve or at saturation level in the initial analysis. This is likely an artifact of the CAS data adjustment protocol as detailed above for sample dilutions and illustrates the bias introduced. Results for analytes as listed below are qualified as estimated based on significantly lower results reported from the dilution analyses than noted from the initial analyses.

SS038AA 234678-HxCDF
SS038AC 1234678-HpCDF, OCDF
SS096AA 123678-HxCDD
SS096BA 1234678-HpCDF, 1234678-HpCDD, OCDF
SS096CA OCDF
SS096DA 1234678-HpCDD, OCDD
SS082AA 1234678-HpCDD, OCDF
SS082BA 1234678-HpCDF, OCDF
SS082CA OCDF
SS098AA OCDF
SS099AA 1234678-HpCDD, OCDF
SS099BA 123678-HxCDD, 123789-HxCDD
SS062AA 1234678-HpCDF, OCDF
SS062BA 1234678-HxCDD, 1234678-HpCDF, OCDF

### 5.19 Calculations

Calculations for measurements within the instrument calibration range were verified for the initial analyses of perimeter samples. As noted above, calculations from dilutions for hexa, hepta and octa-chlorinated dioxins and furans in several samples were adjusted for the initial recoveries of tetra or tetra and pentachlorinated internal standards. CAS calculations of the adjustment factors for each sample were not documented and in some instances it could not be determined exactly which tetra or penta recovery standards were used for this manipulation. All data from this procedure are qualified with as estimates with wide uncertainty.

Calculations for toxic equivalencies as provided were calculated using 1998 WHO toxic equivalency factors (TEF) and one-half the detection limit for non-detected analytes. Peaks reported that did not meet identification criteria were included. Values have been recalculated using the revised 2006 WHO TEF values and one-half the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

Beazer East
Data Review for PCDDs/PCFs J0605876

## amec ${ }^{0}$

SDG J0605876: PCDDs/PCDFs in Field Duplicate Samples

Analyte	SS062CA	SS062CC	RPD	SS038AC	SS038CC	RPD	SS038DA	SS038DB	RPD
2,3,7,8-TCDD	ND	ND		2.84	6.34	76\%	ND	ND	
1,2,3,7,8-PeCDD	1.04	1.28	21\%	196	137*	35\%	1.228	0.334	114\%
1,2,3,4,7,8-HxCDD	1	1.84	59\%	764	589	26\%	2.51	0.781	105\%
1,2,3,6,7,8-HxCDD	13.4	19.6	38\%	2662	2171	20\%	14.6	2.761	136\%
1,2,3,7,8,9-HxCDD	2.94	3.04	3\%	1542	1260	20\%	6.94	1.067	147\%
1,2,3,4,6,7,8-HpCDD	254	389	42\%	72100	47500	41\%	412	171	83\%
OCDD	2570	3847	40\%	376000	339000	10\%	3387	977	110\%
2,3,7,8-TCDF	ND	ND		121	99.9	19\%	ND	1.82	
1,2,3,7,8-PeCDF	0.465	0.48	3\%	74.9	53.4	34\%	0.243*	2.32	162\%
2,3,4,7,8-PECDF	0.607	0.708	15\%	82.7	77.6	6\%	0.309	0.997	105\%
1,2,3,4,7,8-HxCDF	1.47	1.83	22\%	358	312*	14\%	1.565	3.38	73\%
1,2,3,6,7,8-HxCDF	1.83	2.34	24\%	277	210	28\%	1.117	1.185	6\%
1,2,3,7,8,9-HxCDF	0.27	0.209	25\%	5.34	10.7	67\%	ND	ND	
2,3,4,6,7,8-HxCDF	1.57	2.2	33\%	185	278	40\%	2.36	0.867	93\%
1,2,3,4,6,7,8-HpCDF	38.5	52	30\%	10400	6620	44\%	44.3	14.7	100\%
1,2,3,4,7,8,9-HpCDF	2.21	2.96	29\%	587	527	11\%	3.98	1.381	97\%
OCDF	185	273	38\%	30700	24000	24\%	146	60.223	83\%
TEQ (CAS), ng/kg	6.89	9.69	34\%	1.70E+03	$1.26 \mathrm{E}+03$	30\%	9.31	4.27	74\%

[^1]
## ATTACHMENT A

## DATA SUMMARY

Chemical Name	SS001AA			SS001BA			SS001CA			SS001DA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U	EM		U			U			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	2.01	J	OC	0.55	J	OC		U			U	
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	6.18			1.06	J	OC	0.20	J	OC		U	EM
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	16.72			4.78	J	OC	0.68	J	OC	1.06	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	15.98			3.76	J	OC	0.65	J	OC	0.52	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	746.83			192.40			26.11			28.93		
OCTACHLORODIBENZO-P-DIOXIN	6,956.79	J	E	1,730.72			240.16			316.93		
2,3,7,8-TETRACHLORODIBENZOFURAN		U			U			U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.31	J	OC	0.37	J	OC		U			U	
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.68	J	OC	0.71	J	OC		U			U	
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	2.74	J	OC,MB	1.43	J	OC,MB		U	MB		U	MB
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	2.38	J	OC	0.75	J	OC		U			U	
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U	EM		U			U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	1.69	J	OC	0.75	J	OC		U			U	
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	95.77			17.53			3.27	J	OC	4.17	J	OC
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	6.07			1.28	J	OC	0.21	J	OC	0.25	J	OC
OCTACHLORODIBENZOFURAN	458.96			82.16			14.05			23.20		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	8.24			1.85			0.20				U	
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	26.01			3.81			0.30				U	
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	281.29			54.61			8.41			6.03		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	3,274.27			705.17			103.96			65.67		
TOTAL TETRACHLORINATED DIBENZOFURANS	21.05			8.98			0.41				U	
TOTAL PENTACHLORINATED DIBENZOFURANS	43.76			11.86			0.79			0.31		
TOTAL HEXACHLORINATED DIBENZOFURANS	105.91			22.87			2.95			4.35		
TOTAL HEPTACHLORINATED DIBENZOFURANS	372.96			69.29			12.07			20.85		


Chemical Name	SS038AA			SS038AC			SS038BA			SS038CA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U	EM	6.34				U	EM		U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	196.01			163.48	J	DD	5.71			0.50	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	764.89			589.49			16.61			0.83	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	2,662.97	J	LE	2,171.34	J	LE	54.16			2.81	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	1,543.66	J	LE	1,260.96			50.82			2.00	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	72,086.74	J	I,LE	47,506.08	J	LE.I	3,050.14			102.58		
OCTACHLORODIBENZO-P-DIOXIN	376,328.91	J	LE,E	339,461.94	J	LE	26,714.59			972.28		
2,3,7,8-TETRACHLORODIBENZOFURAN	120.65			99.87			0.68	J	OC		U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	74.90			53.40			0.93	J	OC		U	EM
2,3,4,7,8-PENTACHLORODIBENZOFURAN	82.73			77.56			0.92	J	OC		U	EM
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	357.80	J	1	284.43	J	DD, I	9.32			0.60	J	OC,MB
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	277.02	J	1	210.35	J	1	4.46	J	OC		U	
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	5.34	J	1	10.66	J	1		U	EM		U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	184.52	J	I,SE	277.70			7.49				U	
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	10,419.89	J	I,LE,E	6,623.65	J	SE,LE	259.99			13.79		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	587.50	J	I,LE	527.39	J	1	18.54			1.60	J	OC
OCTACHLORODIBENZOFURAN	30,735.08	J	LE	24,014.83	J	LE,SE	1,273.72			59.54		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	93.31			191.99			29.29				U	
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	1,315.86			864.93			58.88			0.98		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	33,271.89			20,851.59			761.39			23.76		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	77,421.32			69,249.43			12,301.16			294.78		
TOTAL TETRACHLORINATED DIBENZOFURANS	221.16			335.80			10.67				U	
TOTAL PENTACHLORINATED DIBENZOFURANS	1,586.37			1,411.69			41.98			1.64		
TOTAL HEXACHLORINATED DIBENZOFURANS	5,513.60			7,940.51			361.55			11.00		
TOTAL HEPTACHLORINATED DIBENZOFURANS	10,446.67			9,668.30			1,139.78			70.09		


Chemical Name	SS038DA			SS038DB			SS062AA			SS062BA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U			U	EM		U	EM	6.27		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	1.23	J	OC	0.33	J	OC	71.45			43.02		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	2.51	J	OC	0.78	J	OC	157.45			52.45		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	14.61			2.76	J	OC	848.03			499.76		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	6.94			2.07	J	OC	495.39			267.76		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	412.75			171.06			19,053.29	J	DMI	11,445.34	J	SE,DMI
OCTACHLORODIBENZO-P-DIOXIN	3,387.12			976.93			142,298.32	J	E,DMI	93,149.54	J	DMI
2,3,7,8-TETRACHLORODIBENZOFURAN		U		1.82			5.10			3.84		
1,2,3,7,8-PENTACHLORODIBENZOFURAN		U	EM	2.32	J	OC	11.40			8.51		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.31	J	OC	1.00	J	OC	16.90			10.16		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	1.57	J	OC	3.38	J	OC	80.27	J	1	46.02		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	1.12	J	OC	1.19	J	OC	68.87	J	1	41.82		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U		4.88	J	OC,	8.76		
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	2.36	J	OC	0.87	J	OC	61.89	J	1	40.49		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	44.26			14.70			1,949.71	J	SE,LE	1,458.31	J	SE,DMI
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	3.98	J	OC	1.38	J	OC	185.59	J	1	97.01		
OCTACHLORODIBENZOFURAN	146.64			60.22			8,898.74	J	SE,DMI	5,591.95	J	SE,DMI
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS		U			U		178.59			136.66		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	3.35			1.11			781.70			534.74		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	83.77			22.95			11,992.89			4,241.84		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	941.09			357.26			48,806.85			35,876.00		
TOTAL TETRACHLORINATED DIBENZOFURANS	1.16			3.24			92.48			85.03		
TOTAL PENTACHLORINATED DIBENZOFURANS	9.64			7.10			647.07			450.15		
TOTAL HEXACHLORINATED DIBENZOFURANS	51.52			16.69			2,366.75			1,793.31		
TOTAL HEPTACHLORINATED DIBENZOFURANS	183.43			54.60			11,789.41			5,783.98		


Chemical Name	SS062CA			SS062CC			SS062DA			SS082AA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U			U			U		1.92		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	1.04	J	OC	1.28	J	OC	0.31	J	OC	37.77		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	1.00	J	I,OC	1.85	J	OC, 1	0.42	J	OC	99.37	J	I
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	13.36	J	1	19.64	J	1	0.85	J	OC	401.09	J	1
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	2.94	J	OC	3.04	J	1	0.80	J	OC	105.30	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	253.77			388.59	J	1	25.46			11,185.13	J	LE,I,SE
OCTACHLORODIBENZO-P-DIOXIN	2,568.47			3,947.59	J	E	266.62			87,362.17	J	LE
2,3,7,8-TETRACHLORODIBENZOFURAN		U			U			U		1.73		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.47	J	OC	0.48	J	OC	0.17	J	OC	4.23	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN		U	EM	0.71	J	OC	0.27	J	OC	5.40	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	1.47	J	I,OC	1.83	J	OC, 1		U	MB	41.34	J	1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	1.83	J	I,OC	2.34	J	OC, 1	0.28	J	OC	31.74	J	1
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U	EM	0.21	J	OC, 1	0.18	J	OC	0.85	J	I,OC
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	1.57	J	I,OC	2.20	J	OC, I	0.38	J	OC	45.26	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	38.54	J	I,OC	52.05	J	1	3.25	J	OC	1,700.66	J	1
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	2.21	J	I,OC	2.96	J	OC, 1	0.27	J	OC	115.85	J	1
OCTACHLORODIBENZOFURAN	184.81			272.80			13.60			5,874.71	J	LE,SE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	0.77			1.06				U		11.99		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	4.82			5.04			0.31			174.77		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	141.94			131.87			8.39			2,877.69		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	748.18			1,113.46			86.38			36,626.06		
TOTAL TETRACHLORINATED DIBENZOFURANS	4.92			4.02				U		33.53		
TOTAL PENTACHLORINATED DIBENZOFURANS	19.59			25.88			1.07			203.42		
TOTAL HEXACHLORINATED DIBENZOFURANS	59.26			79.08			4.22			1,885.21		
TOTAL HEPTACHLORINATED DIBENZOFURANS	129.76			180.15			11.80			7,435.63		


Chemical Name	SS082BA			SS082CA			SS082DA			SS084AA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	2.04				U			U	EM	0.96	J	OC
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	26.81			6.32			0.18	J	OC	9.01		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	83.10			44.21				U	EM	24.17		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	1,589.07			466.20			1.13	J	OC	50.89		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	959.11			305.78			1.02	J	OC	60.07		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	86,565.55	J	I,LE	31,559.88	J	I,LE	77.73			2,217.06	J	E
OCTACHLORODIBENZO-P-DIOXIN	830,637.85	J	I,E,LE	252,398.73	J	I,LE	913.28			22,319.19	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN	4.80				U			U		3.47		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	16.39				U		0.14	J	OC	0.87	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	21.89			1.97	J	OC		U	EM	1.15	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	279.56	J	1	54.79	J	1		U	EM	5.95		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	51.14	J	1	11.50	J	1		U		5.47		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	5.82	J	1	23.67	J	1		U		0.33	J	OC
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	166.51			26.39				U			U	EM
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	6,293.49	J	LE,SE	2,986.04	J	1	7.68			247.93		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	700.53	J	1	210.60	J	1	0.86	J	OC	14.53		
OCTACHLORODIBENZOFURAN	44,928.36	J	I,LE, SE	18,173.02	J	I,LE,SE	50.97			1,210.88		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	101.60			28.02			0.08			5.79		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	559.50			149.19			0.35			90.52		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	143,574.26			51,277.45			26.41			997.11		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	228,758.83			140,158.50			548.37			9,447.53		
TOTAL TETRACHLORINATED DIBENZOFURANS	57.08			3.94			0.12			14.86		
TOTAL PENTACHLORINATED DIBENZOFURANS	263.64			37.06			0.59			50.35		
TOTAL HEXACHLORINATED DIBENZOFURANS	15,478.66			5,501.61			6.10			236.26		
TOTAL HEPTACHLORINATED DIBENZOFURANS	43,347.32			15,275.77			39.37			908.41		


Chemical Name	SS084BA			SS096AA			SS096BA			SS096CA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		$\cup$	EM		U	EM	7.83	J	DD		U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	20.14			619.12			79.19			24.18		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	56.04	J	1	2,003.61			204.88			98.40		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	404.38	J	1	5,549.93	J	LE,SE	1,048.15			490.00	J	DD
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	105.94	J	1	3,803.76	J	LE	375.26			344.19		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	19,947.67	J	I,LE	189,612.94	J	I,LE	26,710.24	J	I,LE,SE	32,472.93	J	LE
OCTACHLORODIBENZO-P-DIOXIN	205,959.81	J	E,LE	140,581.70	J	I,LE	217,716.17	J	LE	357,166.74	J	I,LE
2,3,7,8-TETRACHLORODIBENZOFURAN	2.00			18.04			2.22			1.86		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	4.58	J	OC	71.54			9.84			5.28		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	6.17			81.81			12.60				U	EM
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	61.88	J	1	642.11	J	1	97.89	J	1	75.67	J	1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	31.25	J	1	539.51	J	1	78.24	J	1	35.51	J	1
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	10.81	J	1	118.94	J	1	20.37	J	1	12.33	J	I
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	48.47	J	1	1,348.94			175.33			85.62		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	1,797.00	J	1	20,353.72	J	I,LE	2,784.48	J	I,SE,LE	2,504.85	J	I,LE
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	172.53	J	1	2,046.47	J	1	247.88	J	1	198.47	J	1
OCTACHLORODIBENZOFURAN	11,602.61	J	LE	100,966.39	J	I,LE	15,111.92	J	LE,SE	16,298.08	J	I,SE,LE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	10.02			9.99			18.98			51.32		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	189.11			2,686.92			375.18			306.78		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	6,627.37			105,662.02			11,121.79			31,617.21		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	18,918.61			105,806.78			72,231.21			82,542.70		
TOTAL TETRACHLORINATED DIBENZOFURANS	39.81			264.83			70.08			59.59		
TOTAL PENTACHLORINATED DIBENZOFURANS	236.23			3,289.08			457.62			283.49		
TOTAL HEXACHLORINATED DIBENZOFURANS	2,526.39			20,043.93			5,243.80			4,162.95		
TOTAL HEPTACHLORINATED DIBENZOFURANS	11,090.13			27,408.72			18,406.48			14,084.39		


Chemical Name	SS096DA			SS097AA			SS097BA			SS097CA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	0.70	J	OC	0.36	J	OC		U			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	11.23			5.77	J	OC	0.26	J	OC		U	
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	33.12			18.21			0.58	J	OC		U	
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	128.61			66.61			2.45	J	OC	0.45	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	64.20			51.55			1.67	J	OC	0.24	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	3,203.15	J	SE,DMI	2,563.91	J	E	79.52			12.83	J	MB
OCTACHLORODIBENZO-P-DIOXIN	33,059.94	J	SE,DMI	22,685.56	J	E	734.20			147.75		
2,3,7,8-TETRACHLORODIBENZOFURAN	0.56	J	OC		U			U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	1.29	J	OC	1.13	J	OC	0.13	J	OC		U	
2,3,4,7,8-PENTACHLORODIBENZOFURAN	1.69	J	OC	3.25	J	OC	0.33	J	OC		U	
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	13.04			18.00			1.88	J	MB		U	MB
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	9.73			10.67			0.82	J	OC		U	
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	0.49	J	OC	0.41	J	OC		U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	8.63			8.12			0.52	J	OC		U	
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	508.95			379.49			19.65			1.48	J	OC,MB
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	31.75			23.79				U	EM		U	
OCTACHLORODIBENZOFURAN	3,138.65	J	DMI	1,686.37			48.48			5.87	J	MB,OC
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	3.29			14.95			1.30				U	
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	49.06			78.48			2.80				U	
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	775.28			789.60			27.34			3.80		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	9,949.34			8,462.15			260.15			42.26		
TOTAL TETRACHLORINATED DIBENZOFURANS	6.39			26.16			2.05				U	
TOTAL PENTACHLORINATED DIBENZOFURANS	61.26			69.80			4.28			0.17		
TOTAL HEXACHLORINATED DIBENZOFURANS	592.82			306.81			10.36			1.02		
TOTAL HEPTACHLORINATED DIBENZOFURANS	2,249.64			1,319.58			50.34			4.62		


Chemical Name	SS097DA			SS098AA			SS098BA			SS098CA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U		1.95				U			U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN		U		50.12			3.01	J	OC	1.20	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN		U		120.51			14.52			5.15	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN		U	EM	368.43			33.85			11.63		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN		U		409.59			62.87			20.69		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN		U	MB	13,551.92			1,811.13			671.49		
OCTACHLORODIBENZO-P-DIOXIN	43.12	J	MB	111,245.22	J	E	13,169.40	J	E	5,262.50	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN		U		0.44				U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.33	J	OC	3.01	J	OC	0.59	J	OC	0.31	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.15	J	OC	3.60	J	OC	1.39	J	OC	0.56	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.69	J	OC, MB	31.63			11.05			3.34	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.26	J	OC	23.43			3.74	J	OC	1.43	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U		1.07	J	OC	0.37	J	OC		U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN		U		22.11			3.07	J	OC	1.23	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	0.90	J	OC,MB	1,328.82			155.07			60.90		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN		U		76.41			8.49			3.09	J	OC
OCTACHLORODIBENZOFURAN	2.72	J	OC,MB	9,725.37	J	SE	561.15			200.71		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS		U		31.73			2.50			0.37		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS		U		473.94			43.13			13.87		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	0.74			4,944.65			929.59			308.91		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	16.05			33,254.14			12,058.99			4,759.60		
TOTAL TETRACHLORINATED DIBENZOFURANS		U		33.37			3.42			0.69		
TOTAL PENTACHLORINATED DIBENZOFURANS	0.60			211.59			30.03			9.41		
TOTAL HEXACHLORINATED DIBENZOFURANS	1.23			1,184.12			181.13			57.47		
TOTAL HEPTACHLORINATED DIBENZOFURANS	0.90			5,606.16			509.86			196.99		


Chemical Name	SS098DA			SS099AA			SS099BA			SS099CA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U	EM	3.69			26.88			5.62		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	0.45	J	OC	29.00			195.26			61.38		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	1.31	J	OC	95.21			764.36			202.29	J	1
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	4.55			292.52			7,025.13	J	LE, SE	3,172.29		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	5.59			372.18			4,213.51	J	LE,SE	1,116.32		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	268.88			11,014.36	J	SE,DMI	245,606.66	J	E	131,232.90	J	E,LE
OCTACHLORODIBENZO-P-DIOXIN	2,295.59			119,068.40	J	DMI	2,792,427.80	J	E, I	2,269,147.30	J	E,I,LE
2,3,7,8-TETRACHLORODIBENZOFURAN		U		0.79	J	OC		U	EM	0.86	J	OC
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.18	J	OC	2.93	J	OC	47.06			60.40		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.24	J	OC	2.99	J	OC	48.81			6.09		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.96	J	OC	29.54			910.68	J	I,LE	255.79	J	1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.46	J	OC	15.47			280.34	J	I,LE	54.61	J	1
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U		1.19	J	OC	29.94	J	I,LE	3.96	J	OC, I
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.68	J	OC	13.57			277.94	J	I,LE	136.49	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	19.05			1,123.90			31,967.20	J	I,LE	11,236.12	J	I,LE
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	1.23	J	OC	99.01			1,667.33	J	I,LE	936.21		
OCTACHLORODIBENZOFURAN	105.79			8,580.93	J	SE,DMI	379,726.11	J	1	296,197.26	J	E,I,LE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	0.16			61.27			1,220.39			409.41		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	2.86			516.56			9,619.84			4,890.33		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	104.99			5,261.06			144,829.28			46,323.40		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	2,012.00			41,286.60			197,518.27			121,243.03		
TOTAL TETRACHLORINATED DIBENZOFURANS	0.25			14.53			223.14			63.64		
TOTAL PENTACHLORINATED DIBENZOFURANS	2.62			115.55			1,729.42			388.14		
TOTAL HEXACHLORINATED DIBENZOFURANS	17.00			999.57			4,133.67			13,847.17		
TOTAL HEPTACHLORINATED DIBENZOFURANS	76.10			5,576.30			28,010.32			15,760.16		


Chemical Name	SS099DA		
	Result	ValQual	Reason
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	0.29	J	OC
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	1.61	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	5.66		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	22.80		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	16.41		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	1,124.78		
OCTACHLORODIBENZO-P-DIOXIN	15,412.68	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN		U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.42	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.37	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	2.23	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN		U	EM
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	2.15	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	79.44		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	5.85		
OCTACHLORODIBENZOFURAN	645.56		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	2.11		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	21.11		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	281.26		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	4,246.73		
TOTAL TETRACHLORINATED DIBENZOFURANS	0.21		
TOTAL PENTACHLORINATED DIBENZOFURANS	8.22		
TOTAL HEXACHLORINATED DIBENZOFURANS	73.18		
TOTAL HEPTACHLORINATED DIBENZOFURANS	394.45		

ATTACHMENT B
REASON CODES FOR DATA QUALILFICATION

## Reason Codes for Data Qualification - Dioxins and Furans

MB Contaminated blank
DD Result is from dilution where ion ratio criterion not met on initial analysis
OC Measurement below calibration
I Internal standard recovery outside of control limits
MI Matrix interference
EM Estimated maximum possible concentration (ion ratio criterion not satisfied))
DMI Result from dilution analysis; internal standard recovery from initial analysis within limits but biased by matrix interference
E Exceeded calibration range
CR Chromatographic resolution poor
DP Diphenyl ether interference
SE Excessive difference in results between analyses of samples. Significantly lower (>25\%) result after dilution for analyte above calibration or at saturation in initial analysis.
CS Cleanup standard recovery unacceptable
LE Result from dilution calculated assuming recovery of internal standard equal to tetra or tetra and penta chlorinated internal standards
FD Variability noted between field duplicates.

## ATTACHMENT C

CAS REPORT AMENDMENT

February 20, 2007
Mandy Sullivan
Columbia Analytical Services, Inc
8540 Baycenter Road
Jacksonville, FL 32256

Subject: $\quad \begin{aligned} & \text { Amendment to Report; } 10605876 \\ & \\ & \text { AMEC/Beazer East, Inc }\end{aligned}$

Dear Mandy,
The Form 3 for SS096BA has been corrected to include the appropriate dilution factor. Please replace page 148 with page 1-148 when validating

- the data package.

The correct Form 2 for sample SS098DA is enclosed. Please replace page 190 with page l-190 when validating the data package.

Please let us know if we can help with anything else.

Sincerely,
Columbia Analytical Services, Inc


- .

HRMS Chemist: Quality \& Projects
ifreemyer@houston.caslab.com

CLIENTID.
SSO96BA

Lab Name: Columbia Analytical Services
Lab Code: CAS
Client Name: AMEC
Matrix(Solid/Aqueous/Waste/Ash): Solid
Sample Receipt Date: 12/12/2006
Ext. Date 12/19/2006
CONCENTRATION UNITS: ( $\mathrm{pg} / \mathrm{L}$ or $\mathrm{ng} / \mathrm{Kg}$ )

Contract:
Lab ID: J0605876-025
Sample Wt/Vol: 9.904 g
Initial Calibration Date: 10/25/2004
Instrument ID: AutoSpec-Ulitima
GC Column ID: DB-5,DB-225
$\mathrm{ng} / \mathrm{Kg} \quad$ \%Moisture:
90.86

TARGET ANALYTE	CONCENTRATIDFIL.		EDL		TEF	TEF-ADJUSTED CONCENTRATION
2378-TCDD	3.297	1	0.251	x	1.0	$3.297 E+00$
12378-PeCDD	79.192	1	0.500	x	,	$7.919 \mathrm{E}+01$
123478-HxCDD	204.882	1	0.783	x	0.1	$2.049 \mathrm{E}+01$
123678-HxCDD	1048.147	1	0.944	X	0.1	$1.048 \mathrm{E}+02$
123789-HxCDD	375.260	1	0.866	X	0.1	$3.753 \mathrm{E}+01$
1234678-HpCDD	26710.238	50	13.433	X	0.01	$2.671 \mathrm{E}+02$
OCDD	217716.174	50	0.898	x	0.0001	$2.177 \mathrm{E}+01$
2378-TCDF	2.216	1	0.342	x	0.1	2.216E-01
12378-PeCDF	9.837	1	0.107	x	0.05	4.919E-01
23478-PeCDF	12.597	1	0.151	x	0.5	$6.299 \mathrm{E}+00$
123478-HxCDF	97.894	1	0.215	x	0.1	$9.789 \mathrm{E}+00$
123678-HxCDF	78.238	1	0.282	x	0.1	$7.824 \mathrm{E}+00$
123789-HxCDF	20.371	1	0.153	x	0.1	$2.037 \mathrm{E}+00$
234678-HxCDF	175.326	1	0.325	x	0.1	$1.753 \mathrm{E}+01$
1234678-HpCDF	2784.481	50	2.684	-	0.01	$2.784 \mathrm{E}+01$
1234789-HpCDF	247.879	1	3.509	-	0.01	$2.479 \mathrm{E}+00$
OCDF	15111.919	50	0.498	X	0.0001	$1.511 \mathrm{E}+00$
					Total $=$	$6.102 \mathrm{E}+02$

(1) World Health Organization (WHO) adopted TEF's taken from: Van Den Berg, et al: Toxic Equivalency Factor(TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildife (environ Health Perspect 106: 775-792 (1998)). and 1989 Update.
(2) The concentration which has "E" flag in the first analysis has been replaced by the dilution analysis, and the dilution factor is reported in "DIL.FACT" column.

The TCDF value is reported from the confirmation analysis (DB-225 column).
Note: Non-detected values are reported as one-half the detection limits(DL/2).


LAABELED COMPOUNDS

13C-2,3,7,8-TCDD	2000	2177.36	108.87	25-164	0.77	1.012
13C-1, 2, 3, 7, 8-PeCDD	2000	2301.87	115.09	25-181	1. 54	1.012 1.220
13C-1, 2, 3, 4, 7, 8-HxCDD	2000	1875.72	93.79	32-141	1.54   1.27	1.220 0.990
13C-I, $2,3,6,7,8-\mathrm{HXCDD}$	2000	1908.90	95.44	28-130	1.27 1.26	0.990 0.992
13C-1, 2, 3, 4, 6, 7, 8-HpCDD	2000	1327.94	66.40	23-140	1.26 1.03	0.992 1.070
13C-OCDD	4000	1928.02	48.20	17-157	0.89	1.1 .138 1.15
13C-2,3,7,8-TCDF	2000	1815.21	90.76	24-169	0.79	0.971
13C-1, 2, 3, 7, 8-PeCDF	2000	2343.66	117.18	24-185	1.56	0.971 1.172
13C-2,3,4,7,8-PeCDE	2000	2079.76	203.99	21-178	1.56	1.172 1.205
13C-1, $2,3,4,7,8-\mathrm{HxCDE}$	2000	1898.76	94.94	26-152	0.52	1.205 0.969
13C-1, $2,3,6,7,8-\mathrm{HxCDF}$	2000	1641.63	82.08	26-123	0.52	0.971
$13 \mathrm{C}-1,2,3,7,8,9-\mathrm{HxCDF}$	2000	2419.90	121.00	29-147	0.52	1.006
13C-2, 3, 4, 6, 7, 8-HxCDF	2000	1895.65	94.78	28-136	0.52	0.986
$13 \mathrm{C}-1,2,3,4,6,7,8-\mathrm{HPCDF}$	2000	1280.89	64.04	28-143	0.44	1.047
$13 \mathrm{C}-1,2,3,4,7,8,9-\mathrm{HPCDF}$	2000	1782.17	89.11	26-138	0.44	1.079

## CLEANUP STANDARD

$37 C 1-2,3,7,8-T C D D$	800	851.00	206.38	$35-197$	1.013

(I) Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.
(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There
is no ion abundance ratio for 37C14-2378-TCDD (cleanup standard).

Q: Please provide detail on the standard procedures for diluting samples. Is the amount of internal standard from the initial spike before extraction taken into account in the dilution process? If so, how?

In accordance with 1613 para 17.5.3, a portion of the extract is diluted with labeled standard to form the desired dilution. For example, if the desired dilution is $1: 10,2 \mathrm{ul}$ of the original 20 ul extract is added to 20 ul of $100 \mathrm{ng} / \mathrm{ml}$ labeled standard. This makes the $1: 10$ dilution of the extract. The 2000 pg of labeled standard is quantitated with 2000 pg of recovery standard by adding 20 ul of recovery standard solution at $100 \mathrm{ng} / \mathrm{ml}$.

Q: Please provide the standard procedures for data reduction in the case of dilutions.
The diluted sample was calculated using the labeled standard recoveries calculated from the initial analysis to correct the results for the losses during isolation and cleanup. For example, if the factor in for 13C-2378-TCDD is 2000pg and the internal standard recovery of the initial analysis was $80 \%$, then the calculation factor for the diluted sample would be 2000/0.80 or 2500pg. This calculation is repeated for all labeled standards. Since the cleanup standard, ${ }^{37} \mathrm{Cl}_{4}-2,3,7,8$-TCDD is not added to the diluted extract, its factor is simply divided by the dilution. For a $1: 10$ dilution, the original factor of 800 pg becomes $800 / 10$ or 80 pg . The sample amount is adjusted to $1 / 10$ of the original value.

Please document the calculations for SS096BA as an example.
The manual calculation in question on $p 823$ is

$$
\begin{aligned}
& \text { OCDD }=\text { (7.455e5 + 8.320e5) x } 4000 \mathrm{pg} \times 50 \\
& (9.155 \mathrm{e} 4+1.004 \mathrm{e} 5) \times 9.904 \times 90.86 / 100 \times 1.035 \times 0.81014
\end{aligned}
$$

Where
7.455 e 5 is the primary ion response of the analyte
8.320 e 5 is the secondary ion response of the analyte

4000 pg is the amount of ${ }^{13} \mathrm{C}$-OCCD internal added to the sample at extraction
50 is the dilution factor
9.155 e 4 is the primary ion response of the internal standard
1.00 e 5 is the secondary ion response of the internal standard
$90.86 / 100$ is the \% solids factor
1.035 is the response factor of OCDD on this instrument, using the initial calibration of 10/25/04
0.81014 is the recovery of 13C-OCDD in the original sample. This corrects the 4000 factor in the numerator.

However, Form 2 of the original sample ( p 147 ) shows recovery of ${ }^{13} \mathrm{C}-\mathrm{OCDD}$ at $146.95 \%$. Page 842 of this report shows severe matrix interference with ${ }^{13} \mathrm{C}-1,2,3,7,8,9-$ HxCDD, the recovery standard. The loss of response of this standard systematically elevates the quantitation results of all Hexa, Hepta and Octa internal standards in the original undiluted sample. Inspection of ${ }^{13} \mathrm{C}-1,2,3,7,8,9-\mathrm{HxCDD}$ in the 1:50 diluted sample on page 865 , shows that the matrix interference has been substantially diluted out. The recovery of the labeled standards affected by matrix interference is to average the recoveries of the unaffected labeled standards. In this case, the Tetra and Penta recoveries are $\operatorname{Av}(63.31,70.87,90.78,96.93,83.18)=81.014 \%$, the estimated recovery of 13C-OCDD subsequently used in the calculation of the diluted OCDD concentration. Note that the OCDD peak for SS096BA, page 848, is saturated, which accounts for the poor correlation between the original and diluted results.

TEQ Summary sheet for SS096BA is updated for the actual dilution of 50 and is submitted as page 148A.

Form 2, Internal Standards recovery for SS098DA is submitted as page 190A.
Sample Set J0605839
Q: Provide calculations and derivation of any factors that are not directly evident from the raw data for the reported concentration of target analytes in the SS095AA dilution sample (J0605839-011DL)

Like the previous case, there is significant matrix interference with ${ }^{13 \mathrm{C}}$-123789-HxCDD (p. 181) that would affect the quantitation of SS095AA internal standards. In this case, the average internal recovery factor is $\operatorname{Av}(100+99.44+100+100+100)=99.89 \%$. By convention, recoveries greater than $100 \%$ are reduced to $100 \%$ for the purpose of estimating the labeled standard correction in the diluted sample.

There is no significant matrix interference with the recovery standards of SS095BA. The recovery of ${ }^{13} \mathrm{C}$-OCDD is $45.68 \%$ in the original sample. The corrected value of the internal in the calculations for the dilution would then be $4000 \mathrm{pg} / 0.4568$.

# DATA VALIDATION REPORT 

# Soil Samples <br> from <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

## Analyses for PCDDs/PCDFs <br> CAS Report J0605879

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 2
5.0 DATA VALIDATION FINDINGS ..... 3
5.1 Data completeness and deliverables ..... 3
5.2 Sample Receipt ..... 3
5.3 Chain of Custody (COC) Documentation ..... 3
5.4 Holding Times, Storage and Preservation ..... 4
5.5 Mass Calibration and Resolution ..... 4
5.6 Window Defining Mixture and Isomer Specificity Check ..... 4
5.7 Initial Calibrations ..... 4
5.8 Continuing Calibrations ..... 5
5.9 Chromatographic Resolution ..... 5
5.10 Method Blanks ..... 5
5.11 Laboratory Control Samples (LCS) ..... 6
5.12 Identification Criteria ..... 6
5.13 Confirmation Analyses ..... 7
5.14 Detection Limits ..... 7
5.15 Labeled Compound Recoveries ..... 7
5.16 Interferences ..... 8
5.17 Sample Dilutions ..... 8
5.18 Data Consistency ..... 9
5.19 Equipment Blank ..... 9
5.20 Field Duplicates ..... 9
5.21 Calculations ..... 10
6.0 REFERENCES ..... 10

## List of Attachments

Attachment A Data Summary
Attachment B Reason Codes for Data Qualification

## DATA QUALIFIER DEFINITIONS

U The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.

N The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.
This report provides an evaluation of data for 24 samples collected on December 8 and 9, 2006 and submitted for analysis for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in accordance with EPA Method 1613. Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL on December 9, 2006 and subsequently transferred to the CAS laboratory in Houston, TX for analysis. These samples were analyzed at CAS under Service Request Number J0605879.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS100AA	SS005AA	SS086AA
SS100BA	SS005BA	SS086BA
SS100CA	SS005CA	SS086BB
SS100DA	SS005DA	SS088AA
SS100DB	SS003AA	SS088BA
SS066AA	SS003BA	SS068AA
SS066AB	SS003CA	SS068BA
SS066BA	SS003CB	
	SS003DA	

Samples from the locations noted below represent site perimeter samples:
SS003 - West border
SS005 - West border
SS086 - East border
SS088 - East border

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for samples with PCDDs/PCDFs within the range of the instrument calibration upon initial analysis are generally valid as reported. Results below the calibration range are qualified as estimated. Most results for samples initially above the calibration range and then reported from dilution analyses are qualified as estimated with a wide window of uncertainty.

Cleanup procedures implemented did not remove matrix interferences in several samples, including those from SS100, SS005, SS066, SS068, SS086 and SS088. In some samples, these interferences resulted in apparent internal standard recoveries that were above control
limits and required qualification of associated target analyte results. In others, the recoveries were within the relatively wide limits of the method, but likely biased. The absence of valid internal standard recoveries then compromised the quantitation of analyte concentrations from dilution analyses. CAS further compounded the uncertainty by adjusting data by factors that are not considered applicable. Results for these samples should be reviewed by the project manager to evaluate the margin between their toxic equivalencies (TEQs) and site action limits. Although no samples have been rejected in their entirety based on the validation, they may not all be suitable to support project decisions.

Corrective measures required by the method in the event of failure to recover the cleanup or internal standards were not taken. Results for non-detected analytes in SS100DA are rejected and all reported analytes in this sample are qualified as estimated.

Toxicity equivalency (TEQ) values for the samples as calculated by CAS are based on the 1998 WHO toxic equivalency factors (TEFs) and include measurements for peaks that failed to meet method criteria for positive identification. TEQs have been recalculated in accordance with EPA Region 4 guidance and using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

Raw data were reviewed for all sample and quality control analyses associated with the analyses of the site border samples.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Chain of Custody documentation
3. Sample receipt
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Identification criteria
10. Method blank analysis
11. Laboratory Control Samples
12. Second column confirmation analysis
13. Detection Limits
14. Labeled compound recoveries
15. Field blanks
16. Field Duplicates
17. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. Chromatograms for all samples requiring dilutions were reviewed for evidence of interferences that would bias results.

Results for the total congener class PCDDs and PCDFs have not been validated and should be considered as estimated in all samples. These data are not included in the TEQ calculations. These are quantified based on the assumption that their response factors are the same as the 2378 -substitued isomers. All data reported are from the initial analyses and may include congeners above instrument calibration. Any factors affecting the accuracy of results for the 2378-isomers apply to the entire congener group and interferences in addition to those noted for the 2378 -isomers may significantly bias data for these groupings of PCDDs and PCDFs.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

The submitted data packages contained instrumental documentation elements required for full validation. However, documentation of data calculations involving adjustments of measured results from dilutions were not included as part of the reporting package. Upon request, CAS provided explanations of selected individual sample calculations, but the approach taken was sample-specific.

It should be noted that data for the required QA/QC analyses including the mass calibration and resolution checks, window-defining mix and continuing calibration standards were not in chronological order in the package.

### 5.2 Sample Receipt

Samples were received at CAS Houston via FedEx on December 9, 2006.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed.

### 5.4 Holding Times, Storage and Preservation

Samples were received with a cooler temperature of $4^{\circ} \mathrm{C}$, within the method recommended range. Method 1613 allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence and documentation for this measure was not reported.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. All congeners in the solution were detected at expected times. The height of the valley between the closely eluting isomers $1,2,3,8$-TCDD and $2,3,7,8$-TCDD less than $25 \%$. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with separate analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9TCDF, $2,3,4,7$-TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

Two instruments were used for the DB-5 column analysis for all PCDDs and PCDFs except 2,3,7,8-TCDF. Five-point calibrations were conducted on October 25 and November 7, 2006. Calibration for $2,3,7,8$-TCDF confirmation on the DB- 225 column was conducted on November 9, 2006. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the relative responses (RR) for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

No second-source standard was analyzed to verify the calibration.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were initially conducted on December 27, 28 and 29, 2006 with analyses of samples at dilution on January 6, 10 and 16, 2007. Analyses for 2,3,7,8TCDF on the DB225 column were conducted on January 4, 5, 9, 10 and 15, 2006. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Although run logs indicate that calibration check standards were analyzed at the end of each sequence, no data for these checks were included in the package. Method 1613 does not specifically require these.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. However, resolution of 123678- and 123478-HxCDD isomers was not achieved in some standards or in several samples and in several instances, apparent matrix interferences resulted in poor chromatographic separations for other target analytes. The $123678-H x C D D$ and $123478-H x C D D$ have the same TEF, so failure to resolve them has little impact on the TEQ for the sample. Results for target analytes not fully resolved from other non-target analytes in perimeter samples as listed below are qualified as estimated.

SS005AA	$123789-H x C D D$
SS005BA	$234678-H x C D F, 123789-H x C D D$
SS005CA	$234678-H x C D F, 123789-H x C D D$
SS005DA	$123789-H x C D D$
SS003AA	$234678-H x C D F$
SS003BA	$123789-H x C D D$
SS086AA	$123789-H x C D D$

### 5.10 Method Blanks

Three method blanks were prepared with the initial extractions and one with a subsequent reextraction of one sample. The method blanks contained trace levels of several target PCDDs and PCDFs, including. OCDD, 1234678-HpCDD, OCDF and 1234678-HpCDF. Since the duplicate analyses of method blanks demonstrate variability in the levels detected, the maximum concentration from the analyses of the method blanks were used for data qualifications. All reported sample concentrations of these analytes were greater than 5 times the blanks and were not qualified.

### 5.11 Laboratory Control Samples (LCS)

Laboratory control sample and a duplicate were extracted with the preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Samples in this set contained a variety of interferents resulting in peaks that failed criteria for identification. These interferents may be non-PCDD/PCDFs with one or both of the mass fragments of a target analyte. Review of the raw data confirmed that the majority of these results, reported by CAS as estimated maximum possible concentrations (EMPC) with the "K" qualifier, represented peaks with ratios close to that expected for the respective PCDD of PCDF. In accordance with Region 4 guidance and the USEPA Functional Guidelines, results for these analytes in the affected samples have been qualified as non-detected with the reporting limit set at the amount calculated. This provides a high bias to the reporting limit since the actual maximum possible amount in the sample would be include only that fraction of the area of one peak that would satisfy the ratio requirement. Based on review of the data, it is considered likely that the target analyte is present at a concentration below the reported value in all instances.

12378-PeCDD failed to satisfy the ion ratio requirement for identification in sample SS100AA on its initial analysis; 123478-HxCDF failed in the initial analysis of SS88AA and OCDF failed in the initial analysis of SS003BA. These target analytes did meet the ion ratio criteria upon dilution. Although CAS reported the sample with the initial EMPC results, these have been replaced by the results from the dilution analyses for calculation of the TEQ.

CAS included all EPMC peaks as detections in the TEQ calculation. With the exception of the analytes noted above that subsequently were confirmed present in the dilution analysis, TEQs have been corrected to treat these peaks as non-detected analytes with elevated reporting limits.

The OCDD internal standard failed to meet the ion ratio criterion in the analysis of SS068BA. Results for OCDD and OCDF are qualified as estimated for this and other reasons. The TCDD and TCDF internal standards for SS100DA failed to meet ion ratio criteria. 2,3,7,8-TCDD and $2,3,7,8-T C D F$ were reported as non-detected, but the results have been rejected for recoveries of the cleanup standard below $10 \%$.

### 5.13 Confirmation Analyses

2,3,6,7-TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of 2,3,7,8-TCDF from the DB-5 column analysis. Final validated data and the TEQ includes the confirmation result for this analyte.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.15 Labeled Compound Recoveries

Recoveries of internal standards for some or all HxCDDs, HpCDD, HxCDF and HpCDDs were above control limits for the initial analysis of samples as listed below:

SS100AA, SS100BA, SS100CA, SS100DA, SS100DB
SS005BA
SS068BA
All reported data for target dioxins and furans with internal standard recoveries outside of the limits are qualified as estimated with a high degree of uncertainty.

Review of the raw data for the above samples indicates that the extract cleanup procedures used did not remove significant matrix interferences, and these affected the measurement of the $123789-H x C D D$ recovery standard used for calculation of the HxCDD, HxCDF, HpCDD, HpCDF and OCDD internal standards. Since the measurement of the 123789-HxCDD is biased low by these interferences, the apparent recoveries of the related internal standards are biased high, ranging up to $380 \%$. No reliable data on the recovery of the internal standards spiked into the sample and used for quantitation of target PCDDs and PCDFs can be obtained when this occurs.

Recovery of the internal standard for 2378-TCDD was below the control limit in SS100DA and the recovery for OCDD in SS086BB was below the control limit. Neither sample was reextracted as required by the method. The cleanup standard in SS100DA was below 10\%, and nondetected analytes in the sample have been rejected and all detected analytes qualified as estimated.

Sample SS088BA was re-extracted for internal standard recovery failures. It is not evident why samples SS100DA and SS086BB were not also reextracted as the method requires.

### 5.16 Interferences

As noted above, matrix interferences affected the quantitation of the recovery standard used to determine internal standard recoveries. Matrix interferences were also noted to affect the analyses of other PCDDs/PCDFs. Polychlorinated ethers were present in most samples and these can preclude the positive identification of PCDFs. In most cases, PCDEs in these samples affected the identification of non-2,3,7,8-substituted PCDFs as reported for the Totals for each congener level but did not affect the target analytes.

Ethers that interfered with target PCDFs were noted in samples as listed below. Reported results for these analytes are qualified to be estimated with potential high bias.

```
SS005BA 12378-PeCDF
SS086AA 123478-HxCDF
SS0086BA 123478-HxCDF
```

Unidentifiable matrix interferences can also result in poor chromatographic separation of PCDDs and PCDFs or suppression of the signal. Unknown matrix interferences affecting 2,3,7,8-PCDDS or PCDFs in site border samples are likely responsible for the chromatographic issues noted above. Matrix interferences that may have affected quantitation were noted in addition for $123478-H x C D D, 123678-H x C D D$ and 123789-HxCDD on SS086BA.

### 5.17 Sample Dilutions

Several samples in this set, as listed below, contained levels of PCDDs and PCDFs above the instrument calibration.

SS100AA, SS100BA, SS100CA
SS066AA, SS066AB
SS005AA, SS005BA, SS005CA
SS003AA, SS003BA
SS086AA, SS086BA, SS086BB
SS088AA, SS088BA
SS068AA, SS068BA
The primary corrective action for this in Method 1613 is to extract a smaller portion of the sample. Dilution by a factor of 10 is an alternative if it is determined that a smaller sample size will not be representative. Although these samples are characterized as sandy soils where representativeness would not be expected to be problematic, no reeextractions were performed. Samples were diluted by factors up to 200 by adding more internal standards to the extract.

Dilution with internal standards introduces uncertainty into the analysis since measurement by isotope dilution is no longer possible. CAS data reduction protocol for diluted samples where recoveries were elevated in the initial analysis is to correct the recovery in the diluted analysis by the recoveries of tetra- or tetra and penta-chlorinated internal standards. Review of data for
samples unaffected by interferences and apparent high recoveries does not support the use of this average; tetra- and penta-chlorinated internal standards consistently recover at significantly higher levels than the hexa- through octa-chlorinated internal standards. This data reduction practice likely leads to a significant low bias to results in affected samples. All measurements of hexa, hepta and octachlorinated dioxins and furans reported from dilutions where their quantitation was adjusted for tetra- and pentachlorinated standard recoveries have been qualified as estimated with potential significant bias.

In addition to the above samples, CAS adjusted data for dilution results for 123678-HxCDD, $1234678-H p C D D, ~ O C D D, 1234678-H p C D F$ and OCDF in samples SS003BA, SS006AA,SS086AA, SS086BA, SS088AA by recoveries of tetra or tetra and penta internal standards. The internal standard recoveries from the initial analyses were within the method control limits, but matrix interferences were noted that may have biased their reported recoveries. Results adjusted in this manner are qualified as estimated.

### 5.18 Data Consistency

Results for analytes above the calibration range in the initial analysis that are significantly lower after dilution analyses are qualified as estimated. This likely reflects bias resulting from the data adjustment protocol used by CAS for dilutions. These data include:

SS086AA	OCDF
SS086BA	$234678-H x C D F$
SS068BB	OCDF
SS005BA	OCDF
SS003BA	$1234678-H p C D D$
SS068BA	$123678-H x C D D$, OCDD, 1234789-HpCDF, OCDF
SS088AA	$1234678-H p C D F$, OCDF
SS088BA	OCDF
SS066AA	OCDF
SS068AA	OCDF
SS100CA	OCDF

CAS does not reanalyze samples where OCDD and/or OCDF are the only analytes above the calibration range. The results for OCDD in SS100DA, SS100DB, SS066BA, SS005DA, SS003DA were above calibration and are qualified as estimated.

### 5.19 Equipment Blank

No equipment blank was collected with this sample set.

### 5.20 Field Duplicates

Four pairs of field duplicates were included in this submittal. Duplicates from SS066A and SS086B agreed within 50\% relative difference (RPD). Although most individual target analytes
differed by over $50 \%$ relative difference for SS003C, levels were low and the RPD for the TEQs as calculated by CAS was $27 \%$ RPD. RPDs for analytes and the CAS TEQs for the duplicates from SS100D varied with RPDs $>50 \%$, but levels overall were low.

### 5.21 Calculations

Calculations for measurements within the instrument calibration range were verified for the initial analyses of perimeter samples. As noted above, calculations from dilutions for hexa, hepta and octa-chlorinated dioxins and furans in several samples were adjusted for the initial recoveries of tetra or tetra and pentachlorinated internal standards. CAS calculations of the adjustment factors for each sample were not documented and in some instances it could not be determined exactly which tetra or penta recovery standards were used for this manipulation. All data from this procedure are qualified as estimates with wide uncertainty.

Calculations for toxic equivalencies as provided were calculated using 1998 WHO toxic equivalency factors (TEF) and one-half the detection limit for non-detected analytes. Peaks reported that did not meet identification criteria were included. Values have been recalculated using the revised 2006 WHO TEF values and one-half the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

Field Duplicates: SDG $\mathbf{J 0 6 0 5 8 7 9}$

	SS100DA	SS100DB	RPD	SS066AA	SS066AB	RPD	SS003CA	SS003CB	RPD	SS086BA	SS086BB	RPD
Analyte												
2,3,7,8-TCDD	ND	ND	NA	4	4.32	8\%	ND	ND	NA	19.3	21.3	10\%
1,2,3,7,8-PeCDD	1.12	2.29	69\%	90.2	94.7	5\%	ND	ND	NA	252	261	4\%
1,2,3,4,7,8-HxCDD	4.16	7.82*	61\%	241	266	10\%	1.07	0.659	48\%	698	725	4\%
1,2,3,6,7,8-HxCDD	12.7	22.8	57\%	785	841	7\%	4.1	2.88	35\%	3040	3070	1\%
1,2,3,7,8,9-HxCDD	12.7	22.8	57\%	510	736	36\%	4.31	1.83	81\%	1730	1420	20\%
1,2,3,4,6,7,8-HpCDD	495	961	64\%	25300	18400	32\%	223	147	41\%	121000	113000	7\%
OCDD	4560	8560	61\%	175000	78200	76\%	2061	1403	38\%	714000	761000	6\%
2,3,7,8-TCDF	ND	ND	NA	4.5	4.67	4\%	ND	0.509	NA	12.2	11.8	3\%
1,2,3,7,8-PeCDF	ND	ND	NA	12.3	16.1	27\%	ND	0.598	NA	24.4	25	2\%
2,3,4,7,8-PECDF	ND	ND	NA	14.8	15.7	6\%	0.16	0.466	98\%	41.7	41.8	0\%
1,2,3,4,7,8-HxCDF	1.45	2.43	51\%	118	127	7\%	0.538	1.43	91\%	643	626	3\%
1,2,3,6,7,8-HxCDF	1.35	2.23	49\%	103	119	14\%	0.324*	0.743	79\%	262	269	3\%
1,2,3,7,8,9-HxCDF	0.635	0.18*	112\%	3.16	3.78	18\%	0.347*	0.749	73\%	9.83	8.58	14\%
2,3,4,6,7,8-HxCDF	1.21	1.28	6\%	68.3	79.8	16\%	0.134*	0.571	124\%	200	181	10\%
1,2,3,4,6,7,8-HpCDF	49.8	92.4	60\%	3350	2820	17\%	22.7	29.4	26\%	12500	12200	2\%
1,2,3,4,7,8,9-HpCDF	3.35	6.19	60\%	270	323	18\%	2.92	1.22	82\%	1320	1320	0\%
OCDF	264	523	66\%	13600	10500	26\%	120	79.3	41\%	44600	46000	3\%
CAS TEQ, ng/kg	1.08E+01	1.99E+01	59\%	$5.92 \mathrm{E}+02$	$5.49 \mathrm{E}+02$	8\%	4.2	3.19	27\%	$2.37 \mathrm{E}+03$	$2.28 \mathrm{E}+03$	4\%

* = Reported as estimated maximum possible concentration.


## ATTACHMENT A

DATA SUMMARY

Chemical Name	SS003AA			SS003BA			SS003CA			SS003CB		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	0.39	J	OC		U	EM		U			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	5.99	J	OC	5.56	J	OC		U	EM		U	
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	37.27			22.26	J	CR	1.07	J	OC	0.66	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	164.22			105.30	J	CR	4.10	J	OC	2.88	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	159.48			37.38	J	CR	4.31	J	OC	1.83	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	10,366.93			4,654.09	J	SE,LE	223.15			147.14		
OCTACHLORODIBENZO-P-DIOXIN	87,059.26	J	E	40,098.67	J	LE	2,061.96			1,403.44		
2,3,7,8-TETRACHLORODIBENZOFURAN		U		0.60	J	OC		U		0.51	J	OC
1,2,3,7,8-PENTACHLORODIBENZOFURAN		U	EM	0.88	J	OC		U		0.60	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.71	J	OC		U	EM	0.16	J	OC	0.47	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	13.75			14.00			0.54	J	OC	1.43	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	6.57			6.72				U	EM	0.74	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U		0.66	J	OC		U	EM	0.75	J	OC
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	8.11	J	CR		U	EM		U	EM		U	EM
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	865.79			573.37			22.71				U	EM
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	51.43			42.46			2.92	J	OC	1.22	J	OC
OCTACHLORODIBENZOFURAN	5,567.71			2,885.00	J	DD,LE	119.87			79.27		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	2.77			12.74				U		0.39		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	149.45			69.02			3.69			1.55		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	3,196.06			1,152.03			79.43			54.35		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	36,959.21			18,827.58			1,123.60			768.94		
TOTAL TETRACHLORINATED DIBENZOFURANS	6.93			16.77			3.32			5.54		
TOTAL PENTACHLORINATED DIBENZOFURANS	49.76			55.99			8.73			11.68		
TOTAL HEXACHLORINATED DIBENZOFURANS	619.97			478.99			20.91			19.23		
TOTAL HEPTACHLORINATED DIBENZOFURANS	4,013.56			2,773.62			94.91			56.04		


Chemical Name	SS003DA			SS005AA			SS005BA			SS005CA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U		1.10	J	OC		U	EM	0.60	J	OC
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	0.33	J	OC	23.77			28.68			11.59		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	1.01	J	OC	74.53			90.63	J	CR	42.41		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	3.75	J	OC	196.91			685.80	J	CR	119.63		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	2.30	J	OC	143.56	J	CR	353.60	J	CR	81.82	J	CR
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	213.10			7,383.23			26,238.61	J	1	5,481.34		
OCTACHLORODIBENZO-P-DIOXIN	1,930.38	J	E	54,339.63	J	E	194,193.92	J	LE,E	47,246.05	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN		U		0.67	J	OC	1.72				U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.24	J	OC	2.26	J	OC	3.37	J	OC,DP	1.31	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.23	J	OC	3.29	J	OC	4.15	J	1	1.77	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.54	J	OC	28.91			45.21	J	1	16.66		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	0.38	J	OC	27.55			28.63	J	1	12.90		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U		1.09	J	I,OC		U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.42	J	OC	23.24			14.74	J	I,CR	9.60	J	CR
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	29.11			1,007.75			2,167.48	J	1	615.29		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	1.03	J	OC	66.97			147.01	J	1	43.36		
OCTACHLORODIBENZOFURAN	112.89			4,225.44			8,748.94	J	LE,SE	3,389.94		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS		U		12.80			252.56			9.47		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	1.87			215.06			537.02			122.60		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	74.31			2,543.80			22,670.19			1,882.39		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	1,048.55			25,566.22			60,166.46			21,113.42		
TOTAL TETRACHLORINATED DIBENZOFURANS		U		27.49			34.40			13.87		
TOTAL PENTACHLORINATED DIBENZOFURANS	0.99			163.55			189.46			108.98		
TOTAL HEXACHLORINATED DIBENZOFURANS	15.79			1,026.36			667.95			645.00		
TOTAL HEPTACHLORINATED DIBENZOFURANS	102.01			3,687.81			10,970.31			2,543.51		


Chemical Name	SS005DA			SS066AA			SS066AB			SS066BA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U		4.00			4.32				U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	2.15	J	OC	90.25			94.67			3.41	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	7.06			241.08			266.17			10.64		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	24.08			784.90			841.49			34.26		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	13.32	J	CR	510.48			736.42			25.22		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	1,228.71			25,271.49	J	LE	18,374.04	J	LE	1,408.03		
OCTACHLORODIBENZO-P-DIOXIN	11,326.67	J	E	175,245.69	J	LE	78,219.34	J	LE	14,403.74	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN		U		4.50			4.67				U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.32	J	OC	12.29			16.08			0.64	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.30	J	OC	14.80			15.69			0.39	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	3.13	J	OC	118.00	J	DD	126.83			4.52	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	2.28	J	OC	102.56			117.73			3.76	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U		3.16	J	OC	3.77				U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	1.92	J	OC	68.28			152.00	J	DD	3.02	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	124.47			3,349.75	J	LE	2,820.67	J	LE	204.18		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN		U	EM	269.67			323.18			11.84		
OCTACHLORODIBENZOFURAN	704.68			13,648.21	J	SE,LE	10,543.47	J	SE,LE	1,171.54		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	1.42			33.92			39.75			0.53		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	22.57			469.97			510.08			18.73		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	375.46			7,442.25			7,529.22			299.32		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	5,598.26			53,019.60			44,793.66			5,162.22		
TOTAL TETRACHLORINATED DIBENZOFURANS	1.76			98.51			106.93			7.04		
TOTAL PENTACHLORINATED DIBENZOFURANS	17.99			754.49			805.23			30.54		
TOTAL HEXACHLORINATED DIBENZOFURANS	120.15			2,443.21			4,417.90			219.32		
TOTAL HEPTACHLORINATED DIBENZOFURANS	515.24			4,349.62			15,156.57			796.18		


Chemical Name	SS068AA			SS068BA			SS086AA			SS086BA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	5.56			22.46			24.73			19.30		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	79.71			479.38			277.36			252.60		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	241.61			1,291.43	J	1	724.43			698.45		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	646.59			4,677.95	J	LE,SE,I	1,704.38			3,042.41	J	MI,LE
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	548.88			1,534.75	J	I	1,233.11	J	CR	1,729.50	J	MI
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	35,255.71			96,648.76	J	LE	67,126.50	J	LE	120,601.50	J	LE,E
OCTACHLORODIBENZO-P-DIOXIN	793,360.53	J	E	129,831.67	J	I,M,LE,SE	618,320.76	J	LE	713,962.16	J	LE, E
2,3,7,8-TETRACHLORODIBENZOFURAN	3.10			18.95			18.01			12.17		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	9.22			112.58			26.57			24.43		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	13.28			101.61			38.42			41.73		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	112.48			736.55	J	1	260.82	J	DP	642.98	J	DP
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	85.99			631.15	J	1	179.56			262.37		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	2.55	J	OC	27.18	J	1	5.46			9.83		
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	159.64			913.55	J	1	146.28			199.87	J	SE
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	3,724.54			15,023.92	J	I,LE	6,246.47	J	LE	12,535.19		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	251.79			887.85	J	LE,SE	559.70			1,320.57		
OCTACHLORODIBENZOFURAN	37,598.20			47,547.34	J	I,LE,SE	25,903.76	J	LE, SE	44,639.32	J	LE,SE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	29.75			215.21			171.71			148.70		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	397.02			2,145.82			1,682.67			1,636.75		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	6,232.15			32,267.21			17,841.06			26,453.36		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	58,503.21			135,479.39			85,550.33			119,213.06		
TOTAL TETRACHLORINATED DIBENZOFURANS	53.00			473.02			175.39			189.93		
TOTAL PENTACHLORINATED DIBENZOFURANS	445.27			1,433.23			1,127.80			1,417.64		
TOTAL HEXACHLORINATED DIBENZOFURANS	1,866.14			5,832.69			4,113.97			7,379.47		
TOTAL HEPTACHLORINATED DIBENZOFURANS	11,889.92			18,395.28			7,182.67			15,217.89		


Chemical Name	SS086BB			SS088AA			SS088BA			SS100AA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	21.32			30.66			5.86			4.52		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	260.65			381.58			74.53			30.65	J	DD,OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	724.69			998.19			209.83			271.42		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	3,070.40	J	LE	2,308.91	J	LE	582.23			513.42		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	1,421.01			1,869.52			512.51			530.93		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	112,843.56			86,528.59	J	LE	15,559.27	J	SE	13,053.55	J	LE
OCTACHLORODIBENZO-P-DIOXIN	760,786.87	J	I,E,LE	561,556.56	J	LE	184,492.67			82,593.40	J	LE
2,3,7,8-TETRACHLORODIBENZOFURAN	11.76			20.71			3.14			3.38		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	25.02			49.00			8.83	J	OC	8.33		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	41.78			58.52			13.32			10.92		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	625.52			348.00	J	DD	95.34			59.94		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	268.97			339.65			77.32			54.03		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	8.58			12.57			2.84	J	OC	1.71	J	OC, I
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	180.52			220.85			119.49			42.60		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	12,186.39	J	LE	9,494.04	J	LE	2,618.80			2,169.74		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	1,324.95			1,127.50			217.30			136.05		
OCTACHLORODIBENZOFURAN	46,049.54	J	I,LE, SE	40,376.37	J	LE,SE	9,810.76	J	SE	4,282.40	J	LE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	177.62			226.59			35.83			43.60		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	1,660.78			2,399.32			437.47			684.58		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	26,425.78			32,847.79			6,574.77			11,896.09		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	134,136.91			115,374.16			60,105.00			49,122.24		
TOTAL TETRACHLORINATED DIBENZOFURANS	196.14			297.49			68.06			61.68		
TOTAL PENTACHLORINATED DIBENZOFURANS	1,399.56			2,115.39			510.84			423.34		
TOTAL HEXACHLORINATED DIBENZOFURANS	6,902.97			7,741.24			3,084.56			2,399.38		
TOTAL HEPTACHLORINATED DIBENZOFURANS	16,141.06			13,103.29			10,215.00			8,715.83		


Chemical Name	SS100BA			SS100CA			SS100DA			SS100DB		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	9.99				U			R	CS		U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	227.35			10.76			1.12	J	OC	2.29	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	964.30			24.30	J	1	4.16	J	OC		U	EM
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	2,962.28	J	LE	267.31	J	1	12.67	J	CS	22.78		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	3,254.84	J	LE	60.13			12.65	J	CS	22.76		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	124,549.59	J	I,LE	9,159.73	J	I,LE	495.48	J	I,CS	961.22		
OCTACHLORODIBENZO-P-DIOXIN	884,538.49	J	LE	70,703.49	J	LE	4,563.85	J	E,CS	8,555.74	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN	12.45				U			R	CS		U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	52.22			4.62				R	CS		U	
2,3,4,7,8-PENTACHLORODIBENZOFURAN	28.55			3.39	J	OC		R	CS		U	
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	393.91	J	1		U	EM	1.45	J	OC	2.43	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	311.96	J	1	16.96	J	1	1.35	J	OC	2.23	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	19.49	J	1	1.44	J	1	0.64	J	I,OC		U	EM
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	729.18			43.19	J	1	1.21	J	OC	1.28	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	13,010.46	J	I,LE	856.93	J	1	49.80	J	I,CS	92.44		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	992.92	J	I,LE	220.28	J	1	3.35	J	I,CS	6.19	J	1
OCTACHLORODIBENZOFURAN	56,174.27	J	LE	4,574.79	J	LE,SE	264.39	J	CS	523.72		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	93.97				U					0.44		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	2,230.84			58.25						22.40		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	94,784.78			2,772.16						754.55		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	41,608.97			20,056.71						4,005.86		
TOTAL TETRACHLORINATED DIBENZOFURANS	130.65				U					0.71		
TOTAL PENTACHLORINATED DIBENZOFURANS	1,667.24			94.47						14.14		
TOTAL HEXACHLORINATED DIBENZOFURANS	10,550.00			1,359.20						132.61		
TOTAL HEPTACHLORINATED DIBENZOFURANS	13,276.86			4,569.19						377.65		

ATTACHMENT B
REASON CODES FOR DATA QUALILFICATION

## Reason Codes for Data Qualification - Dioxins and Furans

MB Contaminated blank
DD Result is from dilution where ion ratio criterion not met on initial analysis
OC Measurement below calibration
I Internal standard recovery outside of control limits
MI Matrix interference
EM Estimated maximum possible concentration (ion ratio criterion not satisfied))
DMI Result from dilution analysis; internal standard recovery from initial analysis within limits but biased by matrix interference
E Exceeded calibration range
CR Chromatographic resolution poor
DP Diphenyl ether interference
SE Excessive difference in results between analyses of samples. Significantly lower (>25\%) result after dilution for analyte above calibration or at saturation in initial analysis.
CS Cleanup standard recovery unacceptable
LE Result from dilution calculated assuming recovery of internal standard equal to tetra or tetra and penta chlorinated internal standards
FD Variability noted between field duplicates.

# DATA VALIDATION REPORT 

Soil Samples from
Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL

## Analyses for PCDDs/PCDFs

CAS Report J0605890

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 2
5.0 DATA VALIDATION FINDINGS ..... 3
5.1 Data completeness and deliverables ..... 3
5.2 Sample Receipt ..... 3
5.3 Chain of Custody (COC) Documentation ..... 3
5.4 Holding Times, Storage and Preservation ..... 3
5.5 Mass Calibration and Resolution .....  3
5.6 Window Defining Mixture and Isomer Specificity Check ..... 4
5.7 Initial Calibrations ..... 4
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 5
5.10 Method Blanks ..... 5
5.11 Laboratory Control Samples (LCS) .....  5
5.12 Identification Criteria ..... 5
5.13 Confirmation Analyses ..... 6
5.14 Detection Limits ..... 6
5.15 Labeled Compound Recoveries ..... 6
5.16 Interferences ..... 7
5.17 Sample Dilutions ..... 7
5.18 Data Consistency ..... 9
5.19 Equipment Blank ..... 9
5.20 Field Duplicates ..... 9
5.21 Calculations ..... 9
6.0 REFERENCES ..... 10

## List of Attachments

Attachment A Data Summary
Attachment B Reason Codes for Data Qualification

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

This report provides an evaluation of data for seventeen samples collected on December 11, 2006 and submitted for analysis for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in accordance with EPA Method 1613. Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL on December 13, 2006 and subsequently transferred to the CAS laboratory in Houston, TX for analysis. These samples were analyzed at CAS under Service Request Number J0605839.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS041AA	SS086CA
SS041BA	SS086DA
SS094AA	SS088CA
SS094AB	SS088DA
SS094BA	SS068CA
SS101AA	SS068DA
SS101BA	SS041CA
SS024AA	SS041DA
SS024BA	

Samples from the locations noted below represent site perimeter samples:

```
SS086 East boundary
SS088 East boundary
```


### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for samples with PCDDs/PCDFs within the range of the instrument calibration upon initial analysis are generally valid as reported. Results below the calibration range are qualified as estimated. Most results for samples initially above the calibration range and then reported from dilution analyses are qualified as estimated with a wide window of uncertainty.

Cleanup procedures implemented did not remove matrix interferences from several samples. These interferences resulted in internal standard recoveries that were above control limits and required qualification of associated target analyte results. The absence of valid internal standard recoveries then compromised the quantitation of analyte concentrations from dilution analyses.

CAS further compounded the uncertainty by adjusting data by factors that are not considered applicable. Results for SS101AA and SS101BA should be considered as gross estimates. Results for these samples should be reviewed by the project manager to evaluate the margin between their toxic equivalencies (TEQs) and site action limits. Although no samples have been rejected based on the validation, they may not all be suitable to support project decisions.

Toxicity equivalency (TEQ) values for the samples as calculated by CAS are based on the 1998 WHO toxic equivalency factors (TEFs) and include measurements for peaks that failed to meet method criteria for positive identification. TEQs have been recalculated in accordance with EPA Region 4 guidance and using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

Raw data were reviewed for all sample and quality control analyses associated with samples SS041AA, SS041BA, SS101AA and SS086CA in this set. All reported results on the final summary forms were verified from the raw data instrument print-outs for sample concentrations.

Chromatograms were reviewed for evidence of interferences in all samples.
The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Chain of Custody documentation
3. Sample receipt
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Identification criteria
10. Method blank analysis
11. Laboratory Control Samples
12. Second column confirmation analysis
13. Detection Limits
14. Labeled compound recoveries

# amed ${ }^{\circ}$ 

15. Field blanks
16. Field Duplicates
17. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results.
Results for the total congener class PCDDs and PCDFs have not been validated and should be considered as estimated in all samples. These data are not included in the TEQ calculations. These are quantified based on the assumption that their response factors are the same as the 2378 -substitued isomers. All data reported are from the initial analyses and many include congeners above instrument calibration. Any factors affecting the accuracy of results for the 2378-isomers apply to the entire congener group and interferences in addition to those noted for the 2378 -isomers may significantly bias data for these groupings of PCDDs and PCDFs.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

The report narrative as provided contained errors and a revised narrative was provided upon request and is attached to this report. The submitted data packages contained analytical elements required; however, documentation of data calculations involving adjustments of measured results were not included as part of the reporting package. Upon request, CAS provided explanations for selected individual sample calculations, but the approach taken was determined to be sample-specific.

### 5.2 Sample Receipt

Samples were received at CAS Houston via FedEx on December 13, 2006.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed.

### 5.4 Holding Times, Storage and Preservation

Samples were received with a cooler temperature of $4^{\circ} \mathrm{C}$. Method 1613 allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. All congeners in the solution were detected at expected times. The height of the valley between the closely eluting isomers 1,2,3,8-TCDD and 2,3,7,8-TCDD less than 25\%. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with separate analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9TCDF, $2,3,4,7-$ TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

Two instruments were used for the DB-5 column analysis for all PCDDs and PCDFs except 2,3,7,8-TCDF. Five-point calibrations were conducted on October 25 and November 7, 2006. Calibration for $2,3,7,8$-TCDF confirmation on the DB-225 column was conducted on November 9 , 2006. The initial calibrations were acceptable with $\%$ RSDs $\leq 20 \%$ for the relative responses (RR) for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

No second-source standard was analyzed to verify the calibration.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were initially conducted on December 28 and 29, 2006 and January 3, 2007 with analyses of samples at dilution on January 9, 22 and 23, 2007. Analyses for 2,3,7,8-TCDF on the DB225 column were conducted on January 3, 10,11, 12 and 13, 2007. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Although run logs indicate that calibration check standards were analyzed at the end of each sequence, no data for these checks were included in the package. Method 1613 does not specifically require these.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. However, resolution of 123478- and 123689-HxCDD isomers was not achieved in most standards or in the samples for which raw data were reviewed. Since these isomers have the same toxicity equivalency factor, the overall result on the TEQ of the sample is not likely affected.

123789-HxCDD was not resolved from a non-2,3,7,8-HxCDD isomer, and results are estimated for this analyte in samples SS041BA, SS086CA and SS101AA.

123789-HxCDF was not resolved from a non-2,3,7,8-HxCDF isomer, which was present in most samples at levels significantly greater than the target analyte. Results for 123789-HxCDF are qualified as estimated in SS041AA. Results for 123478-HxCDF, 123678-HxCDf and 234678HxCDF are qualified as estimated due to poor chromatographic resolution in SS041BA

Chromatographic resolution for TCDDs and PeCDDs in SS101AA was unacceptable, with excessive peak widths for the internal standards and noted peaks. Although 2378-TCDD was reported as an estimated maximum concentration in the sample, the broad peak cannot be necessarily attributed to the 2378-TCDD isomer. In a similar manner, the peak reported for 12378 -PeCDD was very broad, likely included other isomers and may or may not have included the target analyte. Results for these two analytes have been rejected in the sample.

### 5.10 Method Blanks

Samples were split between two extraction batches. The method blanks contained trace levels of OCDD, 1234678-HpCDD, 1234678-HpCDF and OCDF. All reported sample concentrations of these analytes were greater than 5 times the blanks and were not qualified.

### 5.11 Laboratory Control Samples (LCS)

Laboratory control samples and a duplicate were extracted with the preparation batchs. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits with the exception of OCDD, which recovered at $194 \%$ from the LCS. Results for OCDD in all samples are qualified as above calibration or as a result of matrix interferences that precluded accurate determination of the internal standard recovery subsequently used to calculate results upon dilution.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion
is met. CAS uses the same data flag for peaks that fail to meet the ion ratio criterion for identification and for peaks possibly affected by the presence of polychlorinated diphenyl ethers

Samples in this set contained a variety of interferents resulting in peaks that failed criteria for ion ratios. These interferents may be non-PCDD/PCDFs with one or both of the mass fragments of a target analyte. Review of the raw data confirmed that the majority of these results, reported by CAS as estimated maximum possible concentrations (EMPC) with the "K" qualifier, represented peaks with ratios close to that expected for the respective PCDD of PCDF. In accordance with Region 4 guidance and the USEPA Functional Guidelines, results for these analytes in the affected samples have been qualified as non-detected with the reporting limit set at the amount calculated. This provides a high bias to the reporting limit since the actual maximum possible amount in the sample would be include only that fraction of the area of one peak that would satisfy the ratio requirement. Based on review of the data, it is considered likely that the target analyte is present at a concentration below the reported value in all instances.

The OCDD internal standard failed to meet the ion ratio criterion for the initial analyses of SS041AA and SS101AA. These samples were reanalyzed after dilution with additional internal standards. The use of a calculated internal standard recovery with a failed ion ratio in SS041AA to adjust the results for OCDD and OCDF from the dilution of that sample introduces significant uncertainty. Results for OCDD and OCDF in SS001AA are calculated using the recoveries of the tetra and penta-chlorinated internal standards for data adjustment as discussed below. Results for OCDD and OCDF in both SS001AA and SS041AA should be considered as gross estimates.

### 5.13 Confirmation Analyses

$2,3,6,7-$ TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of 2,3,7,8-TCDF from the DB-5 column analysis. Final validated data and the TEQ includes the confirmation result for this analyte.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.15 Labeled Compound Recoveries

Recoveries of internal standards for some or all of the hexa- through octachlorinated PCDD and PCDF internal standards were above control limits for SS041AA, SS094BA, SS101AA, SS101BA, and SS086CA. Apparent recoveries ranged as high as 600\%.

Method 1613 specifies gel permeation chromatography cleanup for soil samples. CAS did not perform this step, and review of the raw data for the above samples indicates that the minimal

## amec ${ }^{\theta}$

extract cleanup procedures used did not remove significant matrix interferences. These ssuppressed the response of the $123789-H x C D D$ recovery standard used for calculation of the HxCDD, HxCDF, HpCDD, HpCDF and OCDD internal standards in the above samples, leading to apparent high recoveries for these. No reliable data on the recovery of the internal standards spiked into the sample and used for quantitation of target PCDDs and PCDFs can be obtained when this occurs. All reported data for target dioxins and furans with internal standard recoveries outside of the limits are qualified as estimated.

### 5.16 Interferences

As noted above, matrix interferences affected the quantitation of the recovery standard used to determine internal standard recoveries. Matrix interferences were also noted to affect the analyses of other PCDDs/PCDFs. In some cases, polychlorinated ethers were present. These can result in false positives for PCDFs, and as noted above, CAS reports these analytes with the same qualifier flag as used for peaks that fail ion ratio requirements for identification.

Severe non-ether interferences were noted in the initial analysis of SS101AA, affecting all target analytes. While many analytes were reported from an analysis of this sample at a high dilution, those reported from the initial analysis can only be interpreted as qualitative with no quantitative certainty. Chromatography was unacceptable, with peaks for some internal standards extending over 30 seconds and no resolution of target PCDDs and PCDFs from other isomers. As noted above, results for 2378-TCDD, 12378 -PeCDD and 23478 -PeCDF are rejected as a result of chromatographic failure. Chromatography on the confirmation column was acceptable for 2378TCDF.

Although CAS flagged 234678-HxCDF in SS101AA for ether interferences, review of the chromatogram indicates that it is $123478-\mathrm{HxCDF}$ that has potential ether interferences, while $234678-H p C D F$ is not resolved from other HpCDF isomers. $234678-\mathrm{HxCDF}$ in the dilution analysis is still not chromatographically resolved, but the results from this analysis appear more defensible and have been used. Other analytes reported from the initial analysis, including $12378-\mathrm{PeCDD}$ and $1234789-\mathrm{HpCDF}$, are also qualified as estimated for potential bias from coeluting isomers.

Ethers were noted at the retention times of $123478-H x C D F, 123678-H x C D F$ and 1234678HpCDF in SS041AA. Results for these analytes are qualified as estimated with potential high bias.

### 5.17 Sample Dilutions

Samples as listed below contained levels of PCDDs and PCDFs above the instrument calibration:

SS041AA
SS041BA
SS094AA
SS094AB

SS094BA
SS101AA
SS101BA
SS024AA
SS024BA
SS086CA
SS041CA
The primary corrective action for levels above calibration in Method 1613 is to extract a smaller portion of the sample. Dilution by a factor of 10 is an alternative if it is determined that a smaller sample size will not be representative. Although these samples are characterized as sandy soils where representativeness would not be expected to be problematic, no reeextractions were performed. Samples were diluted by factors up to 200 by adding more internal standards to the extract.

CAS data reduction protocol for diluted samples where internal standard recoveries were elevated in the initial analysis, as noted for SS094BA, SS101AA, SS101BA, and SS086CA, is to correct the recovery in the diluted analysis by recoveries of tetra- or tetra- and pentachlorinated internal standards. Review of data for samples unaffected by interferences and apparent high recoveries does not support the use of this average; tetra- and penta-chlorinated internal standards consistently recover at significantly higher levels than the hexa- through octachlorinated internal standards. This data reduction practice likely leads to a significant low bias to results in affected samples. All measurements of hexa, hepta and octachlorinated dioxins and furans reported from dilutions where their quantitation was adjusted for tetra- and pentachlorinated standard recoveries have been qualified as estimated with potential significant bias.

Although internal standard recoveries were within the method limits for SS041BA, interferences were noted and CAS also adjusted data from dilution analyses for 1234678 -HpCDD, OCDD, $1234678-H p C D F$ and OCDF for recoveries of tetra and penta internal standards. These results are qualified as estimated with low bias and a wide range of uncertainty.

In the remaining samples, the internal standard recoveries fell within the control limits and their recoveries were used to adjust the calculated concentration of analytes in the dilution analysis. This may also introduce significant uncertainty. Apparent recoveries of the internal standard in the initial analysis may be biased low by high levels of the native PCDD or PCDF or other interferences that suppress or enhance the signal; subsequent use of this to correct the dilution result may also lead to a high or low bias in the result.

OCDD and OCDF were reported from measurements above instrument calibration in samples SS086DA, SS088CA and OCDD was reported from measurement above instrument calibration for samples SS088DA, SS068CA, SS068DA and from the dilution analyses of SS041AA, SS0441BA and ASS094AA.

### 5.18 Data Consistency

Results obtained on dilution for the samples were compared to the initial analyses. Results for analytes above calibration or at saturation on the initial analyses are expected on dilution to be comparable to or greater than the initial result. In several cases, results after dilution are significantly lower. In the samples with elevated internal standard recoveries, this is likely attributable to the bias introduced by the CAS data adjustment protocol as detailed above for sample dilutions.

The results in the following samples demonstrate significantly lower concentrations reported from the dilution analysis for analytes that exceeded the calibration curve on the initial analysis:

SS041BA OCDF
SS094BA OCDF
SS101AA OCDF
SS101BA OCDF
SS086CA OCDF

### 5.19 Equipment Blank

No equipment blank was collected with this sample set.

### 5.20 Field Duplicates

Field duplicate samples were collected at SS094A. Precision was acceptable with relative percent differences for all analytes and the CAS TEQ below $50 \%$. The levels at this location are relatively low and the absolute differences in concentration are not significant.

### 5.21 Calculations

Calculations for measurements within the instrument calibration range were verified for the initial analyses of perimeter samples. As noted above, calculations from dilutions for hexa, hepta and octa-chlorinated dioxins and furans in several samples were adjusted for the initial recoveries of tetra or tetra and pentachlorinated internal standards. CAS calculations of the adjustment factors for each sample were not documented and in some instances it could not be determined exactly which tetra or penta recovery standards were used for this manipulation. All data from this procedure are qualified with as estimates with wide uncertainty.

Calculations for toxic equivalencies as provided were calculated using 1998 WHO toxic equivalency factors (TEF) and one-half the detection limit for non-detected analytes. Peaks reported that did not meet identification criteria were included. Values have been recalculated using the revised 2006 WHO TEF values and one-half the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

Beazer East
Data Review for PCDDs/PCDFs J0605890
amec ${ }^{\theta}$
SDG J0605890: PCDDs/PCDFs in Field Duplicate Samples

Analyte	SS094AA	SS094AB	RPD
$2,3,7,8-T C D D$	2.78	2.98	$7 \%$
$1,2,3,7,8-P e C D D$	36.9	37.8	$2 \%$
$1,2,3,4,7,8-H x C D D$	112	106	$6 \%$
$1,2,3,6,7,8-H x C D D$	252	281	$11 \%$
$1,2,3,7,8,9-H x C D D$	260	273	$5 \%$
1,2,3,4,6,7,8-			
HpCDD	11200	12500	$11 \%$
OCDD	115000	126000	$9 \%$
2,3,7,8-TCDF	0.96	0.96	$0 \%$
$1,2,3,7,8-P e C D F$	3.23	3.51	$8 \%$
2,3,4,7,8-PECDF	5.04	5.02	$0 \%$
$1,2,3,4,7,8-H x C D F$	33	38.7	$16 \%$
$1,2,3,6,7,8-H x C D F$	28.6	37.5	$27 \%$
$1,2,3,7,8,9-H x C D F$	$0.84^{*}$	ND	
2,3,4,6,7,8-HxCDF	62.2	62.4	$0 \%$
$1,2,3,4,6,7,8-$			
HpCDF	1220	1520	$22 \%$
$1,2,3,4,7,8,9-$			
HpCDF	63.4	69.5	$9 \%$
OCDF	7800	8730	$11 \%$
CAS TEQ, ng/kg	$2.54 \mathrm{E}+02$	$2.78 \mathrm{E}+02$	$9 \%$

* Value reported as estimated maximum possible concentration


## ATTACHMENT A: SAMPLE RESULTS

Chemical Name	SS024AA			SS024BA			SS041AA			SS041BA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	3.62			3.54			3.73			1.33		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	43.83			42.36			92.76			50.58		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	107.35			110.81			309.65			170.55		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	194.52			212.95			1,000.86			548.31		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	221.70			254.42			795.47			349.56	J	CR
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	6,801.06	J	E	8,072.64			76,192.45			25,895.70	J	LE
OCTACHLORODIBENZO-P-DIOXIN	58,364.18	J	E	95,491.45	J	E	952,380.32	J	I,E,LE	144,022.47	J	E,LE
2,3,7,8-TETRACHLORODIBENZOFURAN	0.68	J	OC	0.93	J	OC	4.62			2.24		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	2.94	J	OC	3.21	J	OC	13.13			7.36		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	3.96	J	OC	4.58	J	OC	18.50			10.57		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	29.69			34.53			139.50	J	DP	82.03	J	CR
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	33.18			46.41			107.40	J	DP	216.00	J	CR
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	0.72	J	OC		U	EM	3.50	J	CR		U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	37.47			68.38			215.53			75.98	J	CR
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	933.36			1,047.36			6,851.68	J	DP	2,463.33	J	LE
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	49.14	J		58.36			290.97			165.95		
OCTACHLORODIBENZOFURAN	3,762.34			5,634.84			61,558.54	J	I,LE	9,669.33	J	SE,LE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	24.41			21.08			27.44			21.98		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	322.23			291.79			725.65			295.46		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	3,200.89			3,287.02			14,328.77			8,162.59		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	28,389.63			25,744.05			89,276.93			60,576.59		
TOTAL TETRACHLORINATED DIBENZOFURANS	30.23			29.56			91.36			61.18		
TOTAL PENTACHLORINATED DIBENZOFURANS	251.42			271.99			743.28			532.89		
TOTAL HEXACHLORINATED DIBENZOFURANS	1,183.04			1,272.93			2,805.13			1,711.77		
TOTAL HEPTACHLORINATED DIBENZOFURANS	2,981.11			3,598.45			16,300.71			9,708.81		


Chemical Name	SS041CA			SS041DA			SS068CA			SS068DA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U			U			U			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	5.38			0.86	J	OC	1.45	J	OC	0.97	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	20.60			3.05	J	OC	3.92	J	OC	2.39	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	65.20			8.72			14.65			11.42		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	60.99			9.04			9.35			6.29		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	3,062.68			435.49			416.24			359.43		
OCTACHLORODIBENZO-P-DIOXIN	35,328.15	J	E	4,357.77			4,663.34	J	E	4,230.05	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN		U			U			U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.83	J	OC		U	EM		U		0.22	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	1.07	J	OC	0.22	J	OC		U		0.25	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	9.76			1.53	J	OC	1.82	J	OC	1.38	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	6.97			1.09	J	OC	3.48	J	OC	1.06	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U			U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	16.56			2.33	J	OC		U	EM	2.47	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	325.74			48.24			58.03			46.45		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	19.87			3.18	J	OC	3.21	J	OC	2.58	J	OC
OCTACHLORODIBENZOFURAN	1,785.74			231.38			263.16			229.52		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	1.19			0.27				U			U	
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	36.15			4.80			4.44			2.31		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	995.38			150.20			103.26			66.12		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	13,364.39			2,023.41			1,250.79			888.71		
TOTAL TETRACHLORINATED DIBENZOFURANS	4.50				U			U		0.13		
TOTAL PENTACHLORINATED DIBENZOFURANS	49.99			6.31			6.51			6.38		
TOTAL HEXACHLORINATED DIBENZOFURANS	337.95			47.84			61.34			54.74		
TOTAL HEPTACHLORINATED DIBENZOFURANS	1,308.92			194.54			226.40			187.34		


Chemical Name	SS086CA			SS086DA			SS088CA			SS088DA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	0.73	J	OC	0.65	J	OC		U	EM		U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	7.75			5.72			4.88	J	OC	1.85	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	24.11	J	1	13.56			15.61			6.14		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	90.32	J	1	36.61			37.44			15.39		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	35.67	J	I,CR	37.48			36.05			14.86		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	5,036.03	J	I,LE	1,633.52			1,540.86			659.18		
OCTACHLORODIBENZO-P-DIOXIN	39,167.64	J	I,LE	17,748.20	J	E	17,446.92	J	E	7,624.98	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN	0.61	J	OC		U			U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.70	J	OC	0.41	J	OC	0.49	J	OC	0.20	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	1.20	J	OC	0.81	J	OC	0.72	J	OC	0.30	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	12.72	J	1	4.52	J	OC	3.96	J	OC	1.89	J	OC
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN		UJ	EM,I		U	EM	3.47	J	OC	1.53	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		UJ	1		U			U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	8.24	J	1	6.93			8.82			3.56	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	476.36	J	1	158.57			186.77			82.19		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	36.21	J	1	10.00			12.59			5.14		
OCTACHLORODIBENZOFURAN	2,199.86	J	I,SE,LE	923.58	J	E	961.23	J	E	387.65		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	5.49			2.65			1.43			0.38		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	61.58			36.77			24.26			11.20		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	2,658.26			578.22			427.79			196.06		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	29,050.29			7,833.52			5,707.21			2,432.14		
TOTAL TETRACHLORINATED DIBENZOFURANS	5.72			2.42			1.63			0.31		
TOTAL PENTACHLORINATED DIBENZOFURANS	32.82			23.21			27.07			11.03		
TOTAL HEXACHLORINATED DIBENZOFURANS	489.96			165.15			184.93			83.16		
TOTAL HEPTACHLORINATED DIBENZOFURANS	2,498.45			674.26			734.41			311.67		


Chemical Name	SS094AA			SS094AB			SS094BA		
	Result	ValQual	Reason	Result	ValQual	Reason	Result	ValQual	Reason
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	2.78			2.98			3.82		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	36.88			37.76			57.21		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	112.18			106.20			163.78	J	1
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	252.13			280.70			585.37	J	1
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	260.01			272.52			224.81	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	11,169.32			12,502.68			24,804.65	J	I,LE
OCTACHLORODIBENZO-P-DIOXIN	114,968.63	J	E	125,970.35	J	E	174,442.36	J	E,LE
2,3,7,8-TETRACHLORODIBENZOFURAN	0.96			0.97			1.32		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	3.23	J		3.51	J		6.63		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	5.04			5.02			8.69		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	33.01			38.65			79.07	J	1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	28.62			37.47			58.82	J	1
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U	EM		U	OC	1.53	J	1
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	62.25			62.39			58.97	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	1,215.13			1,523.88			2,726.54	J	I,LE
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	63.45			69.53			164.32	J	1
OCTACHLORODIBENZOFURAN	7,795.11			8,728.22			11,583.41	J	SE,LE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	19.26			22.75			20.50		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	224.91			303.62			448.36		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	4,229.54			4,522.22			8,245.37		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	36,196.43			37,962.15			64,678.93		
TOTAL TETRACHLORINATED DIBENZOFURANS	33.99			37.24			53.96		
TOTAL PENTACHLORINATED DIBENZOFURANS	339.69			269.54			408.49		
TOTAL HEXACHLORINATED DIBENZOFURANS	1,382.67			1,438.12			2,866.49		
TOTAL HEPTACHLORINATED DIBENZOFURANS	4,574.97			4,846.51			11,202.91		


Chemical Name	SS101AA			SS101BA		
	Result	ValQual	Reason	Result	ValQual	Reason
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		R	CR	10.56		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN		R	CR	345.45		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	3,911.75	J	LE	965.95		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	6,732.20	J	LE	3,460.32	J	LE
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	16,659.24	J	LE,CR	2,446.99		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	247,082.24	J	I,LE	163,843.11	J	I,LE
OCTACHLORODIBENZO-P-DIOXIN	575,881.06	J	2,LE	1,418,910.70	J	E,I,LE
2,3,7,8-TETRACHLORODIBENZOFURAN	8.97			7.71		
1,2,3,7,8-PENTACHLORODIBENZOFURAN		U	EM	38.74		
2,3,4,7,8-PENTACHLORODIBENZOFURAN		R		21.52		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	619.67	J	I,DP	435.18	J	1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	439.14	J	1	327.80	J	1
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		UJ	1		UJ	1
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	399.00	J	I,CR,DD	664.38		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	15,861.81	J	I,LE	15,388.81	J	1
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	1,352.35	J	1	1,249.37	J	1
OCTACHLORODIBENZOFURAN	45,250.85	J	I,SE	78,555.91	J	I,LE,SE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	199.69			110.27		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	6,895.63			2,213.36		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	567,060.52			234,555.41		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	401,931.98			115,492.87		
TOTAL TETRACHLORINATED DIBENZOFURANS	346.79			112.74		
TOTAL PENTACHLORINATED DIBENZOFURANS	2,484.94			1,769.95		
TOTAL HEXACHLORINATED DIBENZOFURANS	32,777.44			17,227.96		
TOTAL HEPTACHLORINATED DIBENZOFURANS	67,655.93			53,554.71		

ATTACHMENT B
REASON CODES FOR DATA QUALILFICATION

## Reason Codes for Data Qualification - Dioxins and Furans

MB Contaminated blank
DD Result is from dilution where ion ratio criterion not met on initial analysis
OC Measurement below calibration
I Internal standard recovery outside of control limits
MI Matrix interference
EM Estimated maximum possible concentration (ion ratio criterion not satisfied))
DMI Result from dilution analysis; internal standard recovery from initial analysis within limits but biased by matrix interference
E Exceeded calibration range
CR Chromatographic resolution poor
DP Diphenyl ether interference
SE Excessive difference in results between analyses of samples. Significantly lower (>25\%) result after dilution for analyte above calibration or at saturation in initial analysis.
CS Cleanup standard recovery unacceptable
LE Result from dilution calculated assuming recovery of internal standard equal to tetra or tetra and penta chlorinated internal standards
FD Variability noted between field duplicates.

## ATTACHMENT C

CAS REPORT AMENDMENT

## COLUMBIA ANALYTICAL SERVICES, INC

Client:	AMEC	Service Request No.:	J0605890
Project:	Beazer East, Inc	Date Received:	$12 / 13 / 06$
Sample Matrix:	Solid		

## CASE NARRATIVE

All analyses were performed in adherence to the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier IV. When appropriate to the method, method blank results have been reported with each analytical test.

## Sample Receipt

Seventeen soil samples were received for analysis at Columbia Analytical Services on 12/13/06.
The samples were received at $4^{\circ} \mathrm{C}$ in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at $4^{\circ} \mathrm{C}$ upon receipt at the laboratory.

## Data Validation Notes and Discussion

## B flags - Method Blanks

The Method Blank EB28030-MB/U27861\#1 contained low levels of $1234678-H p C D D, 1234678-H p C D F ~ a n d ~$ OCDF at or below the Method Reporting Limit (MRL).

The Method Blank EB28031-MB/U27936\#1 contained low levels of 1234678-HpCDD, OCDD, 1234678-HpCDF and OCDF at or below the Method Reporting Limit (MRL).

EB28030-MB/U27861\#1: One compound, OCDD, was above the MRL (CRQL) in this batch. CAS/Houston follows the EPA National Functional Guidelines for CDDs and CDFs, September 2005, which states on page 31, "The concentration of OCDD/OCDF in the method blank must be <3x the CRQL (MRL.) "

The associated compounds in the samples are flagged with ' $B$ ' flags.

## Y flags - Labeled Standards

Samples that had recoveries of labeled standards outside the acceptance limits are flagged with ' Y ' flags on the Form 2 s . In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.

## MS/MSD

EB28037: Laboratory Control Spike/Laboratory Control Spike Duplicate (LCS/LCSD) samples were analyzed and reported in lieu of an MS/MSD for this extraction batch.

EB28058: Laboratory Control Spike/Laboratory Control Spike Duplicate (LCS/LCSD) samples were analyzed and reported in lieu of an MS/MSD for this extraction batch.

## C flags - 2378-TCDF Confirmation

Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225.) The results from both the DB-5 column and the DB-225 column are included in this data package.

The valid result for the 2378-TCDF compound is reported from the confirmation column.
The confirmation results have been included on the Form 3 summary pages.

## MRL

Samples SD005AA, SD006AA, SD006BA, SD007AA, SD008AA, SD009AA and SD006AC required dilutions due to the presence of elevated levels of target analytes.

The undiluted and diluted results were combined into one Form 3 summary report for each sample. This reports a 'Total' result that includes the most appropriate concentration found for the associated target analyte.

## E flags

When OCDD and/or OCDF exceed the upper method calibration limit (MCL), CAS/Houston does not perform a dilution (Section 10.6.6 of the DLM02.0 SOW). We use an ' $E$ ' flag on the Form 1 results to indicate a compound has exceeded the MCL.

## K flags

CAS/Houston reports EMPC results that comply with Section 11.2.6 of the DLM02.0 SOW. An EMPC result is flagged with a ' $K$ ' flag.

## Detection Limits

Detection limits are calculated for each congener in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

## The Form 3 results for each sample have been calculated by CAS/Houston to include:

> WHO-98 TEFs
> 2378-TCDF from the DB-225 column, when confirmation required
$>$ Non-detected compounds reported as ND $=1 / 2$ * Detection Limit
$>$ The 1:1 and associated dilution have been combined into one Form 3 summary report

# DATA VALIDATION REPORT 

# Soil Samples <br> from <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

## Analyses for PCDDs/PCDFs <br> CAS Report J0605919

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 2
4.0 DATA VALIDATION METHODOLOGY ..... 2
5.0 DATA VALIDATION FINDINGS ..... 3
5.1 Data completeness and deliverables ..... 3
5.2 Sample Receipt ..... 3
5.3 Chain of Custody (COC) Documentation ..... 4
5.4 Holding Times, Storage and Preservation ..... 4
5.5 Mass Calibration and Resolution ..... 4
5.6 Window Defining Mixture and Isomer Specificity Check ..... 4
5.7 Initial Calibrations ..... 4
5.8 Continuing Calibrations ..... 5
5.9 Chromatographic Resolution ..... 5
5.10 Method Blanks ..... 5
5.11 Laboratory Control Samples (LCS) ..... 6
5.12 Identification Criteria ..... 6
5.13 Confirmation Analyses ..... 6
5.14 Detection Limits ..... 7
5.15 Labeled Compound Recoveries ..... 7
5.16 Additional Interferences ..... 8
5.17 Sample Dilutions ..... 8
5.18 Data Consistency ..... 9
5.19 Equipment Blank ..... 9
5.20 Field Duplicates ..... 10
5.21 Calculations ..... 10
6.0 REFERENCES ..... 10

## List of Attachments

Attachment A: Data Summary<br>Attachment B: Reason Codes for Data Qualification<br>Attachment C: CAS Report Amendment

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the Site.

This report provides an evaluation of data for thirty-one soil samples, 6 sediment samples and two aqueous field blanks collected on December 11 and 12, 2006 and submitted for analysis for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in accordance with EPA Method 1613. Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL on December 12, 2006 and subsequently transferred to the CAS laboratory in Houston, TX for analysis. These samples were analyzed at CAS under Service Request Number J0605919.

### 2.0 SAMPLES

Samples included in this set are listed below.

SS094CA	SS007CA	SS046BA
SS094DA	SS007DA	SS046CA
SS101CA	SS007DB	SS046DA
SS101DA	SS022AA	SD001AA
SS024CA	SS022AB	SD001AB
SS024DA	SS022BA	SD002AA
SS070AA	SS022CA	SD003AA
SS070AB	SS022DA	SD004AA
SS070BA	SS020AA	SD004BA
SS026AA	SS020BA	EB-01
SS026BA	SS020CA	EB-02
SS026CA	SS020CC	
SS026CC	SS020DA	
SS026DA	SS046AA	

Samples from the locations noted below represent site perimeter samples:
SS007 Eastern boundary

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for analytes within the range of the instrument calibration upon initial analysis are generally valid as reported. However, most measurements made from sample dilutions must be considered as gross estimates.

The extract cleanup procedures implemented did not successfully remove matrix interferences in several samples. These interferences resulted in internal standard recoveries that were outside control limits and required qualification of associated target analyte results. The absence of valid internal standard recoveries then precluded accurate quantitation of analyte concentrations from dilution analyses. CAS further compounded the uncertainty by adjusting data by factors that are not considered applicable or reliable.

Results for samples in critical areas and along the site perimeter should be reviewed by the project manager to evaluate the margin between their toxic equivalencies (TEQs) and the action limit. Although no samples have been rejected based on the validation, they may not all be suitable to support project decisions.

TEQ values for the samples as calculated by CAS are based on the 1998 WHO toxic equivalency factors (TEFs) and include measurements for peaks that failed to meet method criteria for positive identification. TEQs have been recalculated in accordance with EPA Region 4 guidance and using the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Chain of Custody documentation
3. Sample receipt
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Identification criteria
10. Method blank analysis
11. Laboratory Control Samples
12. Second column confirmation analysis
13. Detection Limits
14. Labeled compound recoveries
15. Field blanks
16. Field Duplicates
17. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. Raw data were reviewed for all sample and quality control analyses associated with all perimeter samples in this set. In addition, chromatograms were reviewed for all samples with data reported from dilution analyses to evaluate the potential for bias from interferences and from the CAS data adjustment approach.

Results for the total congener class PCDDs and PCDFs have not been validated and should be considered as estimated in all samples. These data are not included in the TEQ calculations. These are quantified based on the assumption that their response factors are the same as the 2378 -substitued isomers. All data reported are from the initial analyses and many include congeners above instrument calibration. Any factors affecting the accuracy of results for the 2378-isomers apply to the entire congener group and interferences in addition to those noted for the 2378 -isomers may significantly bias data for these groupings of PCDDs and PCDFs.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

The submitted data package was missing forms for SD004AA. These were provided upon request and have been attached to this report. The data package contained other instrumental printouts and analytical elements required; however, documentation of data calculations involving adjustments of measured results were not included as part of the reporting package. Upon request, CAS provided explanations of selected individual sample calculations, but the approach taken was sample-specific.

It should be noted that data for the required QA/QC analyses including the mass calibration and resolution checks, window-defining mix and continuing calibration standards were not in chronological order in the package. Method blank analyses were reported for each extraction set but not for each analytical sequence as required by Method 1613.

### 5.2 Sample Receipt

Samples were received at CAS Houston via FedEx on December 14 and 15, 2006. The sample bottle for SS007DB was broken in the initial shipment and a replacement bottle was received on the $15^{\text {th }}$.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed.

### 5.4 Holding Times, Storage and Preservation

Samples were received with a cooler temperature of $0^{\circ} \mathrm{C}$, within the method recommended range. Method 1613B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence and no data were reported for final checks unless these also served as the initial checks for the next 12 hour period.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical run. All congeners in the solution were detected within the window. The height of the valley between the closely eluting isomers 1,2,3,8-TCDD and 2,3,7,8-TCDD less than 25\%. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with separate analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9TCDF, $2,3,4,7$-TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

Two instruments were used for the DB-5 column analysis for all PCDDs and PCDFs except 2,3,7,8-TCDF. Five-point calibrations were conducted on October 25 and November 7, 2006. Calibration for $2,3,7,8$-TCDF confirmation on the DB- 225 column was conducted on November 9 , 2006. The initial calibrations were acceptable with $\%$ RSDs $\leq 20 \%$ for the relative responses $(R R)$ for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

No second-source standard was analyzed to verify the calibration.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were initially conducted over the period January $3-7$, January 17 and 29, 2006 with analyses of samples at dilution on January 20, 23, 24 and 31. 2007. Analyses for $2,3,7,8$-TCDF on the DB225 column were conducted on January 3, 6, 9, 10, 11, 13, 15 and 17, 2006. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Although run logs indicate that calibration check standards were analyzed at the end of each sequence, no data for these checks were included in the package unless they also served as the initial check for the next 12 hour period. Method 1613 does not specifically require these.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied. However, several samples in this set demonstrated unacceptable chromatography likely due to interferences not removed in sample cleanup.

Results for 2378-TCDD and 2378-TCDF are rejected in SS101CA and SS101DA due to excessive peak broadening. Although these analytes were not detected, the detection limits are not valid.

Resolution of 123789-HxCDF from a non-target HxCDF was not achieved in any samples where raw data were reviewed. Results for this PCDF are generally low and qualified as estimated for that reason or for internal standard recovery anomalies. Resolution of 123678- and 123789HxCDD isomers was not achieved in some standards or in those samples where raw data were reviewed. Since both HxCDD isomers have the same toxic equivalency factor (TEF), this would not affect the TEQ for the sample.

### 5.10 Method Blanks

Four soil blanks and one aqueous method blank were associated with the initial extractions of samples in this set. Method blank analyses were reported for each extraction set but not for each analytical sequence as required by Method 1613. The method blanks contained trace levels of several target PCDDs and PCDFs, including OCDD, 123678-HxCDD, 1234678HpCDD, OCDF and $1234678-H p C D F$. Since the replicate analyses of method blanks demonstrated variability in the levels detected, the maximum concentration from the analyses of
the soil method blanks were used for data qualifications. All reported sample concentrations of these analytes were greater than 5 times the blank and were not qualified.

### 5.11 Laboratory Control Samples (LCS)

A laboratory control sample and a duplicate were extracted with each preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

Samples in this set contained a variety of interferents resulting in peaks that failed criteria for identification. These interferents may be non-PCDD/PCDFs with one or both of the mass fragments of a target analyte. Review of the raw data confirmed that the majority of these results, reported by CAS as estimated maximum possible concentrations (EMPC) with the "K" qualifier, represented peaks with ratios close to that expected for the respective PCDD of PCDF. In accordance with Region 4 guidance and the USEPA Functional Guidelines, results for these analytes in the affected samples have been qualified as non-detected with the reporting limit set at the amount calculated. This provides a high bias to the reporting limit since the actual maximum possible amount in the sample would include only that fraction of the area of one peak that would satisfy the ratio requirement. Based on review of the data, it is considered likely that the target analyte is present at a concentration below the reported value in all instances.
$1234678-H p C D F$ failed to satisfy the ion ratio requirement in the initial analysis of SD004BA, and $123478-H x C D D$ failed to meet the requirement in the initial analysis of SSO70BA. On dilution of the samples, the peaks met the criteria. CAS reported the initial results, but results from the dilution analysis have been applied for the final reporting. These results are qualified as estimated in both cases due to the matrix interferences and the data manipulation protocol followed by CAS for dilution analyses.

### 5.13 Confirmation Analyses

2,3,6,7-TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of 2,3,7,8-TCDF from the DB-5 column analysis. Final validated data and the TEQ includes the confirmation result for this analyte.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.15 Labeled Compound Recoveries

Recoveries of internal standards for one or more of the HxCDDs, HxCDFs, HxCDFs, HpCDFs and OCDD fell outside of Method 1613 control limits for the initial analysis of samples as listed below:

SS094CA	SS070BA	SD001AA
SS094DA	SS026AA	SD004AA
SS024CA	SS026BA	SD004BA
SS070AA	SS046AA	
SS070AB	SS046BA	

Method 1613 specifies gel permeation chromatography cleanup for soil samples. CAS did not perform this step, and review of the raw data for the above samples indicates that the minimal extract cleanup procedures used did not remove significant matrix interferences. Except for SD004AA and SD004BA, interferences in the above samples affected the response of the 123789-HxCDD recovery standard used for calculation of the HxCDD, HxCDF, HpCDD, HpCDF and OCDD internal standards in samples. No reliable data on the recovery of the internal standards spiked into the sample and used for quantitation of target PCDDs and PCDFs can be obtained when this occurs. All reported data for target dioxins and furans with internal standard recoveries outside of the limits are qualified as estimated.

Although the internal standard recoveries for the initial analyses of the four samples listed below fell within the relatively wide limits of Method 1613, matrix interferences to the recovery standard were evident and it is likely that there is significant bias to results reported from dilution analyses in these samples as well.

SD002AA	SS101CA
SS020AA	SS101DA

The recoveries of the OCDD internal standard in SD004AA and SD004BA were below the method control limit and in SD004BA, the peak also failed to meet the ion ratio requirement for positive identification. CAS diluted the samples and added additional internal standards. OCDD and OCDF results from the dilution analyses were calculated on the assumption that the OCDD recovery through the sample preparation steps had been $85 \%$, not the $16 \%$ measured. Results reported are likely biased significantly low by this data manipulation.

The internal standard for 2378-TCDF in SS101CA recovered below Method 1613 control limits. Results for this analyte in the sample are rejected due to unacceptable chromatography that likely would have precluded the detection of the analyte if present.

It should be noted that the reported recovery of internal standards from the dilution analyses could not always verified. As discussed below in Section 5.17, CAS adjusted the measured data in samples affected by matrix interferences. No documentation was provided to support these adjustments, and in some cases the derivation of the adjustment factor could not be discerned. All adjustments made by CAS were determined to likely introduce low bias to the reported results, and data were qualified as estimated with potential significant bias.

### 5.16 Additional Interferences

As noted above, matrix interferences affected the quantitation of the recovery standard used to determine internal standard recoveries. Matrix interferences were also noted to affect the analyses of other PCDDs/PCDFs.

Polychlorinated ethers were present in several samples. These can result in false positives or high bias for PCDFs. Results for 12378-PeCDF in SS094DA are qualified as estimated due to the presence of a coeluting ether. In several other samples, ethers were noted to interfere with the quantitation of total PCDF congeners. CAS in some but not all cases removed these peaks from the calculation of the total congener classes. Results for total congeners are not included in the TEQ calculations.

### 5.17 Sample Dilutions

Several samples in this set contained levels of PCDDs and PCDFs above the instrument calibration.

The primary corrective action for this in Method 1613 is to extract a smaller portion of the sample. Dilution by a factor of 10 is an alternative if it is determined that a smaller sample size will not be representative. Although these samples are characterized as sandy soils where representativeness would not be expected to be problematic, no reeextractions for this reason were performed. Samples were diluted by factors up to 200 by adding more internal standards to the extract.

As noted in Section 5.15, review of the raw data for the 17 samples listed indicates that the extract cleanup procedures used did not remove significant matrix interferences to the recovery standard and defensible data on the recovery of the hexa-, hepta- and octachlorinated internal standards spiked into the sample and used for quantitation of target PCDDs and PCDFs were not generated.

CAS data reduction protocol for diluted samples where recoveries were elevated in the initial analysis is to correct the recovery in the diluted analysis by the average recoveries of one or more tetra- and penta-chlorinated internal standards. Review of data for laboratory spikes, method blanks and samples unaffected by interferences and apparent high recoveries does not
support the use of this average; tetra- and penta-chlorinated internal standards consistently recover at significantly higher levels than the hexa- through octa-chlorinated internal standards. This data reduction practice likely leads to a significant low bias to results in affected samples. All measurements of hexa, hepta and octachlorinated dioxins and furans reported from dilutions where their quantitation was adjusted for tetra- and pentachlorinated standard recoveries have been qualified as estimated with potential significant bias.

In the instances where the internal standard recoveries fell within the control limits, their recoveries sometimes but not always were used to adjust the calculated concentration of analytes in the dilution analysis. Apparent recoveries of the internal standard in the initial analysis of a sample may be biased by signal suppression or enhancement from interferences and the subsequent use of this to correct the dilution result may also lead to a high or low bias in the result.

CAS states that they do not reanalyze samples where OCDD and/or OCDF are the only analytes above the calibration range. They also did not reanalyze when HpCDD as well as OCDD was above calibration in SD001AB and SS070BA. All data reported from abovecalibration measurements are qualified as estimated.

### 5.18 Data Consistency

Results obtained on dilution for the samples were compared to the initial analyses. Results were significantly lower after dilution for analytes saturated or above calibration in several samples. This is likely attributable to the CAS data adjustment protocol as detailed above for sample dilutions.

Results for the following analytes are qualified as estimated due to these differences:

SD001AA	$1234678-H p C D D$
SD002AA	$1234678-H p C D D$
SD004AA	OCDF
SD004BA	OCDF
SS024CA	$1234678-H p C D F$, OCDF
SS026AA	OCDF
SS046AA	$1234678-H p C D F$, OCDF
SS070AA	$123678-H x C D D, O C D F$
SS070AB	$1234678-H p C D F$, OCDF
SS094CA	$1234678-H p C D D$, OCDD,1234678-HpCDF, OCDF
SS094DA	OCDF
SS101DA	$1234678-H p C D D$, OCDD,1234678-HpCDF, OCDF

### 5.19 Equipment Blank

Two equipment blanks were collected with this sample set. Both were reported with trace levels of PCDDs.PCDFs, including 1234678-HpCDD, OCDD and OCDF. 1234678-HpCDF was also
noted in one equipment blank. Levels were not high enough to significantly contribute to the concentrations noted in samples.

### 5.20 Field Duplicates

Field duplicate samples were collected at six locations. Precision was acceptable for all sets with relative percent differences for most analytes below 50\%. Results are summarized in Table 1 below.

### 5.21 Calculations

Calculations for measurements within the instrument calibration range were verified for the initial analyses of perimeter samples. As noted above, dilution results for hexa, hepta and octachlorinated dioxins and furans were adjusted for initial recoveries of tetra- or tetra and pentachlorinated internal standards in samples where interferences were noted to the recovery standard. CAS calculations of the adjustment factors for each sample were not documented and in some instances, it could not be determined which combination of tetra- and pentainternal standards was used to calculate the adjustment factor. All data affected by this procedure are qualified with inherent uncertainty and should be considered as gross estimates.

Calculations for toxic equivalencies as provided were calculated using 1998 WHO toxic equivalency factors (TEF) and one-half the detection limit for non-detected analytes. Peaks reported that did not meet identification criteria were included. Values have been recalculated for program usage using the revised 2006 WHO TEF values and one-half the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

Table 1: PCDDs/PCDFs in Field Duplicate Samples
SDG J0605919

	SS070AA	SS070AB	RPD	SS026CA	SS026CC	RPD	SS007DA	SS007DB	RPD
2,3,7,8-TCDD	11	10	6\%	ND	ND		ND	ND	
1,2,3,7,8-PeCDD	338	293	14\%	0.177	ND		0.157	0.168	7\%
1,2,3,4,7,8-HxCDD	634	867	31\%	0.674	1.345	66\%	0.397	0.47	17\%
1,2,3,6,7,8-HxCDD	3166	2950	7\%	4.37	6.9	45\%	1.56	1.23	24\%
1,2,3,7,8,9-HxCDD	1637	1574	4\%	2	2.253	12\%	1.45	1.36	6\%
1,2,3,4,6,7,8-HpCDD	110000	84300	26\%	240	318	28\%	83.1	66.4	22\%
OCDD	749000	646000	15\%	3540	4690	28\%	804	657	20\%
2,3,7,8-TCDF	6.98	5.858	16\%	ND	ND		ND	ND	
1,2,3,7,8-PeCDF	50.7	38.2	28\%	ND	ND		ND	0.069	
2,3,4,7,8-PECDF	53.0	44.8	17\%	ND	ND		ND	0.135	
1,2,3,4,7,8-HxCDF	539	442	20\%	0.946	ND		0.52	0.509	2\%
1,2,3,6,7,8-HxCDF	448	375	18\%	0.279	ND		0.18	0.24	29\%
1,2,3,7,8,9-HxCDF	15	14	5\%	ND	ND		ND	0.096	
2,3,4,6,7,8-HxCDF	963	478	67\%	0.674	ND		0.295	0.337	13\%
1,2,3,4,6,7,8-HpCDF	14800	10400	35\%	31.1	36.1	15\%	10.4	9.01	14\%
1,2,3,4,7,8,9-HpCDF	1360	1090	22\%	1.679	ND		0.523	0.518	1\%
OCDF	70700	48000	38\%	189	323	52\%	56.2	44.5	23\%
CAS TEQ, ng/kg	$2.46 \mathrm{E}+03$	$2.03 \mathrm{E}+03$	19\%	4.187	5.3	23\%	1.68	1.5	11\%


	SS022AA	SS022AB	RPD	SS020CA	SS020CC	RPD	SD001AA	SD001AB	RPD
2,3,7,8-TCDD	0.251	ND		ND	ND		0.97	ND	
1,2,3,7,8-PeCDD	8.03	6.354	23\%	4.60	3.62	24\%	5.74	5.91	3\%
1,2,3,4,7,8-HxCDD	24.547	19.177	25\%	17.80	15.20	16\%	15.90	17.00	7\%
1,2,3,6,7,8-HxCDD	68.112	54.68	22\%	83.00	72.00	14\%	70.70	57.00	21\%
1,2,3,7,8,9-HxCDD	68.989	57.122	19\%	40.10	32.10	22\%	37.60	41.00	9\%
1,2,3,4,6,7,8-HpCDD	2622.508	2673.258	2\%	3910.00	3491.427	11\%	2170.00	2330.00	7\%
OCDD	26076.18	26723.54	2\%	27080.157	31249.59	13\%	27900.00	21200.00	27\%
2,3,7,8-TCDF	0.879	ND		ND	ND		1.13	0.72	44\%
1,2,3,7,8-PeCDF	1.443	1.11	26\%	0.528	0.418	26\%	2.90	1.04	94\%
2,3,4,7,8-PECDF	2.481	1.973	23\%	0.411	0.405	1\%	2.61	1.20	74\%
1,2,3,4,7,8-HxCDF	15.4	12.215	23\%	7.44	6.369	17\%	15.30	7.98	63\%
1,2,3,6,7,8-HxCDF	9.813	7.949	21\%	3.547	3.206	11\%	10.20	6.71	41\%
1,2,3,7,8,9-HxCDF	ND	ND		0.332	ND		1.09	0.42	89\%
2,3,4,6,7,8-HxCDF	15.889	12.679	22\%	3.58	2.794	28\%	6.71	7.04	5\%
1,2,3,4,6,7,8-HpCDF	379.158	301.594	23\%	405.048	344.523	18\%	472.00	299.00	45\%
1,2,3,4,7,8,9-HpCDF	20.77	15.658	28\%	26.449	21.923	21\%	27.40	19.00	36\%
OCDF	1977.085	1587.32	22\%	2801.76	2387.342	17\%	2260.00	1550.00	37\%
CAS TEQ, ng/kg	$6.30 \mathrm{E}+01$	$5.69 \mathrm{E}+01$	10\%	$6.68 \mathrm{E}+01$	5.90E+01	12\%	$5.36 \mathrm{E}+01$	4.96E+01	8\%

ATTACHMENT A

## DATA SUMMARY

Chemical Name	EB-01			EB-02			SD001AA			SD001AB		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U			U		0.97	J	OC		U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN		U			U		5.74	J	OC	5.91		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN		U			U		15.87			17.05		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN		U			U		70.01			57.07		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN		U			U		37.58			40.95		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	8.98	J	OC		U	EM	2,167.65	J	SE,DMI	2,332.96	J	E
OCTACHLORODIBENZO-P-DIOXIN	67.85	J	OC	66.60	J	OC	27,861.10	J	DMI	21,217.95	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN		U			U		1.13	J	OC	0.72	J	OC
1,2,3,7,8-PENTACHLORODIBENZOFURAN		U			U		2.90	J	OC	1.04	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN		U			U		2.61	J	OC	1.20	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN		U			U		15.30			7.98		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN		U			U		10.20			6.71		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U		1.09	J	OC,	0.42	J	OC
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN		U			U		6.71			7.04		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN		U		1.09	J	OC	471.50			299.36		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN		U			U		27.43			19.04		
OCTACHLORODIBENZOFURAN	4.65	J	OC	4.51	J	OC	2,259.88			1,547.21		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS		U			U		9.21			5.93		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS		U			U		58.86			71.14		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	1.37				U		962.77			819.13		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	31.37			22.90			15,028.33			9,512.17		
TOTAL TETRACHLORINATED DIBENZOFURANS		U			U		15.46			12.68		
TOTAL PENTACHLORINATED DIBENZOFURANS		U			U		90.86			63.44		
TOTAL HEXACHLORINATED DIBENZOFURANS		U			U		631.50			327.09		
TOTAL HEPTACHLORINATED DIBENZOFURANS	2.47			3.94			2,129.89			1,227.10		


Chemical Name	SD002AA			SD003AA			SD004AA			SD004BA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	2.10			7.10			1.47			26.78		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	23.99			88.15			18.10			376.29		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	61.85			248.85			64.23			1,145.00		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	228.06			874.00			178.04			3,650.83		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	131.24			568.67			155.01			3,167.03		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	4,790.20	J	SE,DMI	29,952.76			9,138.89			79,277.87	J	LE
OCTACHLORODIBENZO-P-DIOXIN	63,809.89	J	DMI	347,508.63	J	E	110,558.64	J	E,I	500,249.54	J	I,LE
2,3,7,8-TETRACHLORODIBENZOFURAN		U	EM	9.40			1.48			27.71		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	4.38	J	OC	11.25	J	OC	2.84	J	OC	50.57		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	6.03	J	OC	17.72			3.92	J	OC	73.29		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	31.32			108.80			23.95			490.51		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	30.80			90.76			19.03			400.02		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	1.17	J	OC		U			U		11.63		
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	34.86			69.60			24.88			308.05		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	1,218.16			3,980.89			904.20			9,545.02	J	LE,DD
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	87.09			261.25			57.78			1,162.76		
OCTACHLORODIBENZOFURAN	7,043.43			25,420.24			4,561.02	J	SE, I	39,291.63	J	I,SE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	29.99			46.25			16.01			207.87		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	243.47			779.83			157.38			2,821.91		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	2,580.30			8,801.58			2,389.95			43,514.21		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	23,119.19			89,041.65			26,342.94			132,468.86		
TOTAL TETRACHLORINATED DIBENZOFURANS	60.76			189.16			21.90			489.15		
TOTAL PENTACHLORINATED DIBENZOFURANS	266.34			820.93			169.18			3,131.17		
TOTAL HEXACHLORINATED DIBENZOFURANS	1,299.49			4,769.57			1,038.52			10,874.58		
TOTAL HEPTACHLORINATED DIBENZOFURANS	4,984.09			17,629.24			3,823.29			51,314.01		


Chemical Name	SS007CA			SS007DA			SS007DB			SS020AA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U			U			U		1.80		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN		U		0.16	J	OC	0.17	J	OC	42.42		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	1.12	J	OC	0.40	J	OC	0.47	J	OC	125.73		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	6.51			1.56	J	OC	1.23	J	OC	843.15		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	7.15			1.45	J	OC	1.36	J	OC	372.44		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	453.53			83.18			66.39			35,870.15	J	DMI
OCTACHLORODIBENZO-P-DIOXIN	4,573.66	J	E	803.72			656.80			326,015.11	J	E,DMI
2,3,7,8-TETRACHLORODIBENZOFURAN		U			U			U		0.58	J	OC
1,2,3,7,8-PENTACHLORODIBENZOFURAN		U	EM		U			U	EM	3.30	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN		U			U		0.14	J	OC	3.28	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN		U	EM	0.52	J	OC	0.51	J	OC	66.91		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN		U		0.18	J	OC	0.24	J	OC	35.77		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U		0.10	J	OC		U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN		U		0.30	J	OC	0.34	J	OC	30.32	J	DP
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	53.51			10.37			9.01			3,676.31	J	DMI
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	3.05	J	OC		U	EM		U	EM	244.10	J	DMI
OCTACHLORODIBENZOFURAN	397.63			56.21			44.45			31,866.71		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS		U			U			U		35.24		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	3.29			0.67			0.68			201.10		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	169.56			28.49			23.59			4,120.15		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	3,200.60			525.56			393.11			50,425.45		
TOTAL TETRACHLORINATED DIBENZOFURANS	0.38				U			U		34.32		
TOTAL PENTACHLORINATED DIBENZOFURANS	4.44			0.95			1.04			198.50		
TOTAL HEXACHLORINATED DIBENZOFURANS	49.41			11.28			9.49			2,967.12		
TOTAL HEPTACHLORINATED DIBENZOFURANS	313.53			45.90			34.57			15,175.49		


Chemical Name	SS020BA			SS020CA			SS020CC			SS020DA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U	EM		U			U			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	11.93			4.60	J	OC	3.62	J	OC	6.30		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	48.70			17.75			15.24			26.56		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	226.53			82.99			72.04			110.39		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	105.75			40.16			32.11			55.25		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	10,099.39			3,906.03			3,491.43			5,138.25		
OCTACHLORODIBENZO-P-DIOXIN	79,283.52	J	E	27,080.16			31,249.59			45,545.23	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN		U			U			U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	1.35	J	OC	0.53	J	OC	0.42	J	OC	0.81	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	1.31	J	OC	0.41	J	OC	0.41	J	OC	0.81	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	23.14			7.44			6.37			12.52		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	10.26			3.55	J	OC	3.21	J	OC	5.69		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U		0.33	J	OC		U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	9.65			3.58	J	OC	2.79	J	OC	4.88	J	OC
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	1,095.08			405.05			344.52			576.30		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	71.88			26.45			21.92			37.67		
OCTACHLORODIBENZOFURAN	9,483.53			2,801.76			2,387.34			3,940.33		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	9.03			2.67			2.75			4.12		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	55.64			21.50			16.21			27.68		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	1,176.60			434.26			375.97			602.87		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	19,169.22			7,029.33			6,067.38			9,928.49		
TOTAL TETRACHLORINATED DIBENZOFURANS	9.29			2.13			1.54			3.85		
TOTAL PENTACHLORINATED DIBENZOFURANS	61.50			20.92			17.52			29.09		
TOTAL HEXACHLORINATED DIBENZOFURANS	851.32			306.06			259.46			425.36		
TOTAL HEPTACHLORINATED DIBENZOFURANS	5,204.39			1,901.22			1,666.03			2,633.75		


Chemical Name	SS022AA			SS022AB			SS022BA			SS022CA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U	EM		U	EM		U			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	8.03			6.35			0.99	J	OC	0.44	J	
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	24.55			19.18			2.96	J	OC		U	EM
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	68.11			54.68			9.17			5.02	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	68.99			57.12			9.48				U	EM
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	2,622.51			2,673.26			404.59			97.44		
OCTACHLORODIBENZO-P-DIOXIN	26,076.18			26,723.54			3,751.70			733.33		
2,3,7,8-TETRACHLORODIBENZOFURAN	0.88	J	OC		U	EM		U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	1.44	J	OC	1.11	J	OC	0.23	J	OC	0.12	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	2.48	J	OC	1.97	J	OC	0.44	J	OC	0.17	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	15.40			12.22				U	EM		U	EM
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	9.81			7.95			1.00	J	OC		U	EM
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U			U			U			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	15.89			12.68			1.85	J	OC		U	EM
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	379.16			301.59			52.89			8.98		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	20.77			15.66			2.75	J	OC	0.52	J	OC
OCTACHLORODIBENZOFURAN	1,977.09			1,587.32			261.12			35.44		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	31.12			26.54			7.12			0.54		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	93.01			74.25			12.58			0.72		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	1,270.44			1,009.25			159.01			42.18		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	13,920.25			11,285.38			1,838.91			339.24		
TOTAL TETRACHLORINATED DIBENZOFURANS	157.63			133.66			30.20			3.76		
TOTAL PENTACHLORINATED DIBENZOFURANS	74.86			59.23			9.68			7.00		
TOTAL HEXACHLORINATED DIBENZOFURANS	256.14			314.80			49.01			12.32		
TOTAL HEPTACHLORINATED DIBENZOFURANS	1,435.20			1,158.50			202.56			34.61		


Chemical Name	SS022DA			SS024CA			SS024DA			SS026AA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U		2.99				U			U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	0.39	J	OC	52.45			1.08	J	OC	63.22		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	0.59	J	OC	154.42			3.33	J	OC	370.71	J	I
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	1.49	J	OC	501.51	J	I	9.74			1,483.68	J	I,LE
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	1.16	J	OC	284.77	J	1	10.43			419.18	J	I
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	59.80			16,293.82	J	LE	431.35			66,368.79	J	I,LE
OCTACHLORODIBENZO-P-DIOXIN	449.10			108,639.81	J	E,LE	4,159.60	J	E	328,389.27	J	I,LE
2,3,7,8-TETRACHLORODIBENZOFURAN		U		1.52				U		1.64		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	0.28	J	OC	7.23				U		67.36		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	0.46	J	OC	9.37				U	EM	46.56		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	0.53	J	OC	74.72	J	1	1.53	J	OC	455.99	J	1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN		U	EM	62.75	J	1		U	EM	105.72	J	I
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U		2.30	J	1		U		7.39	J	I
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	0.43	J	OC	42.21	J	1	2.37	J	OC	201.90	J	1
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	5.16	J	OC	1,916.73	J	SE,LE	56.54			8,132.72	J	I,LE
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	0.41	J	OC	163.51	J	1	3.42	J	OC	787.69	J	1
OCTACHLORODIBENZOFURAN	22.72			7,975.82	J	SE,LE	261.40			40,771.90	J	I,LE,SE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	0.40			30.29				U		17.40		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	0.91			439.36			3.66			700.32		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	16.78			8,126.40			165.51			25,022.38		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	243.62			49,523.98			2,185.40			148,183.53		
TOTAL TETRACHLORINATED DIBENZOFURANS	1.78			68.51			0.46			99.61		
TOTAL PENTACHLORINATED DIBENZOFURANS	1.73			439.97			7.32			892.87		
TOTAL HEXACHLORINATED DIBENZOFURANS	5.43			1,640.19			55.93			4,332.02		
TOTAL HEPTACHLORINATED DIBENZOFURANS	18.88			2,571.63			216.28			11,279.52		


Chemical Name	SS026BA			SS026CA			SS026CC			SS026DA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	0.27	J	OC		U			$\cup$			U	
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	2.58	J	OC	0.18	J	OC		U		0.81	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	13.79			0.67	J	OC	1.35	J	OC		$\cup$	
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	75.62			4.37	J	OC	6.90				U	
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	21.64			2.01	J	OC		U	EM		U	
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	4,884.02			240.29			317.50			596.27		
OCTACHLORODIBENZO-P-DIOXIN	66,041.07			3,535.86			4,691.99	J	E	8,236.20	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN		U			U			U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	1.42	J	OC		U			U		0.18	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	1.46	J	OC		U			U			U	
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	16.59			0.95	J	OC		U			U	EM
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	5.36			0.28	J	OC		U			U	
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U	EM		U			$\cup$			$\cup$	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	254.63	J	CR	0.67	J	OC		U			U	
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	486.87			31.17			36.05			72.43		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	27.22			1.68	J	OC		U		2.66	J	OC
OCTACHLORODIBENZOFURAN	4,582.27			188.93			231.70			480.26		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	0.82				U			U			U	
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	27.04			0.96				U		3.81		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	1,134.49			46.05			57.00			30.97		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	17,006.63			915.29			1,218.77			2,390.28		
TOTAL TETRACHLORINATED DIBENZOFURANS	8.09				U			U			U	
TOTAL PENTACHLORINATED DIBENZOFURANS	70.96			1.59			2.09			5.60		
TOTAL HEXACHLORINATED DIBENZOFURANS	1,148.44			30.93			33.21			65.62		
TOTAL HEPTACHLORINATED DIBENZOFURANS	2,449.82			153.16			184.76			353.71		


Chemical Name	SS046AA			SS046BA			SS046CA			SS046DA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U	EM		U	EM		U			U	EM
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	35.42			50.52			3.21	J	OC	2.24	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	100.82			481.75	J	1	17.25			11.75		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	670.50			1,195.56			48.57			65.01		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	291.83			1,239.68			48.08			35.75		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	14,122.67	J	SE,DMI	43,182.17	J	DMI,SE	2,729.81			4,339.88		
OCTACHLORODIBENZO-P-DIOXIN	136,299.78	J	E,DMI	474,908.63	J	E,I,DMI	25,130.32			36,369.91		
2,3,7,8-TETRACHLORODIBENZOFURAN	0.76	J	OC	0.75	J			U			U	
1,2,3,7,8-PENTACHLORODIBENZOFURAN	11.22			6.29			0.40	J	OC	0.97	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN		U	EM		U	EM		$\cup$	EM	0.39	J	OC
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	99.50			119.13	J	1	6.55			7.91		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	59.38			44.96	J	1	2.82	J	OC	3.29	J	OC
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	3.12	J	OC,CR	3.28	J	OC, I		$\cup$			U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	41.65			38.94	J	1	9.02			8.06	J	CR
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	1,481.17			3,545.17	J	LE	242.14			366.62		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	215.12			327.67	J	1	17.11			21.18		
OCTACHLORODIBENZOFURAN	9,634.89	J	DMI,SE	31,394.98	J	I,LE,SE	1,596.34			2,672.14		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	10.39			44.85			1.35			0.89		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	291.32			1,584.21			43.60			30.59		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	8,154.59			24,172.24			776.63			730.20		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	65,972.60			75,461.96			11,923.00			12,849.53		
TOTAL TETRACHLORINATED DIBENZOFURANS	46.65			51.87			2.11			2.06		
TOTAL PENTACHLORINATED DIBENZOFURANS	340.87			313.97			18.38			17.15		
TOTAL HEXACHLORINATED DIBENZOFURANS	3,011.55			1,831.25			242.07			296.22		
TOTAL HEPTACHLORINATED DIBENZOFURANS	12,504.75			20,196.50			1,183.94			1,847.44		


Chemical Name	SS070AA			SS070AB			SS070BA			SS094CA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	10.91	J	CR	10.27			11.94			1.56	J	CR
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	337.67			293.45			365.16			19.13		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	634.35	J	I,CR	867.18			1,776.00	J	DD	55.49	J	CR
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	3,166.21	J	LE,SE,CR	2,950.07			8,296.31	J	LE	505.79	J	CR
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	1,637.58			1,574.24			5,882.20	J	LE	240.05		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	109,745.55	J	I,LE	84,295.20	J	I, LE	324,866.61	J	E,I,LE	16,038.70	J	I.SE,
OCTACHLORODIBENZO-P-DIOXIN	749,165.24	J	I,LE	646,260.13	J	LE,E	1,690,239.30	J	E,I,LE	153,100.67	J	I,SE,
2,3,7,8-TETRACHLORODIBENZOFURAN	6.99			5.86			4.24			0.70	J	OC
1,2,3,7,8-PENTACHLORODIBENZOFURAN	50.65			38.21			43.34			3.75	J	I,OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	53.06			44.91			55.21			4.87	J	I,OC,CR
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	539.68	J	1	442.04	J	1	1,262.93	J	1	66.81	J	1
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	448.24	J	1	374.98	J	1	495.42	J	1	30.03	J	1
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	15.16	J	I,CR	14.32	J	1	24.99	J	1	1.51	J	I,OC
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	962.92	J	1	477.64	J	1	1,472.09			65.38		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	14,778.61	J	1	10,364.43	J	I,LE,SE	43,668.88	J	1	1,383.66	J	I,SE
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	1,356.74	J	1	1,091.03	J	I	3,826.07	J	1	153.76	J	1
OCTACHLORODIBENZOFURAN	70,706.58	J	I,LE,SE	48,002.97	J	LE,SE	247,720.39	J	1	8,219.19	J	I,SE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	129.97			120.63			179.61			4.73		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	1,998.83			1,763.70			2,582.42			183.40		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	79,172.66			69,858.41			157,888.96			26,750.52		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	191,830.39			168,750.52			283,986.72			69,554.62		
TOTAL TETRACHLORINATED DIBENZOFURANS	367.74			323.91			259.56			12.70		
TOTAL PENTACHLORINATED DIBENZOFURANS	2,623.03			2,294.39			1,948.67			159.04		
TOTAL HEXACHLORINATED DIBENZOFURANS	4,789.39			4,582.48			18,497.16			3,251.30		
TOTAL HEPTACHLORINATED DIBENZOFURANS	16,457.95			47,022.33			76,322.60			10,343.55		


Chemical Name	SS094DA			SS101CA			SS101DA		
	Result	ValQual	Reason	Result	ValQual	Reason	Result	ValQual	Reason
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN		U							
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	4.27	J	OC	11.31			9.29		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN		$\cup$	EM	85.32			65.11		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	414.21	J	CR	527.83			594.59		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	261.27	J	CR	344.88			367.25		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	27,960.95	J	I,LE	11,333.88	J	SE,SE	17,358.29	J	SE,DMI
OCTACHLORODIBENZO-P-DIOXIN	261,477.77	J	LE,E	119,766.63	J	SE,LE	169,191.01	J	SE,DMI
2,3,7,8-TETRACHLORODIBENZOFURAN		U							
1,2,3,7,8-PENTACHLORODIBENZOFURAN	4.90	J	OC,DP	7.68			4.69	J	OC
2,3,4,7,8-PENTACHLORODIBENZOFURAN	5.05	J	OC	9.68			7.81		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	69.65	J	1	85.49			85.51		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN		UJ	I,EM	22.37			19.48		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		UJ	1	4.16	J	OC		U	
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	37.52			13.84			10.76		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	2,388.33	J	I,LE	1,321.05	J	SE,LE	1,937.82	J	SE,DMI
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	158.96	J	1	206.62	J	SE,LE	220.45	J	SE,DMI
OCTACHLORODIBENZOFURAN	16,154.61	J	LE,SE	8,976.74			13,714.56		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS		U			U		2.60		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	181.13			227.85			229.61		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	24,662.11			14,993.81			13,857.31		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	140,735.99			276,727.26			245,943.19		
TOTAL TETRACHLORINATED DIBENZOFURANS	2.32			49.21			11.02		
TOTAL PENTACHLORINATED DIBENZOFURANS	94.14			135.85			140.89		
TOTAL HEXACHLORINATED DIBENZOFURANS	887.58			4,621.64			4,025.61		
TOTAL HEPTACHLORINATED DIBENZOFURANS	15,518.89			22,305.76			21,263.73		

ATTACHMENT B
REASON CODES FOR DATA QUALILFICATION

## Reason Codes for Data Qualification - Dioxins and Furans

MB Contaminated blank
DD Result is from dilution where ion ratio criterion not met on initial analysis
OC Measurement below calibration
I Internal standard recovery outside of control limits
MI Matrix interference
EM Estimated maximum possible concentration (ion ratio criterion not satisfied))
DMI Result from dilution analysis; internal standard recovery from initial analysis within limits but biased by matrix interference
E Exceeded calibration range
CR Chromatographic resolution poor
DP Diphenyl ether interference
SE Excessive difference in results between analyses of samples. Significantly lower (>25\%) result after dilution for analyte above calibration or at saturation in initial analysis.
CS Cleanup standard recovery unacceptable
LE Result from dilution calculated assuming recovery of internal standard equal to tetra or tetra and penta chlorinated internal standards
FD Variability noted between field duplicates.

## ATTACHMENT C

CAS REPORT AMENDMENT

March 9, 2007
Mandy Sullivan
Columbia Analytical Services, Inc
8540 Baycenter Road
Jacksonville, FL 32256

## Subject: Amendment to J0605919 <br> AMEC/Beazer East, Inc

Dear Mandy,
The following pages (208 and 209) were omitted from the original report. Please add them and let us know if we can help with anything else.

Respectfully submitted,
Columbia Analytical Services, Inc


Jane Freemyer
Project Manager
713-266-1599 $\times 23$
jfreemyer@houston.caslab.com

## Jane Freemyer

From:	Hoyt, Marilyn P [marilyn.hoyt@amec.com]
Sent:	Friday, March 09, 2007 8:56 AM
To:	Karen Verschoor
Cc:	Mandy Sullivan; Jane Freemyer; Tom Kissinger
Subject: RE: Amended J0605810	

thank you.

The data report for J 0605919 is missing Form I and Form 2 for SD004AA. Please provide a copy of those pages.

From: Karen Verschoor [mailto:kverschoor@houston.caslab.com]
Sent: Thursday, March 08, 2007 7:31 PM
To: Hoyt, Marilyn P
Cc: Mandy Sullivan; Jane Freemyer; Tom Kissinger
Subject: RE: Amended J0605810
Importance: High

I have attached the amend ment for J0705810

Let us know if there is anything else you need.


Visit us at www.caslab.com

PCDD/PCDF ANALYSIS DATA SHEET
Use for Sample and Blank Results

CLIENT ID.

SDOO4AA

Lab Name: Columbia Analytical Services
Contract
SDG No:

Client No: Lab ID: J0605919-051

Client Name: AMEC

Matrix (Solid/Aqueous/Waste/Ash): Solid

Sample Wt/Vol: 10.248 g or $\mathrm{mL}: ~ g$
Initial Calibration Date: 11/07/06

Ext. Date: 12/27/06
Ext. Vol(ul):20.0 Inj. Vol(ul):1.0
Analysis Date: 6-JAN-07 Time: 03:58:30
Dilution Factor: 1
Cal. Ver. Data Filename: U18625\#1
Concentration Units (pg/L or ng/Kg dry weight): ng/Kg \% Solids/Lipids: 81.94

ANALYTE

## CONCENTRATION FOUND

DETECTION
Qual. ION ABUND.
RRT
MEAN

$2,3,7,8-\mathrm{TCDD}$	1.470	0.036
$1,2,3,7,8-\mathrm{PeCDD}$	18.097	0.068
$1,2,3,4,7,8$-HxCDD	64.234	0.129
$1,2,3,6,7,8$-HxCDD	178.038	0.141
$1,2,3,7,8,9$-HxCDD	155.010	0.137
$1,2,3,4,6,7,8-\mathrm{HpCDD}$	7208.866	7.713
OCDD	62356.717	1.182
$2,3,7,8-\mathrm{TCDF}$	2.178	0.044
$1,2,3,7,8-\mathrm{PeCDF}$	2.839	0.147
$2,3,4,7,8-$ PeCDF	3.918	0.162
$1,2,3,4,7,8-\mathrm{HxCDF}$	23.947	0.713
$1,2,3,6,7,8$-HxCDF	19.031	0.830
$1,2,3,7,8,9$-HxCDF	$*$	1.032
$2,3,4,6,7,8-\mathrm{HxCDF}$	24.884	0.857
$1,2,3,4,6,7,8-\mathrm{HpCDF}$	904.204	5.016
$1,2,3,4,7,8,9$-HpCDF	57.775	6.757
OCDF	4561.018	0.462
Total Tetra-Dioxins	16.013	0.036
Total Penta-Dioxins	157.377	0.068
Total Hexa-Dioxins	2389.947	0.129
Total Hepta-Dioxins	26342.941	7.713
Total Tetra-Furans	21.899	0.044
Total Penta-Furans	169.175	0.162
Total Hexa-Furans	1038.520	0.713
Total Hepta-Furans	3823.286	5.016

(1) Qualifier $U$ indicates not detected; The $K$ indicates EMPC. The $C$ needs value from second column analysis. The $B$ indicates possible blank contamination.
(2) RRTs and ion ratios are specified in Tables 2 and 9, Method 1613.

FORM 2: PCDD/PCDF LABELED COMPOUND AND CLEANUP STANDARD RECOVERIES

CLIENT ID.

SD004AA

Lab Name: Columbia Analytical Services Contract: Lab Code: CAS Method:1613 Case No: Client No: Lab ID:J0605919-051

Sample Wt/Vol: 10.248 $g$ or mL: $g$

Initial Calibration Date: 11/07/06
Instrument ID: AutoSpec-Ultima

GC Column ID: DB-5

Sample Data Filename: U18636\#1
Blank Data Filename: U27959\#1

Concentration Units (pg/L or ng/Kg dry weight): ng/Kg \% Solid/Lipids: 8I. 94

			ION				
	SPIKE	CONC.	R(\%)	QC	ABUND.	RRT	
	CONC.	FOUND	$(1)$	Limite (1)	RATIO	$(2)$	$(2)$

LABELED COMPOUNDS

13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD
13C-1, $2,3,4,7,8-\mathrm{HxCDD}$
13C-1,2,3,6,7,8-HxCDD
$13 \mathrm{C}-1,2,3,4,6,7,8-\mathrm{HPCDD}$ 13C-OCDD

13C-2,3,7,8-TCDF
13C-1,2,3,7,8-PeCDF
13C-2,3, 4, 7, 8-PeCDF
13C-1,2,3,4,7,8-HxCDF
$13 \mathrm{C}-1,2,3,6,7,8-\mathrm{HxCDF}$
$13 \mathrm{C}-1,2,3,7,8,9-\mathrm{HxCDF}$
$13 \mathrm{C}-2,3,4,6,7,8-\mathrm{HxCDF}$
$13 \mathrm{C}-1,2,3,4,6,7,8-\mathrm{HPCDF}$
13C-1,2,3,4,7,8,9-HpCDF

2000	1446.85	72.34	$25-164$	0.79	1.012
2000	1185.10	59.25	$25-181$	1.55	1.221
2000	1242.70	62.13	$32-141$	1.25	0.990
2000	1278.79	63.94	$28-130$	1.25	0.992
2000	701.65	35.08	$23-140$	1.03	1.069
4000	793.08	19.83	$17-157$	0.91	1.138
2000	1226.30	61.31	$24-169$	0.77	0.972
2000	1281.91	64.10	$24-185$	1.57	1.173
2000	1130.36	56.52	$21-178$	1.54	1.205
2000	1311.78	65.59	$26-152$	0.53	0.969
2000	1158.74	57.94	$26-123$	0.52	0.971
2000	1400.57	70.03	$29-147$	0.52	1.006
2000	1266.23	63.31	$28-136$	0.53	0.986
2000	755.87	37.79	$28-143$	0.45	1.046
2000	804.96	40.25	$26-138$	0.45	1.078

CLEANUP STANDARD

$37 C 1-2,3,7,8-T C D D$	800	669.13	83.64	$35-197$	1.013

(1) Contract-required limits for percent recovery (R) are specified in Table 7, Method 1613.
(2) Contract-required limits for RRTs and ion abundance ratios are specified in Tables 2 and 9, respectively, Method 1613. NOTE: There is no ion abundance ratio for $37 \mathrm{Cl} 4-2378-T C D D$ (cleanup standard).

# DATA VALIDATION REPORT 

# Soil Samples <br> from <br> Koppers Portion of Cabot/Koppers Superfund Site Gainesville, FL 

## Analyses for PCDDs/PCDFs <br> CAS Report J0605944

Prepared for:
Beazer East

Prepared by:
AMEC Earth \& Environmental, Inc.
2 Robbins Road
Westford, MA 01886

## Table of Contents

Page
DATA QUALIFIER DEFINITIONS ..... ii
1.0 INTRODUCTION ..... 1
2.0 SAMPLES ..... 1
3.0 SUMMARY OF VALIDATION FINDINGS ..... 1
4.0 DATA VALIDATION METHODOLOGY ..... 2
5.0 DATA VALIDATION FINDINGS ..... 3
5.1 Data completeness and deliverables ..... 3
5.2 Sample Receipt ..... 3
5.3 Chain of Custody (COC) Documentation ..... 3
5.4 Holding Times, Storage and Preservation ..... 3
5.5 Mass Calibration and Resolution .....  3
5.6 Window Defining Mixture and Isomer Specificity Check ..... 3
5.7 Initial Calibrations ..... 4
5.8 Continuing Calibrations ..... 4
5.9 Chromatographic Resolution ..... 4
5.10 Method Blanks ..... 5
5.11 Laboratory Control Samples (LCS) ..... 5
5.12 Identification Criteria ..... 5
5.13 Confirmation Analyses ..... 5
5.14 Detection Limits ..... 5
5.15 Labeled Compound Recoveries ..... 6
5.16 Interferences ..... 6
5.17 Sample Dilutions ..... 6
5.18 Data Consistency ..... 7
5.19 Equipment Blank ..... 7
5.20 Field Duplicates ..... 7
5.21 Calculations ..... 7
6.0 REFERENCES ..... 7

## List of Attachments

Attachment A Data Summary
Attachment B Reason Codes for Data Qualification

## DATA QUALIFIER DEFINITIONS

$\mathrm{U} \quad$ The U qualifier indicates that the analyte must be considered to be nondetected at the concentration listed. U qualifiers added during validation are typically a result of detection of target analytes in field, trip, or laboratory blanks.
$\mathrm{J} \quad$ The J qualifier indicates that the associated result is quantitatively uncertain. J qualifiers added during validation indicate a data limitation related to a QC element that exceeds required acceptance limits.

UJ The UJ qualifier indicates that the associated analyte was not detected at or above the method detection limit (MDL). However, the reported MDL is approximate and may be inaccurate or imprecise.
$\mathrm{N} \quad$ The N qualifier indicates an analyte has been presumptively identified. Presumptive detection means that a chromatographic peak was detected at the correct retention time for an analyte, but that not all required identification criteria were met. The associated result is both qualitatively and quantitatively uncertain.

R The R qualifier indicates that a result has been rejected due to serious QC problems. It is not possible to definitively determine whether the analyte is present or absent in the sample.

### 1.0 INTRODUCTION

On behalf of Beazer East, Inc., AMEC Earth and Environmental (AMEC) collected soil and sediment samples at the Koppers Portion of the Cabot/Koppers Superfund site in Gainesville, Florida. Samples were collected as part of the activities specified in the Revised Supplemental Soil and Sediment Sampling Plan - Additional Data for Risk Assessment dated September 2006. This sampling is being conducted to support a human health risk assessment that will be conducted for the site.

This report provides an evaluation of data for seven sediment samples collected on December 12, 2006 and submitted for analysis for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in accordance with EPA Method 1613. Samples were submitted to Columbia Analytical Services (CAS) in Jacksonville, FL on December12, 2006 and subsequently transferred to the CAS laboratory in Houston, TX for analysis. These samples were analyzed at CAS under Service Request Number J0605944.

### 2.0 SAMPLES

Samples included in this set are listed below.

SD005AA	SD007AA
SD006AA	SD008AA
SD006AC	SD009AA
SD006BA	

### 3.0 SUMMARY OF VALIDATION FINDINGS

Results for analytes within the range of the instrument calibration upon initial analysis are generally valid as reported. Results below the calibration range are qualified as estimated. Results for analytes measured after dilution, including OCDD and OCDF in SS005AA, SS006AA and SS006AC should be considered as gross estimates. Calculation protocols followed by CAS for dilution analyses are poorly documented and likely introduce significant bias. Results for these samples should be reviewed by the project manager to evaluate the margin between their toxic equivalencies (TEQs) and site action limits. Although no samples have been rejected in their entirety based on the validation, they may not all be suitable to support project decisions.

Toxicity equivalency (TEQ) values for the samples as calculated by CAS are based on the 1998 WHO toxic equivalency factors (TEFs) and include measurements for peaks that failed to meet method criteria for positive identification. TEQs have been recalculated in accordance with EPA Region 4 guidance and the updated WHO 2006 TEFs.

### 4.0 DATA VALIDATION METHODOLOGY

Data have been reviewed and validated with reference to the requirements of EPA Method 1613B, and the USEPA National Functional Guidelines for Chlorinated Dibenzo-p-dioxins and Chlorinated Dibenzofurans Data Review (EPA-540-R-05-001, September 2005) and USEPA Region 4 Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002. For those instances where Method 1613B requirements or criteria differ from the US EPA Contract Laboratory Program Statement of Work for dioxin/furan analyses, upon which the Functional Guidelines are based, the requirements and criteria of the cited method were applied.

Raw data were reviewed for all sample and quality control analyses associated with all samples in this set.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

1. Data completeness and deliverables
2. Chain of Custody documentation
3. Sample receipt
4. Holding times, storage and preservation
5. Mass calibration and mass spectrometer resolution
6. Window defining mixture
7. Initial calibration
8. Continuing calibrations
9. Identification criteria
10. Method blank analysis
11. Laboratory Control Samples
12. Second column confirmation analysis
13. Detection Limits
14. Labeled compound recoveries
15. Field blanks
16. Field Duplicates
17. Calculations

Data for all samples were reviewed for reported quality assurance/quality control results. All reported results on the final summary forms were checked against the raw data instrument printouts for sample concentrations. Chromatograms were reviewed for all samples in this set.

Results for the total congener class PCDDs and PCDFs have not been validated and should be considered as estimated in all samples. These data are not included in the TEQ calculations. These are quantified based on the assumption that their response factors are the same as the 2378 -substitued isomers. All data reported are from the initial analyses and many include congeners above instrument calibration. Any factors affecting the accuracy of results for the

2378-isomers apply to the entire congener group and interferences in addition to those noted for the 2378-isomers may significantly bias data for these groupings of PCDDs and PCDFs.

### 5.0 DATA VALIDATION FINDINGS

### 5.1 Data completeness and deliverables

The submitted data packages contained instrumental documentation elements required for full validation. However, documentation of data calculations involving adjustments of measured results from dilutions were not included as part of the reporting package. Upon request, CAS has provided explanations of selected individual sample calculations, but the approach taken was sample-specific.

It should be noted that data for the required QA/QC analyses including the mass calibration and resolution checks, window-defining mix and continuing calibration standards were not in chronological order in the package.

### 5.2 Sample Receipt

Samples were received at CAS Houston via FedEx on December 15, 2006.

### 5.3 Chain of Custody (COC) Documentation

COCs were legible and properly completed.

### 5.4 Holding Times, Storage and Preservation

Samples were received with a cooler temperature of $1^{\circ} \mathrm{C}$, within the method recommended range. Method 1613B allows for holding times up to 1 year if solid samples are frozen to $-10^{\circ} \mathrm{C}$. Samples were extracted within 14 days of sampling, and extracts analyzed within 40 days.

### 5.5 Mass Calibration and Resolution

Mass calibration and resolution were checked prior to each analytical run sequence. Mass calibration and resolution met method criteria for all sample analyses with a static resolving power of greater than 10,000 and a mass accuracy within 5 ppb of the actual for the PFK peaks monitored.

Method 1613 does not specify that the mass calibration and resolution must be verified at the end of each sequence.

### 5.6 Window Defining Mixture and Isomer Specificity Check

The retention times for the first- and last-eluting congener at each PCDD and PCDF chlorination level were demonstrated by the analysis of the window-defining mixture prior to each analytical
run. All congeners in the solution were detected at expected times. The height of the valley between the closely eluting isomers $1,2,3,8$-TCDD and $2,3,7,8$-TCDD less than $25 \%$. No qualifications were required.

The GC column resolution for the DB225 confirmation analyses was demonstrated with separate analyses of the Isomer Specificity Check mix prior to the initial and continuing calibration analyses. The height of the valleys between the closely eluting isomers 1,2,3,9TCDF, $2,3,4,7$-TCDF and $2,3,7,8$-TCDF was less than $25 \%$. No qualifications were required.

### 5.7 Initial Calibrations

One instrument was used for the DB-5 column analysis for all PCDDs and PCDFs except 2,3,7,8-TCDF. Five-point calibrations were conducted on November 7, 2006. Calibration for 2,3,7,8-TCDF confirmation on the DB-225 column was conducted on November 9, 2006. The initial calibrations were acceptable with \%RSDs $\leq 20 \%$ for the relative responses (RR) for unlabeled compounds and $\leq 35 \%$ for the relative response factors (RRFs) for labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613B for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

No second-source standard was analyzed to verify the calibration.

### 5.8 Continuing Calibrations

Mid-point calibration standards were analyzed prior to and after each 12-hour analytical sequence. Sample analyses on the DB5 column were initially conducted on January 7, 17 and 30, 2007 with analyses of samples at dilution on January 23 and 31, 2007. Analyses for 2,3,7,8-TCDF on the DB225 column were conducted on January 15 and 17, 2007. All calibration checks demonstrated acceptable response stability, with the \%D of the RRs of unlabeled compounds within $20 \%$ of the average from the initial calibration and the RRFs of the labeled compounds $<35 \%$. The ion abundance ratios, sensitivity and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

Although run logs indicate that calibration check standards were analyzed at the end of each sequence, no data for these checks were included in the package. Method 1613 does not specifically require these.

### 5.9 Chromatographic Resolution

Method 1613 requires that chromatographic resolution of the column be verified for closely eluting TCDD isomers on the DB5 column and TCDF isomers on the DB225 column. All method requirements were satisfied.

### 5.10 Method Blanks

One method blank was prepared with the initial extraction and this was analyzed twice. A second method blank was prepared with the reextraction of SS006BA. The method blanks contained trace levels of several target PCDDs and PCDFs, including OCDD, 1234678-HpCDD, OCDF and $1234678-H p C D F$. Since the duplicate analyses of the one method blank demonstrated variability in the levels detected, the maximum concentration from the analyses of the method blanks were used for data qualifications. All reported sample concentrations of these analytes were greater than 5 times the blank and were not qualified.

### 5.11 Laboratory Control Samples (LCS)

Laboratory control sample and a duplicate were extracted with the preparation batch. These samples were prepared by spiking clean sand with the target PCDDs/PCDFs. Recoveries of all target PCDDs and PCDFs were within the method control limits.

### 5.12 Identification Criteria

Target PCDDs and PCDFs are identified based on peak retention time and the presence of the two masses monitored for the congener level with relative abundances within $15 \%$ of the theoretical value. Since numerous chemicals may result in one of both of the masses monitored for the PCDDs/PCDFs, a peak cannot be identified as a target analyte unless the ratio criterion is met.

The OCDD internal standard failed to satisfy the ion ratio criteria for the analysis of SD006AA. The sample was diluted with additional internal standards and reanalyzed. Results for OCDD and OCDF in this sample are qualified as estimated since no valid data on recovery of the internal standard was generated.

### 5.13 Confirmation Analyses

$2,3,6,7-$ TCDF is not separated completely on the primary chromatographic column, so if it is detected on the initial analysis, a second-column analysis is necessary to confirm its presence. These analyses were conducted on all samples with potential detections of 2,3,7,8-TCDF from the DB-5 column analysis. Final validated data and the TEQ includes the confirmation result for this analyte.

### 5.14 Detection Limits

Detection limits were calculated on a sample-specific, analyte specific basis using the signal to noise level in each ion channel.

### 5.15 Labeled Compound Recoveries

Recoveries of internal standards were within Method 1613 control limits for all samples in this set. As noted, however, the OCDD internal standard failed to satisfy the ion ratio requirement for SS006AA. CAS did not flag this outlier on the report but did base the quantitation of OCDD and OCDF using adjusted areas. Final results for OCDD and OCDF are reported from reanalyses at dilution and are based on adjustments by an undocumented and untraceable factor.

### 5.16 Interferences

Polychlorinated ethers were present at low levels, but while several interfered with the quantitation of total PCDF congeners, no instances were noted where $2,3,7,8$-subsituted target PCDF were affected.

### 5.17 Sample Dilutions

All samples in this set contained levels of one or more of the following PCDDs/PCDFs above calibration: OCDD, OCDF, 1234678-HpCDD, 1234678-HpCDF. The primary corrective action for this in Method 1613 is to extract a smaller portion of the sample. Dilution by a factor of 10 is an alternative if it is determined that a smaller sample size will not be representative. Although these samples are characterized as sandy soils where representativeness would not be expected to be problematic, no reeextractions were performed for this reason. Samples were diluted by factors up to 100 by adding more internal standards to the extract.

CAS data reduction protocol for measurements at dilution was inconsistent and poorly or not documented. Sample results for OCDD from dilutions of SS005AA and SS006AC were corrected for some combination of tetra- and pentachlorinated internal standard recoveries, whereas dilution results for SS008AA and SS008BA were corrected by the initial recovery of the OCDD internal standard and results for SS007AA and SD009AA were not corrected for any initial recovery. The basis for the data adjustment used for SS006AA could not be determined; the reported result does not agree with the hand-written calculation on the raw data. Review of data for samples unaffected by interferences and apparent high recoveries does not support the use of tetra- and penta-chlorinated internal standards. These consistently recover at significantly higher levels than the hexa- through octa-chlorinated internal standards. This data reduction practice likely leads to a significant low bias to results in affected samples.

SS006AA and SS006AC are field duplicates, and their chromatograms demonstrate the same approximate level of interferents to the recovery standard. In both samples, the measured recoveries of the HpCDD, HpCDF and OCDD internal standards were within the control limits. However, CAS corrected results for these analytes in the dilution analyses differently, using a combination of tetra and penta recoveries for SSO06AC and an unknown factor for SS006AA. Results for OCDD and OCDF are significantly lower in SS006AC, confirming that this correction process likely introduces low bias. Results for all analytes from dilution analyses where data were corrected by tetra-penta standard recoveries are qualified as gross estimates.

CAS states that they do not reanalyze samples where OCDD and/or OCDF are the only analytes above the calibration range. OCDD was above calibration in all final reported sample analyses and results for this analyte in all samples are qualified as estimated.

### 5.18 Data Consistency

Results obtained on dilution for the samples were compared to the initial analyses. The dilution results for 1234678 -HpCDF and OCDF in SS005AA were significantly lower than the initila analysis for SS095AA. This is likely attributable to the CAS data adjustment protocol as detailed above for sample dilutions.

### 5.19 Equipment Blank

No equipment blank was collected with this sample set.

### 5.20 Field Duplicates

Field duplicate samples were collected at SS006AA. Precision for those analytes reported from This is possibly attributable to the differing data adjustments made by CAS rather than sample non-homogeneity. Results for OCDD and OCDF are qualified as estimated in both samples.

### 5.21 Calculations

As noted, CAS calculations for results reported from dilution analyses were not documented and were inconsistently performed. All reported results from dilutions where data were adjusted based on recoveries of internal standards other than that for the specific analyte are qualified as gross estimates.

The reported result for OCDD in SS006AA could not be traced from the raw data or the handwritten calculations. The higher value has been retained as a gross estimate pending explanation from CAS.

Calculations for toxic equivalencies as provided were calculated using 1998 WHO toxic equivalency factors (TEF) and one-half the detection limit for non-detected analytes. Peaks reported that did not meet identification criteria were included. Values have been recalculated using the revised 2006 WHO TEF values and one-half the maximum possible concentrations for analytes where peaks were present but did not meet criteria for positive identification.

### 6.0 REFERENCES

USEPA 1994. Method 1613B Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRCG/HRMS. October 1994.

USEPA Region 4. 2002. Data Validation Standard Operating Procedures for Chlorinated Dioxin/Furan Analysis by High Resolution Gas Chromatography/High Resolution Mass Spectrometry, Revision 3.0, May 2002.
U. S. EPA. 2005. USEPA Analytical Services Branch: National Functional Guidelines for Chlorinated Dibenzo-p-dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review, EPA540-R-05-001.

## amec ${ }^{\theta}$

PCDDs/PCDFs in Field Duplicate Samples

Analyte	SS006AA	SS006AC	RPD
2,3,7,8-TCDD	18.3	20.2	10\%
1,2,3,7,8-PeCDD	275	298	8\%
1,2,3,4,7,8-HxCDD	628	897	35\%
1,2,3,6,7,8-HxCDD	2920	2740	6\%
1,2,3,7,8,9-HxCDD	3150	2160	37\%
1,2,3,4,6,7,8-HpCDD	114000	118000	3\%
OCDD	2050000	543000	116\%
2,3,7,8-TCDF	28.7	28.7	0\%
1,2,3,7,8-PeCDF	34.8	38.2	9\%
2,3,4,7,8-PECDF	53.5	60.6	12\%
1,2,3,4,7,8-HxCDF	338	381	12\%
1,2,3,6,7,8-HxCDF	273	308	12\%
1,2,3,7,8,9-HxCDF	7.96	9.79	21\%
2,3,4,6,7,8-HxCDF	209	402	63\%
1,2,3,4,6,7,8-HpCDF	12900	12400	4\%
1,2,3,4,7,8,9-HpCDF	781	832	6\%
OCDF	128797	43000	100\%
TEQ, ng/kg	$2.47 \mathrm{E}+03$	$2.41 \mathrm{E}+03$	2\%

## ATTACHMENT A: SAMPLE RESULTS

Chemical Name	SD005AA			SD006AA			SD006AC		
	Result	ValQual	Reason	Result	ValQual	Reason	Result	ValQual	Reason
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	20.38			18.27			20.16		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	262.12			275.06			297.87		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	778.10			627.98			897.01		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	2,296.12			2,916.05			2,744.24		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	1,878.33			2,151.29			2,164.64		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	61,111.16	J	LE	113,521.12			118,482.36		
OCTACHLORODIBENZO-P-DIOXIN	358,022.51	J	E,LE	2,048,970.20	J	I,E,FD,LE	543,262.57	J	FD,LE
2,3,7,8-TETRACHLORODIBENZOFURAN	36.66			28.67			28.68		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	39.84			34.77			38.23		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	59.61			53.50			60.60		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	307.71			337.89			381.01		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	272.19			272.91			308.25		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN	8.49			7.96			9.79		
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	226.21			209.47			402.49		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	7,188.26	J	LE	12,890.74			12,368.64		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	666.38			781.06			831.53		
OCTACHLORODIBENZOFURAN	25,200.63	J	LE	128,797.47	J	I,FD,LE	43,067.99	J	FD,LE
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	183.05			143.36			152.94		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	2,050.44			2,012.42			2,126.31		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	28,729.72			29,979.65			31,893.84		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	86,441.89			97,541.89			129,239.08		
TOTAL TETRACHLORINATED DIBENZOFURANS	423.35			351.82			337.86		
TOTAL PENTACHLORINATED DIBENZOFURANS	2,215.46			2,165.88			2,328.17		
TOTAL HEXACHLORINATED DIBENZOFURANS	11,512.31			7,476.87			8,199.64		
TOTAL HEPTACHLORINATED DIBENZOFURANS	32,180.26			38,093.10			13,129.93		


Chemical Name	SD006BA			SD007AA			SD008AA			SD009AA		
	Result	ValQual	Reason									
2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN	2.10	J	OC	3.12			1.93			5.99		
1,2,3,7,8-PENTACHLORODIBENZO-P-DIOXIN	35.82			45.83			40.09			110.69		
1,2,3,4,7,8-HEXACHLORODIBENZO-P-DIOXIN	142.34			172.69			118.78			320.32		
1,2,3,6,7,8-HEXACHLORODIBENZO-P-DIOXIN	387.72			478.15			515.03			1,603.03		
1,2,3,7,8,9-HEXACHLORODIBENZO-P-DIOXIN	357.74			460.40			357.24			894.76		
1,2,3,4,6,7,8-HEPTACHLORODIBENZO-P-DIOXIN	15,302.86			22,430.72			22,573.62			68,762.65		
OCTACHLORODIBENZO-P-DIOXIN	147,043.84	J	E	255,252.91	J	E	283,836.08	J	E	798,634.64	J	E
2,3,7,8-TETRACHLORODIBENZOFURAN	3.82			5.56				U	EM	5.84		
1,2,3,7,8-PENTACHLORODIBENZOFURAN	4.44	J	OC	5.73			6.67			25.51		
2,3,4,7,8-PENTACHLORODIBENZOFURAN	7.02	J	OC	9.37			6.75			26.12		
1,2,3,4,7,8-HEXACHLORODIBENZOFURAN	57.45			68.96			63.28			207.62		
1,2,3,6,7,8-HEXACHLORODIBENZOFURAN	50.70			53.23			43.81			145.84		
1,2,3,7,8,9-HEXACHLORODIBENZOFURAN		U	EM		U		2.46	J	OC	6.44		
2,3,4,6,7,8-HEXACHLORODIBENZOFURAN	100.67			76.55			64.00			121.49		
1,2,3,4,6,7,8-HEPTACHLORODIBENZOFURAN	2,644.51			2,241.29			2,269.70			6,956.40		
1,2,3,4,7,8,9-HEPTACHLORODIBENZOFURAN	159.86			149.56			154.40			505.84		
OCTACHLORODIBENZOFURAN	11,474.71			17,032.91			16,981.36			54,657.89		
TOTAL TETRACHLORINATED DIBENZO-P-DIOXINS	15.61			25.42			20.13			49.02		
TOTAL PENTACHLORINATED DIBENZO-P-DIOXINS	266.09			372.89			295.65			765.17		
TOTAL HEXACHLORINATED DIBENZO-P-DIOXINS	4,539.61			5,752.87			5,648.48			14,433.55		
TOTAL HEPTACHLORINATED DIBENZO-P-DIOXINS	53,619.73			38,674.62			42,952.02			62,649.41		
TOTAL TETRACHLORINATED DIBENZOFURANS	33.92			61.33			45.96			132.49		
TOTAL PENTACHLORINATED DIBENZOFURANS	334.25			418.30			340.12			1,056.64		
TOTAL HEXACHLORINATED DIBENZOFURANS	2,430.13			1,484.70			2,521.66			3,988.05		
TOTAL HEPTACHLORINATED DIBENZOFURANS	9,142.61			9,719.00			9,701.59			22,595.79		

ATTACHMENT B
REASON CODES FOR DATA QUALILFICATION

## Reason Codes for Data Qualification - Dioxins and Furans

MB Contaminated blank
DD Result is from dilution where ion ratio criterion not met on initial analysis
OC Measurement below calibration
I Internal standard recovery outside of control limits
MI Matrix interference
EM Estimated maximum possible concentration (ion ratio criterion not satisfied))
DMI Result from dilution analysis; internal standard recovery from initial analysis within limits but biased by matrix interference
E Exceeded calibration range
CR Chromatographic resolution poor
DP Diphenyl ether interference
SE Excessive difference in results between analyses of samples. Significantly lower (>25\%) result after dilution for analyte above calibration or at saturation in initial analysis.
CS Cleanup standard recovery unacceptable
LE Result from dilution calculated assuming recovery of internal standard equal to tetra or tetra and penta chlorinated internal standards
FD Variability noted between field duplicates.


[^0]:    ${ }^{1}$ Fifty-six samples with potential bias were submitted for reanalysis. However, analytical results reported by the two laboratories for sample SS024CA were dramatically different with a concentration of 4.3 $\mathrm{ng} / \mathrm{kg}$ TEQ reported by Vista and a concentration of $389.6 \mathrm{ng} / \mathrm{kg}$ TEQ reported by CAS. (Table 1). Vista's physical description of the sample differed from the description recorded by CAS for the bottle from which the sample was taken. CAS described the sample as sand with rocks; the sample analyzed by Vista had no rocks. In addition, reported moisture contents were different. This difference may have been the result of the sample sent to Vista coming from the same sampling point but taken from a slightly deeper soil stratum. Because the data for the samples were vertically consistent, going from higher to lower concentrations with increased depth, it is most likely that the sample that was sent to Vista may have been taken from a deeper stratum than the one analyzed by CAS's Houston laboratory and reported as a surface soil sample. Alternatively, the samples could have been either misidentified or unintentionally switched before they were sent. While it is not clear why the differences were so great, AMEC does not believe that the samples are comparable and, thus, did not compare them as if they were parallel analyses of the same starting material.

[^1]:    * Value reported as estimated maximum possible concentration

